1
|
Jurgelane I, Egle K, Grava A, Galkina D, Brante M, Melnichuks M, Skrinda-Melne M, Salms G, Dubnika A. Exploring the effects of cannabidiol encapsulation in liposomes on their physicochemical properties and biocompatibility. Drug Deliv 2025; 32:2460666. [PMID: 39916297 PMCID: PMC11809167 DOI: 10.1080/10717544.2025.2460666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/19/2024] [Accepted: 01/24/2025] [Indexed: 02/12/2025] Open
Abstract
Cannabidiol (CBD) is recognized for its therapeutic properties in various conditions. However, CBD's limited water solubility and sensitivity to environmental stresses hinder its efficacy and bioavailability. Encapsulation in drug delivery systems, particularly liposomes, offers a promising solution. This study aims to prepare CBD-containing liposomes using commercially used lipids distearoyl phosphatidylcholine (DSPC) and dipalmitoyl phosphatidylcholine (DPPC), and 1,2 distearoyl-sn-glycero-3 phosphoethanolamine-N-[carbonyl-amino(polyethylene glycol)-4300] (ammonium salt) (DSPE-PEG) and to perform in vitro studies - cell viability and CBD release. Liposomes were synthesized using thin-film hydration method, and characterized by Fourier-transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS), and scanning transmission electron microscopy (STEM). DLS analysis revealed that CBD incorporation reduced liposome size by 23-53%, depending on the liposomes. Encapsulation efficiency followed the order: DPPC CBD (63%) < DSPC CBD (74%) < DSPC DPPC CBD (81%) < DSPC DSPE-PEG CBD (87%). CBD release profiles indicated that DPPC CBD liposomes released the highest CBD amount initially, while DSPC DSPE-PEG CBD exhibited sustained release, achieving 79% release over 504 h. In vitro cell viability tests showed that blank liposomes were non-cytotoxic. However, CBD-loaded liposomes significantly reduced cell viability for defined type of CBD containing liposomes. The inclusion of DSPE-PEG improved encapsulation efficiency and liposome stability, making DSPC DSPE-PEG CBD liposomes more suitable for long-term CBD release. Compared to other studies, encapsulation of CBD in liposomes enhances its bioavailability, allowing lower concentrations of CBD to be directly delivered to cells, resulting in observable changes in cell viability.
Collapse
Affiliation(s)
- Inga Jurgelane
- Faculty of Natural Sciences and Technology, Institute of Biomaterials and Bioengineering, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Riga Technical University, Riga, Latvia
| | - Karina Egle
- Faculty of Natural Sciences and Technology, Institute of Biomaterials and Bioengineering, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Riga Technical University, Riga, Latvia
| | - Andra Grava
- Faculty of Natural Sciences and Technology, Institute of Biomaterials and Bioengineering, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Riga Technical University, Riga, Latvia
| | - Dana Galkina
- Faculty of Natural Sciences and Technology, Institute of Biomaterials and Bioengineering, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Riga Technical University, Riga, Latvia
| | - Margarita Brante
- Faculty of Natural Sciences and Technology, Institute of Biomaterials and Bioengineering, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Riga Technical University, Riga, Latvia
| | - Maksims Melnichuks
- Faculty of Natural Sciences and Technology, Institute of Biomaterials and Bioengineering, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Riga Technical University, Riga, Latvia
| | - Marite Skrinda-Melne
- Faculty of Natural Sciences and Technology, Institute of Biomaterials and Bioengineering, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Riga Technical University, Riga, Latvia
| | - Girts Salms
- Baltic Biomaterials Centre of Excellence, Riga Technical University, Riga, Latvia
- Institute of Stomatology, Riga Stradins University, Riga, Latvia
| | - Arita Dubnika
- Faculty of Natural Sciences and Technology, Institute of Biomaterials and Bioengineering, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Riga Technical University, Riga, Latvia
| |
Collapse
|
2
|
Tihăuan BM, Onisei T, Slootweg W, Gună D, Iliescu C, Chifiriuc MC. Cannabidiol-A friend or a foe? Eur J Pharm Sci 2025; 208:107036. [PMID: 39929375 DOI: 10.1016/j.ejps.2025.107036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/21/2025] [Accepted: 02/06/2025] [Indexed: 03/23/2025]
Abstract
Cannabidiol (CBD), one of the main actives from Cannabis sativa has been perpetually explored lately for its therapeutic effects. Its main attributes, such as anti-inflammatory and antioxidant effects, snowball into pain management, epilepsy and seizure alleviation, anxiety relief, as well as numerous other implications through the entire metabolism. However, conventional administration routes challenge its therapeutic potential, with reported poor water solubility, hepatic degradation, gastric instability and erratic bioavailability observed in oral administration. As a result, the transdermal delivery systems have emerged as a promising alternative to oral or inhaled routes, offering improved bioavailability and targeted effects. The medical use of CBD throughout Europe, UK, USA or Australia is extensive and usually represented by pharmaceutical preparations recommended after conventional treatment routs fail. The non-medical use is limited by each country's own legislation, a wider range of products being available, but the irregular regulatory landscape coupled with the growing market of cannabinoid-infused products, emphasizes the need for standardized formulations and further clinical research. The present work critically examines the transdermal administration of cannabidiol, explores the skin's potential as a route and the strategies involved in using it for systemic targeting. We highlighted key challenges and provided insights into CBD`s variable bioavailability based on different administration routes and methods, thus compiling a literature-based absorption, distribution, metabolism, and excretion (ADME) study. We also explore the role of the endocannabinoid system, its function in various medical conditions, and the therapeutic effects associated with CBD, particularly in light of the varying legislation across countries. While the breadth of potential benefits is compelling, it is essential to emphasize the ongoing nature of CBD research as individual responses to it can vary significantly.
Collapse
Affiliation(s)
- Bianca-Maria Tihăuan
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 50567 Bucharest, Romania; National Institute for Research and Development in Food Bioresources, Dinu Vintilă Street, No.6, 021102 Bucharest, Romania; eBio-hub Research Centre, National University for Science and Technology Politehnica Bucharest, Bucharest, Romania; Academy of Romanian Scientists, Bucharest, Romania
| | - Tatiana Onisei
- National Institute for Research and Development in Food Bioresources, Dinu Vintilă Street, No.6, 021102 Bucharest, Romania
| | - Walter Slootweg
- QB3 Research & Development, Spaarndammerstraaat 4d, 1013SV Amsterdam, Netherlands
| | - Daniel Gună
- S.C. Absolute Essential Oils Ltd. (AEO), Adunații Copăceni Village, Giurgiu County, 38 Troitei Street, 087005, Romania
| | - Ciprian Iliescu
- eBio-hub Research Centre, National University for Science and Technology Politehnica Bucharest, Bucharest, Romania; Academy of Romanian Scientists, Bucharest, Romania; National Institute for Microtechnologies, 126A Erou Iancu Nicolae Street, Voluntari 077190, Romania.
| | - Mariana-Carmen Chifiriuc
- Research Institute of the University of Bucharest-ICUB, 91-95 Spl. Independentei, 50567 Bucharest, Romania.
| |
Collapse
|
3
|
Hadid T, Biedny A, Mamdani H, Azmi A, Kim S, Jang H, Uprety D, Al Hallak MN, Sukari A. Association between cannabis use and clinical outcomes in patients with solid malignancies receiving immune checkpoint inhibitors. Ther Adv Vaccines Immunother 2024; 12:25151355241309095. [PMID: 39737331 PMCID: PMC11683815 DOI: 10.1177/25151355241309095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 12/03/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Cannabis (CAN) use has risen significantly over the last few decades. CAN has potent immunosuppressive properties, which could antagonize the effect of immunotherapy (IO). The impact of CAN use on clinical cancer outcomes remains unclear. OBJECTIVES In this study, we evaluated the clinical effect of CAN use on clinical outcomes among patients with solid malignancies receiving IO. DESIGN This is a retrospective cohort study of all patients with solid malignancies receiving IO between August 2014 and August 2018. METHODS Patients were stratified based on CAN use to CAN users and CAN non-users. The primary outcome was overall survival (OS), and the secondary outcomes were progression-free survival (PFS) and disease control rate (DCR). Univariable and multivariable logistic and Cox regression analyses were performed to compare the outcomes between the two groups, adjusting for covariates. RESULTS The records of 106 patients were reviewed, 28 (26%) of whom were CAN users and 78 (74%) were CAN non-users. One patient was excluded. Most CAN users consumed dronabinol (82%). The median follow-up for OS and PFS was 29.2 months. Median OS in the CAN users was 6.7 months compared to 17.3 months in the CAN non-users (HR, 1.78; 95% CI, 1.06-2.97; p = 0.029). The median PFS was 4.8 months in the CAN users compared to 9.7 months in the CAN non-users (HR, 1.74; 95% CI, 1.09-2.79; p = 0.021). DCR was 11% among CAN users and 38% among CAN non-users (OR, 0.23; 95% CI; 0.06-0.68; p = 0.007). An exploratory racial disparity analysis showed that this negative impact of CAN was primarily seen in White patients. CONCLUSION In this single institutional experience, CAN use was associated with worse OS, PFS, and DCR among cancer patients receiving IO. Prospective trials are needed to further study this potential antagonistic interaction between CAN and IO and explore the racial disparities related to CAN exposure.
