1
|
Eileen L, Peterson M. High-Fat Diets Fed during Pregnancy Cause Changes to Pancreatic Tissue DNA Methylation and Protein Expression in the Offspring: A Multi-Omics Approach. Int J Mol Sci 2024; 25:7317. [PMID: 39000422 PMCID: PMC11242410 DOI: 10.3390/ijms25137317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Maternal obesity, caused by diets rich in fats and sugars during pregnancy, can predispose offspring to metabolic diseases such as diabetes. We hypothesized that obesity during pregnancy leads to increased DNA methylation and reduced protein expression in factors regulating β-cell function and apoptosis. Female C57BL/6J mice were fed a high-fat diet (HFD; 42% fat content; n = 3) or a control diet (CON; 16% fat content; n = 3) for fourteen weeks before and during pregnancy. Offspring were euthanized at 8 weeks and pancreatic tissue was collected. Isolated DNA was analyzed using whole-genome bisulfite sequencing. Protein expression was quantified using LC-MS. No significant differences in body weight were observed between HFD and control pups (p = 0.10). Whole-genome bisulfite sequencing identified 91,703 and 88,415 differentially methylated regions (DMRs) in CON vs. HFD male and female offspring. A total of 34 and 4 proteins were determined to have changes in expression that correlated with changes in DNA methylation in CON vs. HFD males and females, respectively. The majority of these factors were grouped into the metabolic function category via pathway analyses. This study illustrates the complex relationship between epigenetics, diet, and sex-specific responses, therefore offering insights into potential therapeutic targets and areas for further research.
Collapse
Affiliation(s)
| | - Maria Peterson
- Department of Fisheries, Veterinary, and Animal Science, University of Rhode Island, 45 Upper College Rd., Kingston, RI 02881, USA;
| |
Collapse
|
2
|
Bertucci-Richter EM, Shealy EP, Parrott BB. Epigenetic drift underlies epigenetic clock signals, but displays distinct responses to lifespan interventions, development, and cellular dedifferentiation. Aging (Albany NY) 2024; 16:1002-1020. [PMID: 38285616 PMCID: PMC10866415 DOI: 10.18632/aging.205503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/01/2023] [Indexed: 01/31/2024]
Abstract
Changes in DNA methylation with age are observed across the tree of life. The stereotypical nature of these changes can be modeled to produce epigenetic clocks capable of predicting chronological age with unprecedented accuracy. Despite the predictive ability of epigenetic clocks and their utility as biomarkers in clinical applications, the underlying processes that produce clock signals are not fully resolved, which limits their interpretability. Here, we develop a computational approach to spatially resolve the within read variability or "disorder" in DNA methylation patterns and test if age-associated changes in DNA methylation disorder underlie signals comprising epigenetic clocks. We find that epigenetic clock loci are enriched in regions that both accumulate and lose disorder with age, suggesting a link between DNA methylation disorder and epigenetic clocks. We then develop epigenetic clocks that are based on regional disorder of DNA methylation patterns and compare their performance to other epigenetic clocks by investigating the influences of development, lifespan interventions, and cellular dedifferentiation. We identify common responses as well as critical differences between canonical epigenetic clocks and those based on regional disorder, demonstrating a fundamental decoupling of epigenetic aging processes. Collectively, we identify key linkages between epigenetic disorder and epigenetic clocks and demonstrate the multifaceted nature of epigenetic aging in which stochastic processes occurring at non-random loci produce predictable outcomes.
Collapse
Affiliation(s)
- Emily M. Bertucci-Richter
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA
- Eugene P. Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Ethan P. Shealy
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA
- Eugene P. Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| | - Benjamin B. Parrott
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA
- Eugene P. Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Strawn M, Safranski TJ, Behura SK. Does DNA methylation in the fetal brain leave an epigenetic memory in the blood? Gene 2023; 887:147788. [PMID: 37696423 DOI: 10.1016/j.gene.2023.147788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
Epigenetic memory is an emerging concept that refers to the process in which epigenetic changes occurring early-in life can lead to long-term programs of gene regulation in time and space. By leveraging neural network regression modeling of DNA methylation data in pigs, we show that specific methylations in the adult blood can reliably predict methylation changes that occurred in the fetal brain. Genes associated with these methylations represented known markers of specific cell types of blood including bone marrow hematopoietic progenitor cells, and ependymal and oligodendrocyte cells of brain. This suggested that methylation changes that occurred in the developing brain were maintained as an epigenetic memory in the blood through the adult life.
Collapse
Affiliation(s)
- Monica Strawn
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Timothy J Safranski
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, United States; MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, United States; Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
4
|
Liu Y, Xu Q, Kang X, Wang K, Wang J, Feng D, Bai Y, Fang M. Dynamic changes of genomic methylation profiles at different growth stages in Chinese Tan sheep. J Anim Sci Biotechnol 2021; 12:118. [PMID: 34727982 PMCID: PMC8561971 DOI: 10.1186/s40104-021-00632-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/31/2021] [Indexed: 01/02/2023] Open
Abstract
Background Tan sheep, an important local sheep breed in China, is famous for their fur quality. One-month-old Tan sheep have white, curly hair with beautiful flower spikes, commonly known as “nine bends”, which has high economic value. However, the “nine bends” characteristic gradually disappears with age; consequently, the economic value of the Tan sheep decreases. Age-related changes in DNA methylation have been reported and may be responsible for age-induced changes in gene expression. Until now, no genome-wide surveys have been conducted to identify potential DNA methylation sites involved in different sheep growth stages. In this study we investigated the dynamic changes of genome-wide DNA methylation profiles in Tan sheep using DNA from skin and deep whole-genome bisulfite sequencing, and compared the DNA methylation levels at three different growth stages: 1, 24, and 48 months old (mon1, mon24, and mon48, respectively). Results In this study, 11 skin samples from three growth stages (four for mon1, four for mon24, and three for mon48) were used for DNA methylation analysis and gene expression profiling. There were 52, 288 and 236 differentially methylated genes (DMGs) identified between mon1 and mon24, mon1 and mon48, and mon24 and mon48, respectively. Of the differentially methylated regions, 1.11%, 7.61%, and 7.65% were in the promoter in mon1 vs. mon24, mon24 vs. mon48, and mon1 vs. mon48, respectively. DMGs were enriched in the MAPK and WNT signaling pathways, which are related to age growth and hair follicle morphogenesis processes. There were 51 DMGs associated with age growth and curly fleece formation. Four DMGs between mon1 and mon48 (KRT71, CD44, ROR2 and ZDHHC13) were further validated by bisulfite sequencing. Conclusions This study revealed dynamic changes in the genomic methylation profiles of mon1, mon24, and mon48 sheep, and the percentages of methylated cytosines were 3.38%, 2.85% and 4.17%, respectively. Of the DMGs, KRT71 and CD44 were highly methylated in mon1, and ROR2 and ZDHHC13 were highly methylated in mon48. These findings provide foundational information that may be used to develop strategies for potentially retaining the lamb fur and thus improving the economic value of Tan sheep. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00632-9.
Collapse
Affiliation(s)
- Yufang Liu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, People's Republic of China.,College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, 056021, People's Republic of China
| | - Qiao Xu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, People's Republic of China.,Biotechnology Institute, Nanchang Normal University, Nanchang, 330029, People's Republic of China
| | - Xiaolong Kang
- College of Agriculture, Ningxia University, Yinchuan, 750021, People's Republic of China
| | - Kejun Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Jve Wang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, People's Republic of China
| | - Dengzhen Feng
- Biotechnology Institute, Nanchang Normal University, Nanchang, 330029, People's Republic of China
| | - Ying Bai
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, 056021, People's Republic of China
| | - Meiying Fang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Rd, Beijing, 100193, People's Republic of China. .,Beijing Key Laboratory for Animal Genetic Improvement, Beijing, 100193, People's Republic of China.
| |
Collapse
|
5
|
Raeisossadati R, Ferrari MFR, Kihara AH, AlDiri I, Gross JM. Epigenetic regulation of retinal development. Epigenetics Chromatin 2021; 14:11. [PMID: 33563331 PMCID: PMC7871400 DOI: 10.1186/s13072-021-00384-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/28/2021] [Indexed: 01/10/2023] Open
Abstract
In the developing vertebrate retina, retinal progenitor cells (RPCs) proliferate and give rise to terminally differentiated neurons with exquisite spatio-temporal precision. Lineage commitment, fate determination and terminal differentiation are controlled by intricate crosstalk between the genome and epigenome. Indeed, epigenetic regulation plays pivotal roles in numerous cell fate specification and differentiation events in the retina. Moreover, aberrant chromatin structure can contribute to developmental disorders and retinal pathologies. In this review, we highlight recent advances in our understanding of epigenetic regulation in the retina. We also provide insight into several aspects of epigenetic-related regulation that should be investigated in future studies of retinal development and disease. Importantly, focusing on these mechanisms could contribute to the development of novel treatment strategies targeting a variety of retinal disorders.
Collapse
Affiliation(s)
- Reza Raeisossadati
- Departamento de Genética E Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Rua Do Matao, 277, Cidade Universitaria, Sao Paulo, SP, 05508-090, Brazil.,Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Merari F R Ferrari
- Departamento de Genética E Biologia Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Rua Do Matao, 277, Cidade Universitaria, Sao Paulo, SP, 05508-090, Brazil
| | | | - Issam AlDiri
- Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeffrey M Gross
- Departments of Ophthalmology and Developmental Biology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Jawaid S, Strainic JP, Kim J, Ford MR, Thrane L, Karunamuni GH, Sheehan MM, Chowdhury A, Gillespie CA, Rollins AM, Jenkins MW, Watanabe M, Ford SM. Glutathione Protects the Developing Heart from Defects and Global DNA Hypomethylation Induced by Prenatal Alcohol Exposure. Alcohol Clin Exp Res 2021; 45:69-78. [PMID: 33206417 PMCID: PMC8865806 DOI: 10.1111/acer.14511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Fetal alcohol spectrum disorder (FASD) is caused by prenatal alcohol exposure (PAE), the intake of ethanol (C2 H5 OH) during pregnancy. Features of FASD cover a range of structural and functional defects including congenital heart defects (CHDs). Folic acid and choline, contributors of methyl groups to one-carbon metabolism (OCM), prevent CHDs in humans. Using our avian model of FASD, we have previously reported that betaine, another methyl donor downstream of choline, prevents CHDs. The CHD preventions are substantial but incomplete. Ethanol causes oxidative stress as well as depleting methyl groups for OCM to support DNA methylation and other epigenetic alterations. To identify more compounds that can safely and effectively prevent CHDs and other effects of PAE, we tested glutathione (GSH), a compound that regulates OCM and is known as a "master antioxidant." METHODS/RESULTS Quail embryos injected with a single dose of ethanol at gastrulation exhibited congenital defects including CHDs similar to those identified in FASD individuals. GSH injected simultaneously with ethanol not only prevented CHDs, but also improved survival and prevented other PAE-induced defects. Assays of hearts at 8 days (HH stage 34) of quail development, when the heart normally has developed 4-chambers, showed that this single dose of PAE reduced global DNA methylation. GSH supplementation concurrent with PAE normalized global DNA methylation levels. The same assays performed on quail hearts at 3 days (HH stage 19-20) of development, showed no difference in global DNA methylation between controls, ethanol-treated, GSH alone, and GSH plus ethanol-treated cohorts. CONCLUSIONS GSH supplementation shows promise to inhibit effects of PAE by improving survival, reducing the incidence of morphological defects including CHDs, and preventing global hypomethylation of DNA in heart tissues.