Collapse
Affiliation(s)
- Tarik Hadid
- Department of Oncology, Wayne State University School of Medicine, 540 E Canfield Street, Detroit, MI 48201-1928, USA
- Karmanos Cancer Center, Detroit, MI, USA
| | - Adam Biedny
- Ascension Macomb-Oakland Hospital, Warren, MI, USA
| | - Hirva Mamdani
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Karmanos Cancer Center, Detroit, MI, USA
| | - Asfar Azmi
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Karmanos Cancer Center, Detroit, MI, USA
| | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Karmanos Cancer Center, Detroit, MI, USA
| | - Hyejeong Jang
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Karmanos Cancer Center, Detroit, MI, USA
| | - Dipesh Uprety
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Karmanos Cancer Center, Detroit, MI, USA
| | - Mohammed Najeeb Al Hallak
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Karmanos Cancer Center, Detroit, MI, USA
| | - Ammar Sukari
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Karmanos Cancer Center, Detroit, MI, USA
| |
Collapse
|
4
|
Ross-Munro E, Isikgel E, Fleiss B. Evaluation of the Efficacy of a Full-Spectrum Low-THC Cannabis Plant Extract Using In Vitro Models of Inflammation and Excitotoxicity. Biomolecules 2024; 14:1434. [PMID: 39595610 PMCID: PMC11592195 DOI: 10.3390/biom14111434] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Evidence has accumulated that Cannabis-derived compounds have the potential to treat neuroinflammatory changes present in neurodevelopmental conditions such as autism spectrum disorder. However, research is needed on the specific brain health benefits of strains of whole Cannabis extract that are ready for commercial production. Here, we explore the anti-inflammatory and neuroprotective effects of NTI-164, a genetically unique high-cannabidiol (CBD), low-Δ9-tetrahydrocannabinol extract, and also CBD alone on BV-2 microglia and SHSY-5Y neurons. Inflammation-induced up-regulation of microglial inflammatory markers was significantly attenuated by NTI-164, but not by CBD. NTI-164 promoted undifferentiated neuron proliferation and differentiated neuron survival under excitotoxic conditions. These effects suggest the potential for NTI-164 as a treatment for neuropathologies.
Collapse
Affiliation(s)
- Emily Ross-Munro
- School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia;
| | - Esra Isikgel
- Fenix Innovation Group Pty Ltd., Melbourne, VIC 3149, Australia;
| | - Bobbi Fleiss
- School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia;
| |
Collapse
|
5
|
Woodfin S, Hall S, Ramerth A, Chapple B, Fausnacht D, Moore W, Alkhalidy H, Liu D. Potential Application of Plant-Derived Compounds in Multiple Sclerosis Management. Nutrients 2024; 16:2996. [PMID: 39275311 PMCID: PMC11397714 DOI: 10.3390/nu16172996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by inflammation, demyelination, and neurodegeneration, resulting in significant disability and reduced quality of life. Current therapeutic strategies primarily target immune dysregulation, but limitations in efficacy and tolerability highlight the need for alternative treatments. Plant-derived compounds, including alkaloids, phenylpropanoids, and terpenoids, have demonstrated anti-inflammatory effects in both preclinical and clinical studies. By modulating immune responses and promoting neuroregeneration, these compounds offer potential as novel adjunctive therapies for MS. This review provides insights into the molecular and cellular basis of MS pathogenesis, emphasizing the role of inflammation in disease progression. It critically evaluates emerging evidence supporting the use of plant-derived compounds to attenuate inflammation and MS symptomology. In addition, we provide a comprehensive source of information detailing the known mechanisms of action and assessing the clinical potential of plant-derived compounds in the context of MS pathogenesis, with a focus on their anti-inflammatory and neuroprotective properties.
Collapse
Affiliation(s)
- Seth Woodfin
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Sierra Hall
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Alexis Ramerth
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Brooke Chapple
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Dane Fausnacht
- Department of Biology, School of Sciences and Agriculture, Ferrum College, Ferrum, VA 24088, USA
| | - William Moore
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Hana Alkhalidy
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
6
|
Chen L, Li HL, Zhou HJ, Zhang GZ, Zhang Y, Wang YM, Wang MY, Yang H, Gao W. Feature-Based Molecular Network-Assisted Cannabinoid and Flavonoid Profiling of Cannabis sativa Leaves and Their Antioxidant Properties. Antioxidants (Basel) 2024; 13:749. [PMID: 38929189 PMCID: PMC11200612 DOI: 10.3390/antiox13060749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Cannabis sativa (C. sativa) leaves are rich in cannabinoids and flavonoids, which play important antioxidant roles. Since the environmental factors may influence the accumulation of antioxidants in herbal medicines, which affects their activity, this study aimed to investigate the correlation between the chemical composition of C. sativa leaves and their geographical origin and antioxidant activity. Firstly, a high-resolution mass spectrometry method assisted by semi-quantitative feature-based molecular networking (SQFBMN) was established for the characterization and quantitative analysis of C. sativa leaves from various regions. Subsequently, antioxidant activity analysis was conducted on 73 batches of C. sativa leaves, and a partial least squares regression (PLS) model was employed to assess the correlation between the content of cannabinoids and flavonoids in the leaves and their antioxidant activity. A total of 16 cannabinoids and 57 flavonoids were annotated from C. sativa, showing a significant regular geographical distribution. The content of flavonoid-C glycosides in Sichuan leaves is relatively high, and their antioxidant activity is also correspondingly high. However, the leaves in Shaanxi and Xinjiang were primarily composed of flavonoid-O glycosides, and exhibited slightly lower antioxidant activity. A significant positive correlation (p < 0.001) was found between the total flavonoids and cannabinoids and the antioxidant activity of the leaves, and two flavonoids and one cannabinoid were identified as significant contributors.
Collapse
Affiliation(s)
- Ling Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.C.); (H.-L.L.); (H.-J.Z.); (G.-Z.Z.); (M.-Y.W.)
| | - Hong-Ling Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.C.); (H.-L.L.); (H.-J.Z.); (G.-Z.Z.); (M.-Y.W.)
- China National Narcotics Control Commission—China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, China
| | - Hong-Juan Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.C.); (H.-L.L.); (H.-J.Z.); (G.-Z.Z.); (M.-Y.W.)
- China National Narcotics Control Commission—China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, China
| | - Guan-Zhong Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.C.); (H.-L.L.); (H.-J.Z.); (G.-Z.Z.); (M.-Y.W.)
- China National Narcotics Control Commission—China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, China
| | - Ying Zhang
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China;
| | - You-Mei Wang
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing 100193, China;
| | - Meng-Yuan Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.C.); (H.-L.L.); (H.-J.Z.); (G.-Z.Z.); (M.-Y.W.)
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.C.); (H.-L.L.); (H.-J.Z.); (G.-Z.Z.); (M.-Y.W.)
- China National Narcotics Control Commission—China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, China
| | - Wen Gao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; (L.C.); (H.-L.L.); (H.-J.Z.); (G.-Z.Z.); (M.-Y.W.)