Collapse
Affiliation(s)
- Safdar Jawaid
- Department of Pediatrics, Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland OH 44106
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland OH 44106
| | - James P. Strainic
- Department of Pediatrics, Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland OH 44106
| | - Jun Kim
- Department of Pediatrics, Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland OH 44106
| | - Matthew R. Ford
- Department of Pediatrics, Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland OH 44106
| | - Lars Thrane
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland OH 44106
| | - Ganga H. Karunamuni
- Department of Pediatrics, Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland OH 44106
| | - Megan M. Sheehan
- Department of Pediatrics, Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland OH 44106
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland OH 44106
| | - Amrin Chowdhury
- Department of Pediatrics, Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland OH 44106
- Brecksville-Broadview Heights High School, Broadview Heights OH 44147
| | - Caitlyn A. Gillespie
- Department of Pediatrics, Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland OH 44106
- Fisk University, Nashville TN 37208
| | - Andrew M. Rollins
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland OH 44106
| | - Michael W. Jenkins
- Department of Pediatrics, Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland OH 44106
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland OH 44106
| | - Michiko Watanabe
- Department of Pediatrics, Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland OH 44106
| | - Stephanie M Ford
- Department of Pediatrics, Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland OH 44106
| |
Collapse
|
7
|
Basak S, Srinivas V, Mallepogu A, Duttaroy AK. Curcumin stimulates angiogenesis through VEGF and expression of HLA‐G in first‐trimester human placental trophoblasts. Cell Biol Int 2020; 44:1237-1251. [DOI: 10.1002/cbin.11324] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 02/16/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Sanjay Basak
- Department of Nutrition, Faculty of MedicineUniversity of Oslo POB 1046, Blindern N‐0316 Oslo Norway
- ICMR‐National Institute of Nutrition Hyderabad Telangana 500007 India
| | | | - Aswani Mallepogu
- ICMR‐National Institute of Nutrition Hyderabad Telangana 500007 India
| | - Asim K. Duttaroy
- Department of Nutrition, Faculty of MedicineUniversity of Oslo POB 1046, Blindern N‐0316 Oslo Norway
| |
Collapse
|
8
|
Jarmasz JS, Stirton H, Basalah D, Davie JR, Clarren SK, Astley SJ, Del Bigio MR. Global DNA Methylation and Histone Posttranslational Modifications in Human and Nonhuman Primate Brain in Association with Prenatal Alcohol Exposure. Alcohol Clin Exp Res 2019; 43:1145-1162. [PMID: 31074890 PMCID: PMC6593679 DOI: 10.1111/acer.14052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/26/2019] [Accepted: 03/25/2019] [Indexed: 12/21/2022]
Abstract
Background Based upon experimental animal studies, the neurodevelopmental abnormalities associated with prenatal alcohol exposure (PNAE)/fetal alcohol spectrum disorder (FASD) have been attributed, at least in part, to epigenetic modifications. However, there are no direct analyses of human brain tissue. Methods Immunohistochemical detection of global epigenetic markers was performed on temporal lobe samples of autopsied fetuses and infants with documented PNAE. They were compared to age‐, sex‐, and postmortem delay‐matched control cases (18 pairs; 20 to 70.5 weeks postconception). Temporal lobe tissue from a macaque monkey model of PNAE was also studied (5.7 to 6 months of age). We used antibodies targeting 4 DNA cytosine, 4 histone methylation, and 6 histone acetylation modifications and assigned scores based upon the semiquantitatively graded intensity and proportion of positively labeled nuclei in the ventricular and subventricular zones, ependyma, temporal cortex, temporal white matter, dentate gyrus (DG), and CA1 pyramidal layer. Results Temporal changes were identified for almost all marks according to the state of maturation in the human brain. In the DG (and 3 other brain regions), a statistically significant increase in H3K9ac was associated with PNAE. Statistically significant decreases were seen among 5mC, H3K4me3, H3K9ac, H3K27ac, H4K12ac, and H4K16ac in select regions. In the macaques, H3K36me3 decreased in the DG, and the ependyma showed decreases in 5fC and H3K36me3. Conclusions In human brain, global intranuclear epigenetic modifications are brain region and maturation state‐specific. These exploratory results support the general hypothesis that PNAE is associated with a global decrease in DNA methylation, a global decrease in histone methylation, and a global increase in histone acetylation. Although the human and monkey subjects are not directly comparable in terms of brain maturation, considering the rapid temporal changes in global epigenetic modifications during brain development, interspecies comparisons may be extremely difficult.