- China National Narcotics Control Commission—China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Nanjing 210009, China
| |
Collapse
|
7
|
Babayeva M, Srdanovic I. Non-linear plasma protein binding of cannabidiol. J Cannabis Res 2024; 6:27. [PMID: 38902820 PMCID: PMC11191238 DOI: 10.1186/s42238-024-00238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Cannabidiol is highly bound to plasma proteins. Changes in its protein binding can lead to altered unbound plasma concentrations and result in alteration of pharmacological activity of cannabidiol-containing medications. This research has assessed non-linearity of cannabidiol plasma protein binding and the potential effect of tizoxanide on the binding. METHOD Cannabidiol protein binding was evaluated by ultrafiltration technique. Human plasma was spiked with cannabidiol stock solution to produce samples of various concentrations. For interaction study potential interactant tizoxanide was added in each sample. All samples were processed through Amicon Micropartition system and analyzed by HPLC. RESULTS The study has detected cannabidiol binding to borosilicate glass (9%) and polyethylene plastics (15%). In the interaction study the mean protein unbound fraction of cannabidiol was 0.05 (5%), indicating no binding interaction between cannabidiol and tizoxanide since cannabidiol unbound fraction without tizoxanide was also 5%. The cannabidiol fraction unbound was more than 2-fold greater at high concentrations compared to low concentrations. CONCLUSION a). At high concentrations cannabidiol plasma protein binding is non-linear. The non-linearity can affect elimination and medicinal effect of cannabidiol drugs. b). Borosilicate and polyethylene containers should be avoided in formulation, packing and administration of cannabidiol-containing medicines to guarantee correct doses. c). Cannabidiol medications can be co-administered with tizoxanide without caution.
Collapse
Affiliation(s)
- Mariana Babayeva
- Department of Biomedical and Pharmaceutical Sciences, Touro College of Pharmacy, 3 Times Square, New York, NY, 10036, USA.
| | - Iva Srdanovic
- Department of Biomedical and Pharmaceutical Sciences, Touro College of Pharmacy, 3 Times Square, New York, NY, 10036, USA
| |
Collapse
|
8
|
Vitarelli da Silva T, Bernardes D, Oliveira-Lima OC, Fernandes Pinto B, Limborço Filho M, Fraga Faraco CC, Juliano MA, Esteves Arantes RM, A Moreira F, Carvalho-Tavares J. Cannabidiol Attenuates In Vivo Leukocyte Recruitment to the Spinal Cord Microvasculature at Peak Disease of Experimental Autoimmune Encephalomyelitis. Cannabis Cannabinoid Res 2024; 9:537-546. [PMID: 36745386 DOI: 10.1089/can.2022.0103] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Introduction: Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system characterized by neuroinflammation leading to demyelination. The associated symptoms lead to a devastating decrease in quality of life. The cannabinoids and their derivatives have emerged as an encouraging alternative due to their management of symptom in MS. Objective: The aim of the study was to investigate the mechanism of action of cannabidiol (CBD), a nonpsychoactive cannabinoid, on molecular and cellular events associated with leukocyte recruitment induced by experimental autoimmune encephalomyelitis (EAE). Materials and Methods: C57BL/6 female mice were randomly assigned to the four experimental groups: C (control group), CBD (cannabidiol-treated group, 5 mg/kg i.p.; 14 days), EAE (experimental autoimmune encephalomyelitis-induced group), and EAE+CBD (experimental autoimmune encephalomyelitis-induced plus cannabidiol-treated group). Results: The results indicated that 5 mg/kg of CBD injected intraperitoneally between the 1st and 14th days of EAE could reduce the leukocyte rolling and adhesion into the spinal cord microvasculature as well cellular tissue infiltration. These results were supported by a decreased mRNA expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in the spinal cord. Conclusion: Purified CBD reduces in vivo VCAM and ICAM-mediated leukocyte recruitment to the spinal cord microvasculature at EAE peak disease.
Collapse
Affiliation(s)
- Thiago Vitarelli da Silva
- Núcleo de Neurociências, Programa de Pós-graduação em Ciências Biológicas:Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Danielle Bernardes
- Núcleo de Neurociências, Programa de Pós-graduação em Ciências Biológicas:Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade de Campinas, Campinas, Brazil
| | - Onésia Cristina Oliveira-Lima
- Núcleo de Neurociências, Programa de Pós-graduação em Ciências Biológicas:Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Laboratório de Neuroquímica e Neurofarmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Bárbara Fernandes Pinto
- Núcleo de Neurociências, Programa de Pós-graduação em Ciências Biológicas:Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcelo Limborço Filho
- Núcleo de Neurociências, Programa de Pós-graduação em Ciências Biológicas:Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila Cristina Fraga Faraco
- Núcleo de Neurociências, Programa de Pós-graduação em Ciências Biológicas:Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Aparecida Juliano
- Enzimas proteolíticas e Síntese de peptídeos, Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rosa Maria Esteves Arantes
- Neuroimunopatologia Experimental, Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabrício A Moreira
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Carvalho-Tavares
- Núcleo de Neurociências, Programa de Pós-graduação em Ciências Biológicas:Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Núcleo de Educação e Comunicação em Ciências da Vida e da Saúde (NEDUCOM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
9
|
Pagano C, Ciaglia E, Coppola L, Lopardo V, Raimondo A, Giuseppe M, Lembo S, Laezza C, Bifulco M. Cannabidiol exerts multitarget immunomodulatory effects on PBMCs from individuals with psoriasis vulgaris. Front Immunol 2024; 15:1373435. [PMID: 38601151 PMCID: PMC11004238 DOI: 10.3389/fimmu.2024.1373435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction The involvement of endocannabinoid system (ECS) in the inflammatory cascade, and the ability of phytocannabinoids, endocannabinoids and their synthetic analogues to modulate it has become an interesting research area for new therapeutic approaches in inflammatory skin diseases. Cannabidiol (CBD) appears to be the most promising among phytocannabinoids, due to the lack of psychotropic effects and low toxicity profile. Its anti-inflammatory action has been highlighted in different preclinical models, ranging from experimental colitis to arthritis and neuroinflammation. Our aim was to evaluate CBD immune-modulatory effects in peripheral blood mononuclear cells (PBMC) of psoriasis individuals with particular attention to both innate and adaptative immune arms. Methods We performed in vitro immune functional experiments to analyze CBD action on various immune cells active in psoriatic lesions. Results The results showed that CBD produced a shift from Th1 to Th2 response, while boosting cytotoxic activity of Natural Killer (NK) cells. Furthermore, it also exerted a potent action on monocyte differentiation as, after CBD treatment, monocytes from psoriatic individuals were unable to migrate in response to inflammatory stimuli and to fully differentiate into mature dendritic cells. Finally, a M2 skewing of monocyte-derived macrophages by CBD also contributed to the fine tuning of the magnitude of immune responses. Conclusions These data uncover new potential immunomodulatory properties of this cannabinoid suggesting a possible therapeutic action in the treatment of multiple inflammatory skin diseases.
Collapse
Affiliation(s)
- Cristina Pagano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Laura Coppola
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Valentina Lopardo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Annunziata Raimondo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Monfrecola Giuseppe
- Section of Dermatology - Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Serena Lembo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Chiara Laezza
- Institute of Endocrinology and Experimental Oncology (IEOS), National Research Council (CNR), Naples, Italy
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
10
|
Nouh RA, Kamal A, Oyewole O, Abbas WA, Abib B, Omar A, Mansour ST, Abdelnaser A. Unveiling the Potential of Cannabinoids in Multiple Sclerosis and the Dawn of Nano-Cannabinoid Medicine. Pharmaceutics 2024; 16:241. [PMID: 38399295 PMCID: PMC10891830 DOI: 10.3390/pharmaceutics16020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 02/25/2024] Open
Abstract
Multiple sclerosis is the predominant autoimmune disorder affecting the central nervous system in adolescents and adults. Specific treatments are categorized as disease-modifying, whereas others are symptomatic treatments to alleviate painful symptoms. Currently, no singular conventional therapy is universally effective for all patients across all stages of the illness. Nevertheless, cannabinoids exhibit significant promise in their capacity for neuroprotection, anti-inflammation, and immunosuppression. This review will examine the traditional treatment for multiple sclerosis, the increasing interest in using cannabis as a treatment method, its role in protecting the nervous system and regulating the immune system, commercially available therapeutic cannabinoids, and the emerging use of cannabis in nanomedicine. In conclusion, cannabinoids exhibit potential as a disease-modifying treatment rather than merely symptomatic relief. However, further research is necessary to unveil their role and establish the safety and advancements in nano-cannabinoid medicine, offering the potential for reduced toxicity and fewer adverse effects, thereby maximizing the benefits of cannabinoids.