Collapse
Affiliation(s)
- Jessica S Jarmasz
- Department of Pathology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hannah Stirton
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Duaa Basalah
- Department of Pathology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sterling K Clarren
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA.,Department of Pediatrics, University of British Columbia Faculty of Medicine, Vancouver, British Columbia
| | - Susan J Astley
- Departments of Epidemiology/Pediatrics, University of Washington, Seattle, Washington
| | - Marc R Del Bigio
- Department of Pathology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
9
|
Meng L, Xu W, Zhu Y, Zhang N, Shao C, Liu Y, Chen S. Molecular characterization and expression analysis of strbp in Chinese tongue sole (Cynoglossus semilaevis). Theriogenology 2018; 118:225-232. [DOI: 10.1016/j.theriogenology.2018.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022]
|
10
|
Rhee C, Kim J, Tucker HO. Transcriptional Regulation of the First Cell Fate Decision. JOURNAL OF DEVELOPMENTAL BIOLOGY & REGENERATIVE MEDICINE 2017; 1:102. [PMID: 29658952 PMCID: PMC5897107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding how the first cell fate decision has chosen is a fascinating biological question that was received consider attention over the last decade. Numerous transcription factors are required, and many have been shown to have essential roles in this process. Here we reexamine the function that transcription factors play primarily in the mouse-the model system most thoroughly examined in this process. We address how the first embryonic lineage is established and maintained, with a particular emphasis on subsequent trophectoderm development and the role of the recently established Arid3a transcription factor in this process. In addition, we review relevant aspects of embryonic stem cell reprogramming into trophoblast stem cells -the equivalent of the epiblast (inner cell mass) and the establishment of induced trophoblast stem cells-the in vitro equivalent of the trophectoderm.
Collapse
Affiliation(s)
- Catherine Rhee
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge MA 02138, USA
| | - Jonghwan Kim
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Haley O. Tucker
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
11
|
Mandal C, Halder D, Jung KH, Chai YG. Gestational Alcohol Exposure Altered DNA Methylation Status in the Developing Fetus. Int J Mol Sci 2017; 18:ijms18071386. [PMID: 28657590 PMCID: PMC5535879 DOI: 10.3390/ijms18071386] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 12/27/2022] Open
Abstract
Ethanol is well known as a teratogenic factor that is capable of inducing a wide range of developmental abnormalities if the developing fetus is exposed to it. Duration and dose are the critical parameters of exposure that affect teratogenic variation to the developing fetus. It is suggested that ethanol interferes with epigenetic processes especially DNA methylation. We aimed to organize all of the available information on the alteration of DNA methylation by ethanol in utero. Thus, we have summarized all published information regarding alcohol-mediated alterations in DNA methylation during gestation. We tried to arrange information in a way that anyone can easily find the alcohol exposure time, doses, sampling time, and major changes in genomic level. Manuscript texts will also represent the correlation between ethanol metabolites and subsequent changes in methylome patterns. We hope that this review will help future researchers to further examine the issues associated with ethanol exposure.
Collapse
Affiliation(s)
- Chanchal Mandal
- Department of Molecular and Life Science, Hanyang University, 15588 Ansan, Korea.
| | - Debasish Halder
- Department of Molecular and Life Science, Hanyang University, 15588 Ansan, Korea.
| | - Kyoung Hwa Jung
- Department of Molecular and Life Science, Hanyang University, 15588 Ansan, Korea.
- Institute of Natural Science and Technology, Hanyang University, 15588 Ansan, Korea.
| | - Young Gyu Chai
- Department of Molecular and Life Science, Hanyang University, 15588 Ansan, Korea.
- Department of Bionanotechnology, Hanyang University, 04763 Seoul, Korea.
| |
Collapse
|
12
|
Öztürk NC, Resendiz M, Öztürk H, Zhou FC. DNA Methylation program in normal and alcohol-induced thinning cortex. Alcohol 2017; 60:135-147. [PMID: 28433420 DOI: 10.1016/j.alcohol.2017.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/03/2017] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
Abstract
While cerebral underdevelopment is a hallmark of fetal alcohol spectrum disorders (FASD), the mechanism(s) guiding the broad cortical neurodevelopmental deficits are not clear. DNA methylation is known to regulate early development and tissue specification through gene regulation. Here, we examined DNA methylation in the onset of alcohol-induced cortical thinning in a mouse model of FASD. C57BL/6 (B6) mice were administered a 4% alcohol (v/v) liquid diet from embryonic (E) days 7-16, and their embryos were harvested at E17, along with isocaloric liquid diet and lab chow controls. Cortical neuroanatomy, neural phenotypes, and epigenetic markers of methylation were assessed using immunohistochemistry, Western blot, and methyl-DNA assays. We report that cortical thickness, neuroepithelial proliferation, and neuronal migration and maturity were found to be deterred by alcohol at E17. Simultaneously, DNA methylation, including 5-methylcytosine (5mC) and 5-hydroxcylmethylcytosine (5hmC), which progresses as an intrinsic program guiding normal embryonic cortical development, was severely affected by in utero alcohol exposure. The intricate relationship between cortical thinning and this DNA methylation program disruption is detailed and illustrated. DNA methylation, dynamic across the multiple cortical layers during the late embryonic stage, is highly disrupted by fetal alcohol exposure; this disruption occurs in tandem with characteristic developmental abnormalities, ranging from structural to molecular. Finally, our findings point to a significant question for future exploration: whether epigenetics guides neurodevelopment or whether developmental conditions dictate epigenetic dynamics in the context of alcohol-induced cortical teratogenesis.
Collapse
|
13
|
Mahnke AH, Miranda RC, Homanics GE. Epigenetic mediators and consequences of excessive alcohol consumption. Alcohol 2017; 60:1-6. [PMID: 28395929 PMCID: PMC5439216 DOI: 10.1016/j.alcohol.2017.02.357] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Amanda H Mahnke
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, United States.
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Gregg E Homanics
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Podobinska M, Szablowska-Gadomska I, Augustyniak J, Sandvig I, Sandvig A, Buzanska L. Epigenetic Modulation of Stem Cells in Neurodevelopment: The Role of Methylation and Acetylation. Front Cell Neurosci 2017; 11:23. [PMID: 28223921 PMCID: PMC5293809 DOI: 10.3389/fncel.2017.00023] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/23/2017] [Indexed: 12/11/2022] Open
Abstract
The coordinated development of the nervous system requires fidelity in the expression of specific genes determining the different neural cell phenotypes. Stem cell fate decisions during neurodevelopment are strictly correlated with their epigenetic status. The epigenetic regulatory processes, such as DNA methylation and histone modifications discussed in this review article, may impact both neural stem cell (NSC) self-renewal and differentiation and thus play an important role in neurodevelopment. At the same time, stem cell decisions regarding fate commitment and differentiation are highly dependent on the temporospatial expression of specific genes contingent on the developmental stage of the nervous system. An interplay between the above, as well as basic cell processes, such as transcription regulation, DNA replication, cell cycle regulation and DNA repair therefore determine the accuracy and function of neuronal connections. This may significantly impact embryonic health and development as well as cognitive processes such as neuroplasticity and memory formation later in the adult.
Collapse
Affiliation(s)
- Martyna Podobinska
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences Warsaw, Poland
| | | | - Justyna Augustyniak
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences Warsaw, Poland
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU) Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU) Trondheim, Norway
| | - Leonora Buzanska
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences Warsaw, Poland
| |
Collapse
|
15
|
González-Mariscal G, Melo AI. Bidirectional Effects of Mother-Young Contact on the Maternal and Neonatal Brains. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1015:97-116. [PMID: 29080023 DOI: 10.1007/978-3-319-62817-2_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adaptive plasticity occurs intensely during the early postnatal period through processes like proliferation, migration, differentiation, synaptogenesis, myelination and apoptosis. Exposure to particular stimuli during this critical period has long-lasting effects on cognition, stress reactivity and behavior. Maternal care is the main source of social, sensory and chemical stimulation to the young and is, therefore, critical to "fine-tune" the offspring's neural development. Mothers providing a low quantity or quality of stimulation produce offspring that will exhibit reduced cognitive performance, impaired social affiliation and increased agonistic behaviors. Transgenerational transmission of such traits occurs epigenetically, i.e., through mechanisms like DNA methylation and post-translational modification of nucleosomal histones, processes that silence or increase gene expression without affecting the DNA sequence. Reciprocally, providing maternal care profoundly affects the behavior, learning, memory and fine neuroanatomy of the adult female. Such effects are in many cases permanent and sometimes they involve the hormones of pregnancy and lactation. The above evidence supports the idea that the mother-young dyad exerts profound and permanent effects on the brains of both adult and developing organisms, respectively. Effects on the latter can be explained by the neural developmental processes taking place during the early postnatal period. In contrast, little is known about the mechanisms mediating the plasticity of the adult maternal brain. The bidirectional effects that mother and young exert on each other's brains exemplify a remarkable plasticity of this organ for organizing itself and provide an immense source of variability for adaptation and evolution in mammals.
Collapse
Affiliation(s)
- Gabriela González-Mariscal
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Apdo Postal 62, Tlaxcala, Tlax, 90000, Mexico.
| | - Angel I Melo
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Apdo Postal 62, Tlaxcala, Tlax, 90000, Mexico
| |
Collapse
|
16
|
Zhou FC, Resendiz M, Lo CL, Chen Y. Cell-Wide DNA De-Methylation and Re-Methylation of Purkinje Neurons in the Developing Cerebellum. PLoS One 2016; 11:e0162063. [PMID: 27583369 PMCID: PMC5008790 DOI: 10.1371/journal.pone.0162063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/16/2016] [Indexed: 01/15/2023] Open
Abstract
Global DNA de-methylation is thought to occur only during pre-implantation and gametogenesis in mammals. Scalable, cell-wide de-methylation has not been demonstrated beyond totipotent stages. Here, we observed a large scale de-methylation and subsequent re-methylation (CDR) (including 5-methylcytosine (5mC) and 5-hydroxylmethylcytosine (5hmC)) in post-mitotic cerebellar Purkinje cells (PC) through the course of normal development. Through single cell immuno-identification and cell-specific quantitative methylation assays, we demonstrate that the CDR event is an intrinsically scheduled program, occurring in nearly every PC. Meanwhile, cerebellar granule cells and basket interneurons adopt their own DNA methylation program, independent of PCs. DNA de-methylation was further demonstrated at the gene level, on genes pertinent to PC development. The PC, being one of the largest neurons in the brain, may showcase an amplified epigenetic cycle which may mediate stage transformation including cell cycle arrest, vast axonal-dendritic growth, and synaptogenesis at the onset of neuronal specificity. This discovery is a key step toward better understanding the breadth and role of DNA methylation and de-methylation during neural ontology.