Collapse
Affiliation(s)
- Roua A. Nouh
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, New Cairo 11835, Egypt; (R.A.N.); (O.O.); (W.A.A.); (A.O.)
| | - Ahmed Kamal
- Biochemistry Department, Faculty of Science, Suez University, P.O. Box 43221, Suez 43533, Egypt;
| | - Oluwaseyi Oyewole
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, New Cairo 11835, Egypt; (R.A.N.); (O.O.); (W.A.A.); (A.O.)
| | - Walaa A. Abbas
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, New Cairo 11835, Egypt; (R.A.N.); (O.O.); (W.A.A.); (A.O.)
| | - Bishoy Abib
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, New Cairo 11835, Egypt; (B.A.); (S.T.M.)
| | - Abdelrouf Omar
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, New Cairo 11835, Egypt; (R.A.N.); (O.O.); (W.A.A.); (A.O.)
| | - Somaia T. Mansour
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, New Cairo 11835, Egypt; (B.A.); (S.T.M.)
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, New Cairo 11835, Egypt
| |
Collapse
|
11
|
Tsiogkas SG, Apostolopoulou K, Papagianni ED, Mavropoulos A, Dardiotis E, Zafiriou E, Bogdanos DP. Cannabidiol Mediates In Vitro Attenuation of Proinflammatory Cytokine Responses in Psoriatic Disease. Cannabis Cannabinoid Res 2024; 9:134-146. [PMID: 38181167 DOI: 10.1089/can.2023.0237] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024] Open
Abstract
Background: Cannabidiol (CBD), a substance that belongs to the phytocannabinoids, appears to exert antioxidant, neuroprotective, antipsychotic, anticonvulsant, and anticancer properties. Recent evidence supports the immunoregulatory effect of CBD on autoimmune and/or inflammatory disease. Psoriasis is a chronic skin disease. The main immune cell population involved in the pathogenesis of the disease is the interleukin- (IL-) 17-producing T helper (Th) 17 subset. Other subpopulations, such as interferon-γ (IFNγ) -producing Th1 and T cytotoxic (Tc) 1, IL-17-producing Tc17, as well as natural killer (NK) and natural killer T cells (NKT) have been implicated in psoriasis development. Purpose: The aim of the present study was to evaluate the in vitro effect of CBD on the aforementioned subpopulations isolated from patients with psoriasis using flow cytometry. Methods: Cells were stimulated in the presence or absence of CBD, stained and examined using surface and intracellular markers. Results: CBD decreased IL-17 production within the CD3, Th, and NKT cell compartments and IFNγ production within the CD3 compartment in cells isolated from patients with psoriasis. Interestingly, CBD supplementation did not inhibit production of proinflammatory cytokines in cells isolated from healthy individuals. On the contrary, IFNγ-producing Th, Tc, and NK cells increased after CBD supplementation. Conclusion: CBD provides anti-inflammatory effects in T cells isolated from patients with psoriasis. Our results could be the impetus for future investigations regarding the immunomodulatory properties of CBD and its utilization for development of CBD-containing antipsoriatic agents.
Collapse
Affiliation(s)
- Sotirios G Tsiogkas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Konstantina Apostolopoulou
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Evangelia D Papagianni
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Athanasios Mavropoulos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Efterpi Zafiriou
- Department of Dermatology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
12
|
Kumar NS, Reddy N, Kumar H, Vemireddy S. Immunomodulatory Plant Natural Products as Therapeutics against Inflammatory Skin Diseases. Curr Top Med Chem 2024; 24:1013-1034. [PMID: 38485678 DOI: 10.2174/0115680266277952240223120435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/30/2023] [Accepted: 01/11/2024] [Indexed: 07/16/2024]
Abstract
Frequently occurring inflammatory skin conditions such as psoriasis, dermatitis, acne, including skin cancer, wounds and other disorders arising out of premature skin aging, deteriorate skin health and adversely impact human life. Even though several synthetic compounds have evolved for treating these skin conditions, natural-product-based therapeutics are gaining popularity with growing evidence of their efficacy and safety for treating skin disorders. Many of these inflammatory skin diseases have underlying disturbances in our immune system and immunomodulatory natural products provide solutions for their effective treatment and aid in understanding the underlying mechanism of such inflammatory skin conditions. Based on this premise, the present review summarizes the possible application of plant-derived immunomodulatory compositions and single molecules for treating inflammatory skin conditions. In vitro, in vivo and mechanistic studies reported the application of selected plant-derived natural products for the treatment of inflammatory skin disorders including, cancer and infections. Several online databases including PubMed, Google Scholar, and Science Direct have been searched for gathering the information covered in this review. Empirical studies demonstrated that most of these natural compounds exhibited therapeutic properties through their immunomodulatory and anti-inflammatory potential supplemented often with anti-microbial, anti-neoplastic, and anti- oxidant activities. Overall, plant-based natural products discussed here are capable of modulating the immune system to minimize or completely suppress the pro-inflammatory markers, scavenge free radicals (ROS), prevent bacteria, fungal, and virus-derived skin infections and often regress skin cancer through the induction of apoptosis. The challenges and opportunities associated with the application of plant-based immunomodulators for skin applications and their safety considerations are also discussed here. The present study indicated that immunomodulatory plant natural products being biologically validated ligands against various biological targets manifested in inflammatory skin diseases, offer an effective, safe and affordable treatment for such disorders affecting skin health. However, further clinical evaluations are needed to substantiate these findings.
Collapse
Affiliation(s)
- Nikhila Sampath Kumar
- Department of Dermatology, Venereology and Leprosy, Kamineni Institute of Medical Sciences (KIMS), Narketpalli, Nalagonda District, Hyderabad, 500 007, Telangana, India
| | - Navaneetha Reddy
- Department of Dermatology, Venereology and Leprosy, Kamineni Institute of Medical Sciences (KIMS), Narketpalli, Nalagonda District, Hyderabad, 500 007, Telangana, India
| | - Halmuthur Kumar
- Vaccine Immunology Laboratory, Indian Institute of Chemical Technology, Hyderabad-500 007, India
| | - Sravanthi Vemireddy
- Vaccine Immunology Laboratory, Indian Institute of Chemical Technology, Hyderabad-500 007, India
| |
Collapse
|
13
|
Cosentino M, Legnaro M, Luini A, Ferrari M, Sodergren M, Pacchetti B, Marino F. Effect of Cannabidiol on Cyclooxygenase Type 1 and 2 Expression and Function in Human Neutrophils. Cannabis Cannabinoid Res 2023; 8:999-1007. [PMID: 35930236 DOI: 10.1089/can.2022.0008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Introduction: In this study, the effects of the cannabinoid CBD were assessed on cyclooxygenase (COX)-1 and COX-2 expression and activity in resting and activated human neutrophils (polymorphonuclear [PMN] leukocytes). Methods: COX expression was measured at the mRNA levels, whereas COX activity was assessed by enzyme-linked immunosorbent assay measurement of prostaglandin (PG)E2. In vitro experiments in a standard commercial acellular assay of COX-1/COX-2 activity completed the study. Results: Results show that CBD profoundly inhibits expression of COX-1 and COX-2 mRNA in activated PMN, however, without any significant consequences for PGE2 production. CBD, however, was able to induce a slight but significant direct inhibition of COX-2 in the acellular model. Conclusion: The effects of CBD occur in the μM concentration range, which is attained in humans with therapeutic doses of the drug, suggesting the clinical relevance of these findings.