Collapse
Affiliation(s)
- Feng C. Zhou
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, United States of America
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, 46202, United States of America
- * E-mail:
| | - Marisol Resendiz
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, 46202, United States of America
| | - Chiao-Ling Lo
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, United States of America
| | - Yuanyuan Chen
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, 46202, United States of America
| |
Collapse
|
17
|
Bai WL, Dang YL, Wang JJ, Yin RH, Wang ZY, Zhu YB, Cong YY, Xue HL, Deng L, Guo D, Wang SQ, Yang SH. Molecular characterization, expression and methylation status analysis of BMP4 gene in skin tissue of Liaoning cashmere goat during hair follicle cycle. Genetica 2016; 144:457-67. [DOI: 10.1007/s10709-016-9914-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 07/07/2016] [Indexed: 12/24/2022]
|
18
|
Tunc-Ozcan E, Ferreira AB, Redei EE. Modeling Fetal Alcohol Spectrum Disorder: Validating an Ex Vivo Primary Hippocampal Cell Culture System. Alcohol Clin Exp Res 2016; 40:1273-82. [PMID: 27162054 DOI: 10.1111/acer.13090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/30/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Fetal alcohol spectrum disorder (FASD) is the leading nongenetic cause of mental retardation. There are no treatments for FASD to date. Preclinical in vivo and in vitro studies could help in identifying novel drug targets as for other diseases. Here, we describe an ex vivo model that combines the physiological advantages of prenatal ethanol (EtOH) exposure in vivo with the uniformity of primary fetal hippocampal culture to characterize the effects of prenatal EtOH. The insulin signaling pathways are known to be involved in hippocampal functions. Therefore, we compared the expression of insulin signaling pathway genes between fetal hippocampi (in vivo) and primary hippocampal culture (ex vivo). The similarity of prenatal EtOH effects in these 2 paradigms would deem the ex vivo culture acceptable to screen possible treatments for FASD. METHODS Pregnant Sprague-Dawley rats received 1 of 3 diets: ad libitum standard laboratory chow (control-C), isocaloric pair-fed (nutritional control), and EtOH containing liquid diets from gestational day (GD) 8. Fetal male and female hippocampi were collected either on GD21 (in vivo) or on GD18 for primary culture (ex vivo). Transcript levels of Igf2, Igf2r, Insr, Grb10, Rasgrf1, and Zac1 were measured by reverse transcription quantitative polymerase chain reaction. RESULTS Hippocampal transcript levels differed by prenatal treatment in both males and females with sex differences observed in the expression of Igf2 and Insr. The effect of prenatal EtOH on the hippocampal expression of the insulin pathway genes was parallel in the in vivo and the ex vivo conditions. CONCLUSIONS The similarity of gene expression changes in response to prenatal EtOH between the in vivo and the ex vivo conditions ascertains that these effects are already set in the fetal hippocampus at GD18. This strengthens the feasibility of the ex vivo primary hippocampal culture as a tool to test and screen candidate drug targets for FASD.
Collapse
Affiliation(s)
- Elif Tunc-Ozcan
- Department of Psychiatry and Behavioral Sciences, The Asher Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Adriana B Ferreira
- Department of Cellular and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Eva E Redei
- Department of Psychiatry and Behavioral Sciences, The Asher Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
19
|
Molecular characterization and expression profiles of GATA6 in tongue sole (Cynoglossus semilaevis). Comp Biochem Physiol B Biochem Mol Biol 2016; 198:19-26. [PMID: 27040526 DOI: 10.1016/j.cbpb.2016.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/22/2016] [Accepted: 03/28/2016] [Indexed: 12/21/2022]
Abstract
GATA-binding protein 6 (GATA6), a transcription factor of the GATA family, plays an important role in gonadal cell proliferation, differentiation, and endoderm development. In this study, the full-length coding sequence of tongue sole (Cynoglossus semilaevis) GATA6 was identified. The sequence consisted of 1494 nucleotides encoding a peptide of 497 amino acids, which included two conserved zinc finger domains. Phylogenetic, gene structure, and synteny analysis showed that C. semilaevis GATA6 was homologous to teleost and tetrapod GATA6. C. semilaevis GATA6 mRNA exhibited high expression in heart, intestine, liver, kidney, and gonad. Embryonic development expression profiles revealed that GATA6 is involved in morphogenesis because its expression increased at the blastula stage. The in situ hybridization results showed strong GATA6 signals in spermatogonia, spermatocytes, and Sertoli cells of the testis. The signals were also detected in the oogonia and oocytes of the ovary. The expression of C. semilaevis GATA6 was sexually dimorphic, and the methylation pattern in the promoter region varied among males, females, and pseudomales. These results suggested that GATA6 might influence the gonad development and reproduction of C. semilaevis. This study provides the groundwork for further development of breeding techniques in C. semilaevis.