Collapse
Affiliation(s)
- Marco Cosentino
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Massimiliano Legnaro
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Alessandra Luini
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Marco Ferrari
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Mikael Sodergren
- Curaleaf International, London, United Kingdom
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | | | - Franca Marino
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| |
Collapse
|
14
|
Furgiuele A, Marino F, Rasini E, Legnaro M, Luini A, Albizzati MG, di Flora A, Pacchetti B, Cosentino M. Effect of Cannabidiol on Human Peripheral Blood Mononuclear Cells and CD4+ T Cells. Int J Mol Sci 2023; 24:14880. [PMID: 37834328 PMCID: PMC10573927 DOI: 10.3390/ijms241914880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/30/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Cannabidiol (CBD), the main non-psychoactive component of Cannabis sativa L., is widely used in therapy for the treatment of different diseases and as an adjuvant drug. Our aim was to assess the effects of CBD on proinflammatory cytokine production and cell proliferation in human peripheral blood mononuclear cells (PBMCs) and on CD4+ T lymphocyte differentiation, and, furthermore, to test CBD's ability to affect the functional properties of regulatory T cells (Treg). Experiments were performed on isolated PBMCs and purified CD4+ T lymphocytes obtained from the buffy coats of healthy subjects. Cytokines produced by CD4+ T cells were evaluated by flow cytometry and intracellular cytokine staining techniques. PBMC cytokine production was measured by an ELISA assay. Real-time PCR was used to assess the mRNA expression of cytokines and the key transcription factors (TFs) of CD4+ T cells. Finally, the proliferation of PBMC and CD4+ T effector cells (Teff), alone and in the presence of Treg, was assessed by flow cytometry. Results showed that CBD affects both the frequency of IL-4-producing CD4+ and of IFN-γ/IL-17-producing cells and dramatically decreases the mRNA levels of all TFs. Stimuli-induced cytokine mRNA expression was decreased while protein production was unaffected. CBD was unable to affect the ability of Treg to prevent Teff cell proliferation while it slightly increased PBMC proliferation. In conclusion, CBD may inhibit the expression of proinflammatory cytokines; however, the effect of CBD on cell proliferation suggests that this cannabinoid exerts a complex activity on human PBMCs and CD4+ T cells which deserves further investigation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Marco Cosentino
- Center for Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy; (A.F.); (F.M.); (E.R.); (M.L.); (A.L.); (M.G.A.); (A.d.F.); (B.P.)
| |
Collapse
|
15
|
Sirbu CA, Georgescu R, Pleşa FC, Paunescu A, Marilena Ţânţu M, Nicolae AC, Caloianu I, Mitrica M. Cannabis and Cannabinoids in Multiple Sclerosis: From Experimental Models to Clinical Practice-A Review. Am J Ther 2023; 30:e220-e231. [PMID: 37278703 DOI: 10.1097/mjt.0000000000001568] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
BACKGROUND As far as 80% of people diagnosed with multiple sclerosis (MS) experience disabling symptoms in the course of the disease, such as spasticity and neuropathic pain. As first-line symptomatic therapy is associated with important adverse reactions, cannabinoids have become increasingly popular among patients with MS. This review intends to provide an overview of the evidence of the role of cannabinoids in treating symptoms related to MS and to encourage further research on this matter. AREAS OF UNCERTAINTY To date, the evidence supporting the role of cannabis and its derivatives in alleviating the MS-related symptoms comes only from studies on experimental models of demyelination. To the best of our knowledge, relatively few clinical trials inquired about the therapeutic effects of cannabinoids on patients with MS, with variable results. DATA SOURCES We conducted a literature search through PubMed and Google Scholar from the beginning until 2022. We included articles in English describing the latest findings regarding the endocannabinoid system, the pharmacology of cannabinoids, and their therapeutic purpose in MS. RESULTS Evidence from preclinical studies showed that cannabinoids can limit the demyelination process, promote remyelination, and have anti-inflammatory properties by reducing immune cell infiltration of the central nervous system in mice with experimental autoimmune encephalomyelitis. Moreover, it has been established that experimental autoimmune encephalomyelitis mice treated with cannabinoids experienced a significant reduction of symptoms and slowing of the disease progression. Given the complexity of human immune and nervous systems, cannabinoids did not have the anticipated effects on human subjects. However, data obtained from clinical trials showed some beneficial results of cannabinoids as a single or as add-on therapy in reducing the spasticity and pain related to MS. CONCLUSION Considering their various mechanisms of action and good tolerability, cannabinoids remain an interesting therapy for spasticity and chronic pain related to MS.
Collapse
Affiliation(s)
- Carmen-Adella Sirbu
- Department of Neurology, "Dr. Carol Davila" Central Military Emergency University Hospital, Bucharest, Romania
| | - Ruxandra Georgescu
- Department of Neurology, "Dr. Carol Davila" Central Military Emergency University Hospital, Bucharest, Romania
| | - Florentina Cristina Pleşa
- Department of Neurology, "Dr. Carol Davila" Central Military Emergency University Hospital, Bucharest, Romania
| | - Alina Paunescu
- Department of Natural Sciences, University of Pitesti, Faculty of Sciences, Physical Education and Informatics, Piteşti, Romania
| | - Monica Marilena Ţânţu
- Department of Health Care and Physical Therapy, University of Pitesti, Faculty of Sciences, Physical Education and Informatics, Piteşti, Romania
| | - Alina Crenguţa Nicolae
- Biochemistry Department, "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Bucharest, Romania; and
| | - Ionut Caloianu
- Department of Neurology, "Dr. Carol Davila" Central Military Emergency University Hospital, Bucharest, Romania
| | - Marian Mitrica
- Clinical Neurosciences Department, University of Medicine and Pharmacy "Carol Davila" Bucharest, Romania
| |
Collapse
|
16
|
Babayeva M, Loewy ZG. Cannabis Pharmacogenomics: A Path to Personalized Medicine. Curr Issues Mol Biol 2023; 45:3479-3514. [PMID: 37185752 PMCID: PMC10137111 DOI: 10.3390/cimb45040228] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Cannabis and related compounds have created significant research interest as a promising therapy in many disorders. However, the individual therapeutic effects of cannabinoids and the incidence of side effects are still difficult to determine. Pharmacogenomics may provide the answers to many questions and concerns regarding the cannabis/cannabinoid treatment and help us to understand the variability in individual responses and associated risks. Pharmacogenomics research has made meaningful progress in identifying genetic variations that play a critical role in interpatient variability in response to cannabis. This review classifies the current knowledge of pharmacogenomics associated with medical marijuana and related compounds and can assist in improving the outcomes of cannabinoid therapy and to minimize the adverse effects of cannabis use. Specific examples of pharmacogenomics informing pharmacotherapy as a path to personalized medicine are discussed.
Collapse
Affiliation(s)
- Mariana Babayeva
- Department of Biomedical and Pharmaceutical Sciences, Touro College of Pharmacy, New York, NY 10027, USA
| | - Zvi G Loewy
- Department of Biomedical and Pharmaceutical Sciences, Touro College of Pharmacy, New York, NY 10027, USA
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
17
|
Autophagic Molecular Alterations in the Mouse Cerebellum Experimental Autoimmune Encephalomyelitis Model Following Treatment with Cannabidiol and Fluoxetine. Mol Neurobiol 2023; 60:1797-1809. [PMID: 36576709 DOI: 10.1007/s12035-022-03170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/10/2022] [Indexed: 12/29/2022]
Abstract
The crosstalk between autophagy and apoptosis is one of the most important processes involved in the cell program death, and several mechanisms including oligodendrocyte apoptosis and autophagy play significant roles in activating macrophages, microglial cells, and finally demyelination in neurodegenerative disease. The antidepressants and anti-apoptotic mechanisms of fluoxetine (FLX) and cannabidiol (CBD) commence an autophagic event that can effectively repair myelin. This study aimed to investigate the effect of those reagents on the rate of demyelination in the cerebellum, an important site for white matter in a mouse model of experimental autoimmune encephalomyelitis (EAE). EAE was induced in twenty four adult female C57Bl/6 mice were inducted the EAE model; FLX treatment which was performed (10 mg/kg/IP) and CBD; were treated (5 mg/kg/IP); and their cerebellum was used for Western blotting, real-time PCR to autophagic markers of LC3II, Beclin-1, and apoptotic markers Bax and Bcl2 evaluation and Luxol Fast Blue staining to the assessment of demyelination. The level of autophagic markers was expressively elevated (P < 0.01) but the pro-apoptotic markers and Bax/Bcl2 ratio were reduced (P < 0.05). Luxol Fast Blue staining confirmed the noteworthy diminution of demyelination in treatment groups (P < 0.001). This finding clarified that FLX and CBD ameliorate the severity of the EAE model. Combinatory treatments of these two agents are suggested for future investigations.
Collapse
|
18
|
Effects of Cannabidiol on Innate Immunity: Experimental Evidence and Clinical Relevance. Int J Mol Sci 2023; 24:ijms24043125. [PMID: 36834537 PMCID: PMC9964491 DOI: 10.3390/ijms24043125] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Cannabidiol (CBD) is the main non-psychotropic cannabinoid derived from cannabis (Cannabis sativa L., fam. Cannabaceae). CBD has received approval by the Food and Drug Administration (FDA) and European Medicines Agency (EMA) for the treatment of seizures associated with Lennox-Gastaut syndrome or Dravet syndrome. However, CBD also has prominent anti-inflammatory and immunomodulatory effects; evidence exists that it could be beneficial in chronic inflammation, and even in acute inflammatory conditions, such as those due to SARS-CoV-2 infection. In this work, we review available evidence concerning CBD's effects on the modulation of innate immunity. Despite the lack so far of clinical studies, extensive preclinical evidence in different models, including mice, rats, guinea pigs, and even ex vivo experiments on cells from human healthy subjects, shows that CBD exerts a wide range of inhibitory effects by decreasing cytokine production and tissue infiltration, and acting on a variety of other inflammation-related functions in several innate immune cells. Clinical studies are now warranted to establish the therapeutic role of CBD in diseases with a strong inflammatory component, such as multiple sclerosis and other autoimmune diseases, cancer, asthma, and cardiovascular diseases.
Collapse
|
19
|
Luz-Veiga M, Azevedo-Silva J, Fernandes JC. Beyond Pain Relief: A Review on Cannabidiol Potential in Medical Therapies. Pharmaceuticals (Basel) 2023; 16:155. [PMID: 37259306 PMCID: PMC9958812 DOI: 10.3390/ph16020155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 07/30/2023] Open
Abstract
The phytocannabinoid cannabidiol (CBD) is receiving increasing attention due to its pharmacological properties. Although CBD is extracted from Cannabis sativa, it lacks the psychoactive effects of Δ9-tetrahydrocannabinol (THC) and has become an attractive compound for pharmacological uses due to its anti-inflammatory, antioxidant, anticonvulsant, and anxiolytic potential. The molecular mechanisms involved in CBD's biological effects are not limited to its interaction with classical cannabinoid receptors, exerting anti-inflammatory or pain-relief effects. Several pieces of evidence demonstrate that CBD interacts with other receptors and cellular signaling cascades, which further support CBD's therapeutic potential beyond pain management. In this review, we take a closer look at the molecular mechanisms of CBD and its potential therapeutic application in the context of cancer, neurodegeneration, and autoimmune diseases.
Collapse
Affiliation(s)
- Mariana Luz-Veiga
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal
| | - João Azevedo-Silva
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal
| | - João C. Fernandes
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal
- Amyris Bio Products Portugal, Unipessoal Lda, 4169-005 Porto, Portugal
| |
Collapse
|
20
|
Aziz AI, Nguyen LC, Oumeslakht L, Bensussan A, Ben Mkaddem S. Cannabinoids as Immune System Modulators: Cannabidiol Potential Therapeutic Approaches and Limitations. Cannabis Cannabinoid Res 2022; 8:254-269. [PMID: 36413346 DOI: 10.1089/can.2022.0133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Introduction: Cannabidiol (CBD) is the second most abundant Phytocannabinoid in Cannabis extracts. CBD has a binding affinity for several cannabinoid and cannabinoid-associated receptors. Epidiolex (oral CBD solution) has been lately licensed by the Food and Drug Administration (FDA) for the treatment of pediatric epileptic seizures. Methods: In this review, we discussed the most promising applications of CBD for chronic inflammatory conditions, namely CBD's anti-inflammatory effects during inflammatory bowel disease, coronavirus disease (antiviral effect), brain pathologies (neuroprotective and anti-inflammatory properties), as well as CBD immunomodulatory and antitumoral activities in the tumor microenvironment. Special focus was shed on the main therapeutic mechanisms of action of CBD, particularly in the control of the immune system and the endocannabinoid system. Results: Findings suggest that CBD is a potent immunomodulatory drug as it has manifested immunosuppressive properties in the context of sterile inflammation (e.g., inflammatory bowel disease, rheumatoid arthritis, and neurodegenerative diseases), and immunoprotective effects during viral infections (e.g. COVID-19) Similarly, CBD has exhibited a selective response toward cancer types by engaging different targets and signaling pathways. These results are in favor of the primary function of the endocannabinoid system which is homeostatic maintenance. Conclusion: The presented evidence suggests that the endocannabinoid system is a prominent target for the treatment of inflammatory and autoimmune diseases, rheumatoid diseases, viral infections, neurological and psychological pathologies, and cancer. Moreover, the antitumoral activities of CBD have been suggested to be potentially used in combination with chemo- or immunotherapy during cancer. However, clinical results are still lacking, which raises a challenge to apply translational cannabis research to the human immune system.
Collapse
Affiliation(s)
- Abdel-ilah Aziz
- Institute of Biological and Medical Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Long Chi Nguyen
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois, USA
| | - Loubna Oumeslakht
- Institute of Biological and Medical Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Armand Bensussan
- Institute of Biological and Medical Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- Onco-Dermatology and Therapies, INSERM UMRS976, Hôpital Saint Louis, Paris, France
| | - Sanae Ben Mkaddem
- Institute of Biological and Medical Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
21
|
Costantini E, Masciarelli E, Casorri L, Di Luigi M, Reale M. Medicinal herbs and multiple sclerosis: Overview on the hard balance between new therapeutic strategy and occupational health risk. Front Cell Neurosci 2022; 16:985943. [PMID: 36439198 PMCID: PMC9688751 DOI: 10.3389/fncel.2022.985943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by demyelination and axonal loss of the central nervous system (CNS). Despite its spread throughout the world, the mechanisms that determine its onset are still to be defined. Immunological, genetic, viral, and environmental factors and exposure to chemicals may trigger MS. Many studies have highlighted the anti-inflammatory and anti-oxidant effects of medicinal herbs, which make them a natural and complementary treatment for neurodegenerative diseases. A severe reduction of several MS symptoms occurs with herbal therapy. Thus, the request for medicinal plants with potential beneficial effects, for MS patients, is constantly increasing. Consequently, a production increase needs. Unfortunately, many medicinal herbs were untested and their action mechanism, possible adverse effects, contraindications, or interactions with other drugs, are poorly or not investigated. Keeping in mind the pathological mechanisms of MS and the oxidative damages and mitochondrial dysfunctions induced by pesticides, it is important to understand if pesticides used to increase agricultural productivity and their residues in medicinal plants, may increase the risk of developing MS in both workers and consumers. Studies providing some indication about the relationship between environmental exposure to pesticides and MS disease incidence are few, fragmentary, and discordant. The aim of this article is to provide a glance at the therapeutic potential of medicinal plants and at the risk for MS onset of pesticides used by medicinal plant growers and present in medicinal herbs.