Collapse
|
20
|
Varadinova M, Boyadjieva N. Epigenetic mechanisms: A possible link between autism spectrum disorders and fetal alcohol spectrum disorders. Pharmacol Res 2015; 102:71-80. [PMID: 26408203 DOI: 10.1016/j.phrs.2015.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/12/2015] [Accepted: 09/13/2015] [Indexed: 01/26/2023]
Abstract
The etiology of autism spectrum disorders (ASDs) still remains unclear and seems to involve a considerable overlap between polygenic, epigenetic and environmental factors. We have summarized the current understanding of the interplay between gene expression dysregulation via epigenetic modifications and the potential epigenetic impact of environmental factors in neurodevelopmental deficits. Furthermore, we discuss the scientific controversies of the relationship between prenatal exposure to alcohol and alcohol-induced epigenetic dysregulations, and gene expression alterations which are associated with disrupted neural plasticity and causal pathways for ASDs. The review of the literature suggests that a better understanding of developmental epigenetics should contribute to furthering our comprehension of the etiology and pathogenesis of ASDs and fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Miroslava Varadinova
- Department of Pharmacology and Toxicology, Medical Faculty, Medical University, Sofia, Bulgaria.
| | - Nadka Boyadjieva
- Department of Pharmacology and Toxicology, Medical Faculty, Medical University, Sofia, Bulgaria.
| |
Collapse
|
21
|
Ceroni F, Simpson NH, Francks C, Baird G, Conti-Ramsden G, Clark A, Bolton PF, Hennessy ER, Donnelly P, Bentley DR, Martin H, IMGSAC, SLI Consortium, WGS500 Consortium, Parr J, Pagnamenta AT, Maestrini E, Bacchelli E, Fisher SE, Newbury DF. Reply to Pembrey et al: 'ZNF277 microdeletions, specific language impairment and the meiotic mismatch methylation (3M) hypothesis'. Eur J Hum Genet 2015; 23:1113-5. [PMID: 25537359 PMCID: PMC4538219 DOI: 10.1038/ejhg.2014.275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Fabiola Ceroni
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Nuala H Simpson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Clyde Francks
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition & Behaviour, Nijmegen, The Netherlands
| | - Gillian Baird
- Guy's & St Thomas NHS Foundation Trust, Newcomen Children's Neurosciences Centre, St Thomas' Hospital, London, UK
| | - Gina Conti-Ramsden
- School of Psychological Sciences, The University of Manchester, Manchester, UK
| | - Ann Clark
- Speech and Hearing Sciences, Queen Margaret University, Edinburgh, UK
| | - Patrick F Bolton
- Departments of Child & Adolescent Psychiatry & Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Kings College London, London, UK
| | | | - Peter Donnelly
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - David R Bentley
- Illumina Cambridge Ltd, Chesterford Research Park, Little Chesterford, Essex, UK
| | - Hilary Martin
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - IMGSAC
- Institute of Neuroscience and Health and Society, Newcastle University, Newcastle upon Tyne, UK
| | - SLI Consortium
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - WGS500 Consortium
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jeremy Parr
- Institute of Neuroscience and Health and Society, Newcastle University, Newcastle upon Tyne, UK
| | - Alistair T Pagnamenta
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, Oxford and Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Elena Maestrini
- Dipartimento di Farmacia e Biotecnologie, University of Bologna, Bologna, Italy
| | - Elena Bacchelli
- Dipartimento di Farmacia e Biotecnologie, University of Bologna, Bologna, Italy
| | - Simon E Fisher
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition & Behaviour, Nijmegen, The Netherlands
| | - Dianne F Newbury
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
22
|
Zhang L, Liu W, Shao C, Zhang N, Li H, Liu K, Dong Z, Qi Q, Zhao W, Chen S. Cloning, expression and methylation analysis of piwil2 in half-smooth tongue sole (Cynoglossus semilaevis). Mar Genomics 2014; 18 Pt A:45-54. [DOI: 10.1016/j.margen.2014.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 04/17/2014] [Accepted: 04/18/2014] [Indexed: 12/25/2022]
|
23
|
Liyanage VRB, Jarmasz JS, Murugeshan N, Del Bigio MR, Rastegar M, Davie JR. DNA modifications: function and applications in normal and disease States. BIOLOGY 2014; 3:670-723. [PMID: 25340699 PMCID: PMC4280507 DOI: 10.3390/biology3040670] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 12/12/2022]
Abstract
Epigenetics refers to a variety of processes that have heritable effects on gene expression programs without changes in DNA sequence. Key players in epigenetic control are chemical modifications to DNA, histone, and non-histone chromosomal proteins, which establish a complex regulatory network that controls genome function. Methylation of DNA at the fifth position of cytosine in CpG dinucleotides (5-methylcytosine, 5mC), which is carried out by DNA methyltransferases, is commonly associated with gene silencing. However, high resolution mapping of DNA methylation has revealed that 5mC is enriched in exonic nucleosomes and at intron-exon junctions, suggesting a role of DNA methylation in the relationship between elongation and RNA splicing. Recent studies have increased our knowledge of another modification of DNA, 5-hydroxymethylcytosine (5hmC), which is a product of the ten-eleven translocation (TET) proteins converting 5mC to 5hmC. In this review, we will highlight current studies on the role of 5mC and 5hmC in regulating gene expression (using some aspects of brain development as examples). Further the roles of these modifications in detection of pathological states (type 2 diabetes, Rett syndrome, fetal alcohol spectrum disorders and teratogen exposure) will be discussed.