Collapse
Affiliation(s)
- Erica Costantini
- Department of Medicine and Science of Aging, G. d’Annunzio University of Chieti–Pescara, Chieti, Italy
| | - Eva Masciarelli
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements, National Institute for Insurance Against Accidents at Work, Rome, Italy
| | - Laura Casorri
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements, National Institute for Insurance Against Accidents at Work, Rome, Italy
| | - Marco Di Luigi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research Center, National Institute for Insurance Against Accidents at Work, Rome, Italy
| | - Marcella Reale
- Department of Innovative Technologies in Medicine and Dentistry, G. d’Annunzio University of Chieti–Pescara, Chieti, Italy
- *Correspondence: Marcella Reale,
| |
Collapse
|
22
|
Filippini G, Minozzi S, Borrelli F, Cinquini M, Dwan K. Cannabis and cannabinoids for symptomatic treatment for people with multiple sclerosis. Cochrane Database Syst Rev 2022; 5:CD013444. [PMID: 35510826 PMCID: PMC9069991 DOI: 10.1002/14651858.cd013444.pub2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Spasticity and chronic neuropathic pain are common and serious symptoms in people with multiple sclerosis (MS). These symptoms increase with disease progression and lead to worsening disability, impaired activities of daily living and quality of life. Anti-spasticity medications and analgesics are of limited benefit or poorly tolerated. Cannabinoids may reduce spasticity and pain in people with MS. Demand for symptomatic treatment with cannabinoids is high. A thorough understanding of the current body of evidence regarding benefits and harms of these drugs is required. OBJECTIVES To assess benefit and harms of cannabinoids, including synthetic, or herbal and plant-derived cannabinoids, for reducing symptoms for adults with MS. SEARCH METHODS We searched the following databases from inception to December 2021: MEDLINE, Embase, the Cochrane Central Register of Controlled Trials (CENTRAL, the Cochrane Library), CINAHL (EBSCO host), LILACS, the Physiotherapy Evidence Database (PEDro), the World Health Organisation International Clinical Trials Registry Platform, the US National Institutes of Health clinical trial register, the European Union Clinical Trials Register, the International Association for Cannabinoid Medicines databank. We hand searched citation lists of included studies and relevant reviews. SELECTION CRITERIA We included randomised parallel or cross-over trials (RCTs) evaluating any cannabinoid (including herbal Cannabis, Cannabis flowers, plant-based cannabinoids, or synthetic cannabinoids) irrespective of dose, route, frequency, or duration of use for adults with MS. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. To assess bias in included studies, we used the Cochrane Risk of bias 2 tool for parallel RCTs and crossover trials. We rated the certainty of evidence using the GRADE approach for the following outcomes: reduction of 30% in the spasticity Numeric Rating Scale, pain relief of 50% or greater in the Numeric Rating Scale-Pain Intensity, much or very much improvement in the Patient Global Impression of Change (PGIC), Health-Related Quality of Life (HRQoL), withdrawals due to adverse events (AEs) (tolerability), serious adverse events (SAEs), nervous system disorders, psychiatric disorders, physical dependence. MAIN RESULTS We included 25 RCTs with 3763 participants of whom 2290 received cannabinoids. Age ranged from 18 to 60 years, and between 50% and 88% participants across the studies were female. The included studies were 3 to 48 weeks long and compared nabiximols, an oromucosal spray with a plant derived equal (1:1) combination of tetrahydrocannabinol (THC) and cannabidiol (CBD) (13 studies), synthetic cannabinoids mimicking THC (7 studies), an oral THC extract of Cannabis sativa (2 studies), inhaled herbal Cannabis (1 study) against placebo. One study compared dronabinol, THC extract of Cannabis sativa and placebo, one compared inhaled herbal Cannabis, dronabinol and placebo. We identified eight ongoing studies. Critical outcomes • Spasticity: nabiximols probably increases the number of people who report an important reduction of perceived severity of spasticity compared with placebo (odds ratio (OR) 2.51, 95% confidence interval (CI) 1.56 to 4.04; 5 RCTs, 1143 participants; I2 = 67%; moderate-certainty evidence). The absolute effect was 216 more people (95% CI 99 more to 332 more) per 1000 reporting benefit with cannabinoids than with placebo. • Chronic neuropathic pain: we found only one small trial that measured the number of participants reporting substantial pain relief with a synthetic cannabinoid compared with placebo (OR 4.23, 95% CI 1.11 to 16.17; 1 study, 48 participants; very low-certainty evidence). We are uncertain whether cannabinoids reduce chronic neuropathic pain intensity. • Treatment discontinuation due to AEs: cannabinoids may increase slightly the number of participants who discontinue treatment compared with placebo (OR 2.41, 95% CI 1.51 to 3.84; 21 studies, 3110 participants; I² = 17%; low-certainty evidence); the absolute effect is 39 more people (95% CI 15 more to 76 more) per 1000 people. Important outcomes • PGIC: cannabinoids probably increase the number of people who report 'very much' or 'much' improvement in health status compared with placebo (OR 1.80, 95% CI 1.37 to 2.36; 8 studies, 1215 participants; I² = 0%; moderate-certainty evidence). The absolute effect is 113 more people (95% CI 57 more to 175 more) per 1000 people reporting improvement. • HRQoL: cannabinoids may have little to no effect on HRQoL (SMD -0.08, 95% CI -0.17 to 0.02; 8 studies, 1942 participants; I2 = 0%; low-certainty evidence); • SAEs: cannabinoids may result in little to no difference in the number of participants who have SAEs compared with placebo (OR 1.38, 95% CI 0.96 to 1.99; 20 studies, 3124 participants; I² = 0%; low-certainty evidence); • AEs of the nervous system: cannabinoids may increase nervous system disorders compared with placebo (OR 2.61, 95% CI 1.53 to 4.44; 7 studies, 1154 participants; I² = 63%; low-certainty evidence); • Psychiatric disorders: cannabinoids may increase psychiatric disorders compared with placebo (OR 1.94, 95% CI 1.31 to 2.88; 6 studies, 1122 participants; I² = 0%; low-certainty evidence); • Drug tolerance: the evidence is very uncertain about the effect of cannabinoids on drug tolerance (OR 3.07, 95% CI 0.12 to 75.95; 2 studies, 458 participants; very low-certainty evidence). AUTHORS' CONCLUSIONS Compared with placebo, nabiximols probably reduces the severity of spasticity in the short-term in people with MS. We are uncertain about the effect on chronic neurological pain and health-related quality of life. Cannabinoids may increase slightly treatment discontinuation due to AEs, nervous system and psychiatric disorders compared with placebo. We are uncertain about the effect on drug tolerance. The overall certainty of evidence is limited by short-term duration of the included studies.
Collapse
Affiliation(s)
- Graziella Filippini
- Scientific Director's Office, Carlo Besta Foundation and Neurological Institute, Milan, Italy
| | - Silvia Minozzi
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Francesca Borrelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples 'Federico II', Naples, Italy
| | - Michela Cinquini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Kerry Dwan
- Review Production and Quality Unit, Editorial & Methods Department, Cochrane Central Executive, London, UK
| |
Collapse
|
23
|
The Efficacy of Cannabis on Multiple Sclerosis-Related Symptoms. Life (Basel) 2022; 12:life12050682. [PMID: 35629350 PMCID: PMC9148011 DOI: 10.3390/life12050682] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis (MS) is known as an autoimmune disease that damages the neurons in the central nervous system. MS is characterized by its most common symptoms of spasticity, muscle spasms, neuropathic pain, tremors, bladder dysfunction, dysarthria, and some intellectual problems, including memory disturbances. Several clinical studies have been conducted to investigate the effects of cannabis on the relief of these symptoms in MS patients. The efficacy of Cannabis sativa (C. Sativa) in the management of MS outcomes such as spasticity, pain, tremors, ataxia, bladder functions, sleep, quality of life, and adverse effects were assessed in this review. Most clinical studies showed the positive effects of cannabinoids with their different routes of administration, such as oromucosal spray and oral form, in reducing most MS symptoms. The oromucosal spray Nabiximols demonstrated an improvement in reducing MS spasticity, pain, and quality of life with a tolerated adverse effect. Oral cannabinoids are significantly effective for treating MS pain and spasticity, while the other symptoms indicate slight improvement and the evidence is quite inconsistent. Oromucosal spray and oral cannabis are mainly used for treating patients with MS and have positive effects on treating the most common symptoms of MS, such as pain and spasticity, whereas the other MS symptoms indicated slight improvement, for which further studies are needed.
Collapse
|
24
|
Molina-Holgado E, Esteban PF, Arevalo-Martin Á, Moreno-Luna R, Molina-Holgado F, Garcia-Ovejero D. Endocannabinoid signaling in oligodendroglia. Glia 2022; 71:91-102. [PMID: 35411970 DOI: 10.1002/glia.24180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 12/11/2022]
Abstract
In the central nervous system, oligodendrocytes synthesize the myelin, a specialized membrane to wrap axons in a discontinuous way allowing a rapid saltatory nerve impulse conduction. Oligodendrocytes express a number of growth factors and neurotransmitters receptors that allow them to sense the environment and interact with neurons and other glial cells. Depending on the cell cycle stage, oligodendrocytes may respond to these signals by regulating their survival, proliferation, migration, and differentiation. Among these signals are the endocannabinoids, lipidic molecules synthesized from phospholipids in the plasma membrane in response to cell activation. Here, we discuss the evidence showing that oligodendrocytes express a full endocannabinoid signaling machinery involved in physiological oligodendrocyte functions that can be therapeutically exploited to promote remyelination in central nervous system pathologies.
Collapse
Affiliation(s)
- Eduardo Molina-Holgado
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Pedro F Esteban
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Ángel Arevalo-Martin
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | - Rafael Moreno-Luna
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| | | | - Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Toledo, Spain
| |
Collapse
|
25
|
Wainwright CL, Teixeira MM, Adelson DL, Buenz EJ, David B, Glaser KB, Harata-Lee Y, Howes MJR, Izzo AA, Maffia P, Mayer AM, Mazars C, Newman DJ, Nic Lughadha E, Pimenta AM, Parra JA, Qu Z, Shen H, Spedding M, Wolfender JL. Future Directions for the Discovery of Natural Product-Derived Immunomodulating Drugs. Pharmacol Res 2022; 177:106076. [PMID: 35074524 DOI: 10.1016/j.phrs.2022.106076] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023]
Abstract
Drug discovery from natural sources is going through a renaissance, having spent many decades in the shadow of synthetic molecule drug discovery, despite the fact that natural product-derived compounds occupy a much greater chemical space than those created through synthetic chemistry methods. With this new era comes new possibilities, not least the novel targets that have emerged in recent times and the development of state-of-the-art technologies that can be applied to drug discovery from natural sources. Although progress has been made with some immunomodulating drugs, there remains a pressing need for new agents that can be used to treat the wide variety of conditions that arise from disruption, or over-activation, of the immune system; natural products may therefore be key in filling this gap. Recognising that, at present, there is no authoritative article that details the current state-of-the-art of the immunomodulatory activity of natural products, this in-depth review has arisen from a joint effort between the International Union of Basic and Clinical Pharmacology (IUPHAR) Natural Products and Immunopharmacology, with contributions from a Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation number of world-leading researchers in the field of natural product drug discovery, to provide a "position statement" on what natural products has to offer in the search for new immunomodulatory argents. To this end, we provide a historical look at previous discoveries of naturally occurring immunomodulators, present a picture of the current status of the field and provide insight into the future opportunities and challenges for the discovery of new drugs to treat immune-related diseases.
Collapse
Affiliation(s)
- Cherry L Wainwright
- Centre for Natural Products in Health, Robert Gordon University, Aberdeen, UK.
| | - Mauro M Teixeira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Brazil.
| | - David L Adelson
- Molecular & Biomedical Science, University of Adelaide, Australia.
| | - Eric J Buenz
- Nelson Marlborough Institute of Technology, New Zealand.
| | - Bruno David
- Green Mission Pierre Fabre, Pierre Fabre Laboratories, Toulouse, France.
| | - Keith B Glaser
- AbbVie Inc., Integrated Discovery Operations, North Chicago, USA.
| | - Yuka Harata-Lee
- Molecular & Biomedical Science, University of Adelaide, Australia
| | - Melanie-Jayne R Howes
- Royal Botanic Gardens Kew, Richmond, Surrey, UK; Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, UK.
| | - Angelo A Izzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Italy.
| | - Pasquale Maffia
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Italy; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | - Alejandro Ms Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, IL, USA.
| | - Claire Mazars
- Green Mission Pierre Fabre, Pierre Fabre Laboratories, Toulouse, France.
| | | | | | - Adriano Mc Pimenta
- Laboratory of Animal Venoms and Toxins, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - John Aa Parra
- Laboratory of Animal Venoms and Toxins, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Zhipeng Qu
- Molecular & Biomedical Science, University of Adelaide, Australia
| | - Hanyuan Shen
- Molecular & Biomedical Science, University of Adelaide, Australia
| | | | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland.
| |
Collapse
|
26
|
Ospelnikova T, Shitova A, Voskresenskaya O, Ermilova E. Neuroinflammation in the pathogenesis of central neuropathic pain. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:7-13. [DOI: 10.17116/jnevro20221220617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Brighenti V, Marchetti L, Anceschi L, Protti M, Verri P, Pollastro F, Mercolini L, Bertelli D, Zanardi C, Pellati F. Separation and non-separation methods for the analysis of cannabinoids in Cannabis sativa L. J Pharm Biomed Anal 2021; 206:114346. [PMID: 34537622 DOI: 10.1016/j.jpba.2021.114346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/13/2021] [Accepted: 08/25/2021] [Indexed: 01/21/2023]
Abstract
Cannabis sativa L. is a plant known all over the world, due to its history, bioactivity and also social impact. It is chemically complex with an astonishing ability in the biosynthesis of many secondary metabolites belonging to different chemical classes. Among them, cannabinoids are the most investigated ones, given their pharmacological relevance. In order to monitor the composition of the plant material and ensure the efficacy and safety of its derived products, extraction and analysis of cannabinoids play a crucial role. In this context, in addition to a conventional separation method based on HPLC with UV/DAD detection, a new strategy based on a non-separation procedure, such as 13C-qNMR, may offer several advantages, such as reduced solvent consumption and simultaneous acquisition of the quali/quantitative data related to many analytes. In the light of all the above, the aim of this work is to compare the efficiency of the above-mentioned analytical techniques for the study of the main cannabinoids in different samples of cannabis inflorescences, belonging to fibre-type, recreational and medical varieties. The 13C-qNMR method here proposed for the first time for the quantification of both psychoactive and non-psychoactive cannabinoids in different cannabis varieties provided reliable results in comparison to the more common and consolidated HPLC technique.
Collapse
Affiliation(s)
- Virginia Brighenti
- Department of Life Sciences (DSV), University of Modena and Reggio Emilia, Via G. Campi 103, 41125, Modena, Italy
| | - Lucia Marchetti
- Department of Life Sciences (DSV), University of Modena and Reggio Emilia, Via G. Campi 103, 41125, Modena, Italy; Clinical and Experimental Medicine (CEM) PhD Program, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Lisa Anceschi
- Department of Life Sciences (DSV), University of Modena and Reggio Emilia, Via G. Campi 103, 41125, Modena, Italy; Clinical and Experimental Medicine (CEM) PhD Program, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Michele Protti
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Patrizia Verri
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Largo Donegani 2, 28100 Novara, Italy
| | - Laura Mercolini
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Davide Bertelli
- Department of Life Sciences (DSV), University of Modena and Reggio Emilia, Via G. Campi 103, 41125, Modena, Italy
| | - Chiara Zanardi
- Deparment of Chemical and Geological Sciences (DSCG), University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Federica Pellati
- Department of Life Sciences (DSV), University of Modena and Reggio Emilia, Via G. Campi 103, 41125, Modena, Italy.
| |
Collapse
|
28
|
Graczyk M, Lewandowska AA, Dzierżanowski T. The Therapeutic Potential of Cannabis in Counteracting Oxidative Stress and Inflammation. Molecules 2021; 26:molecules26154551. [PMID: 34361704 PMCID: PMC8347461 DOI: 10.3390/molecules26154551] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/26/2022] Open
Abstract
Significant growth of interest in cannabis (Cannabis sativa L.), especially its natural anti-inflammatory and antioxidative properties, has been observed recently. This narrative review aimed to present the state of the art of research concerning the anti-inflammatory activity of all classes of cannabinoids published in the last five years. Multimodal properties of cannabinoids include their involvement in immunological processes, anti-inflammatory, and antioxidative effects. Cannabinoids and non-cannabinoid compounds of cannabis proved their anti-inflammatory effects in numerous animal models. The research in humans is missing, and the results are unconvincing. Although preclinical evidence suggests cannabinoids are of value in treating chronic inflammatory diseases, the clinical evidence is scarce, and further well-designed clinical trials are essential to determine the prospects for using cannabinoids in inflammatory conditions.
Collapse
Affiliation(s)
- Michał Graczyk
- Department of Palliative Care, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Toruń, Poland;
| | | | - Tomasz Dzierżanowski
- Laboratory of Palliative Medicine, Department of Social Medicine and Public Health, Medical University of Warsaw, 02-007 Warsaw, Poland
- Correspondence:
| |
Collapse
|
29
|
Ożarowski M, Karpiński TM, Zielińska A, Souto EB, Wielgus K. Cannabidiol in Neurological and Neoplastic Diseases: Latest Developments on the Molecular Mechanism of Action. Int J Mol Sci 2021; 22:4294. [PMID: 33919010 PMCID: PMC8122338 DOI: 10.3390/ijms22094294] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
As the major nonpsychotropic constituent of Cannabis sativa, cannabidiol (CBD) is regarded as one of the most promising therapeutic agents due to its proven effectiveness in clinical trials for many human diseases. Due to the urgent need for more efficient pharmacological treatments for several chronic diseases, in this review, we discuss the potential beneficial effects of CBD for Alzheimer's disease, epilepsy, multiple sclerosis, and neurological cancers. Due to its wide range of pharmacological activities (e.g., antioxidant, anti-inflammatory, and neuroprotective properties), CBD is considered a multimodal drug for the treatment of a range of neurodegenerative disorders, and various cancer types, including neoplasms of the neural system. The different mechanisms of action of CBD are here disclosed, together with recent progress in the use of this cannabis-derived constituent as a new therapeutic approach.
Collapse
Affiliation(s)
- Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants—State Research Institute, Wojska Polskiego 71B, 60-630 Poznań, Poland; (M.O.); (K.W.)
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland
| | - Aleksandra Zielińska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland;
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- CEB—Center of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Karolina Wielgus
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants—State Research Institute, Wojska Polskiego 71B, 60-630 Poznań, Poland; (M.O.); (K.W.)
| |
Collapse
|