Collapse
Affiliation(s)
- Vichithra R B Liyanage
- Department of Biochemistry and Medical Genetics, Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Jessica S Jarmasz
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Nanditha Murugeshan
- Department of Biochemistry and Medical Genetics, Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Marc R Del Bigio
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - James R Davie
- Department of Biochemistry and Medical Genetics, Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
24
|
Tyler CR, Allan AM. Prenatal alcohol exposure alters expression of neurogenesis-related genes in an ex vivo cell culture model. Alcohol 2014; 48:483-92. [PMID: 24954023 DOI: 10.1016/j.alcohol.2014.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Prenatal alcohol exposure can lead to long-lasting changes in functional and genetic programs of the brain, which may underlie behavioral alterations seen in Fetal Alcohol Spectrum Disorder (FASD). Aberrant fetal programming during gestational alcohol exposure is a possible mechanism by which alcohol imparts teratogenic effects on the brain; however, current methods used to investigate the effects of alcohol on development often rely on either direct application of alcohol in vitro or acute high doses in vivo. In this study, we used our established moderate prenatal alcohol exposure (PAE) model, resulting in maternal blood alcohol content of approximately 20 mM, and subsequent ex vivo cell culture to assess expression of genes related to neurogenesis. Proliferating and differentiating neural progenitor cell culture conditions were established from telencephalic tissue derived from embryonic day (E) 15-17 tissue exposed to alcohol via maternal drinking throughout pregnancy. Gene expression analysis on mRNA derived in vitro was performed using a microarray, and quantitative PCR was conducted for genes to validate the microarray. Student's t tests were performed for statistical comparison of each exposure under each culture condition using a 95% confidence interval. Eleven percent of genes on the array had significantly altered mRNA expression in the prenatal alcohol-exposed neural progenitor culture under proliferating conditions. These include reduced expression of Adora2a, Cxcl1, Dlg4, Hes1, Nptx1, and Vegfa and increased expression of Fgf13, Ndn, and Sox3; bioinformatics analysis indicated that these genes are involved in cell growth and proliferation. Decreased levels of Dnmt1 and Dnmt3a were also found under proliferating conditions. Under differentiating conditions, 7.3% of genes had decreased mRNA expression; these include Cdk5rap3, Gdnf, Hey2, Heyl, Pard6b, and Ptn, which are associated with survival and differentiation as indicated by bioinformatics analysis. This study is the first to use chronic low to moderate PAE, to more accurately reflect maternal alcohol consumption, and subsequent neural progenitor cell culture to demonstrate that PAE throughout gestation alters expression of genes involved in neural development and embryonic neurogenesis.
Collapse
|
25
|
Chen M, Liu Z, Deng Y, Chen X, Zhang J. Methylation status of promoter 1 region of GDNF gene in human glioma cells. Int J Clin Exp Med 2014; 7:1735-1740. [PMID: 25126172 PMCID: PMC4132136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/25/2014] [Indexed: 06/03/2023]
Abstract
OBJECTIVE This study aimed to investigate the methylation status of promoter 1 region of glial cell line-derived neurotrophic factor (GDNF) in human glioma cells and to explore the effect of GDNF methylation on the expression of GDNF in glioma. METHODS GDNF gene mutation was detected by sequencing in 10 patients with glioma and 5 healthy controls. Bisulfite modification for analysis of DNA methylation was done to detect the methylation status of promoter 1 region of GDNF in 20 patients with glioma (10 with poorly differentiated and 10 with well differentiated) and 5 healthy controls. RESULTS There was no mutation at the promoter 1 region of GDNF gene in glioma. The incidence of methylation of GDNF gene at the promoter 1 region in healthy control, patients with poorly differentiated glioma and those with well differentiated glioma was 72.25%, 86.25% and 86.75%. The incidence of GDNF methylation in glioma was significantly higher than that in the normal brain (P<0.05); while there was no significant difference between well differentiated glioma and poorly differentiated glioma. CONCLUSIONS Hypermethylation occurs in the promoter 1 region of GDNF and may influence the expression of GDNF in glioma.
Collapse
Affiliation(s)
- Maohua Chen
- School of Medicine, Zhejiang University & Department of Neurosurgery, Wenzhou Central HospitalZhejiang, China
| | - Zhenghao Liu
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhou, China
| | - Yuefei Deng
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhou, China
| | - Xianglin Chen
- Department of Neurosurgery, Qingyuan People’s HospitalGuangdong, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang UniversityZhejiang, China
| |
Collapse
|
26
|
Epigenetic regulation of sox30 is associated with testis development in mice. PLoS One 2014; 9:e97203. [PMID: 24810894 PMCID: PMC4014610 DOI: 10.1371/journal.pone.0097203] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 04/09/2014] [Indexed: 01/15/2023] Open
Abstract
DNA methylation is involved in tissue-specific and developmentally regulated gene expression. Here, we screened a novel methylation gene Sox30, whose methylation might contribute to its regulation and testis development in mice. Sox30 is a member of Sox transcription factors, and is considered to be involved in spermatogonial differentiation and spermatogenesis. However, the precise function and regulatory expression pattern remain unclear. In the present study, we found that Sox30 is highly expressed in adult testes but not in ovaries. Sox30 expression begins in early development, and in the testes, it is specifically increased coincidentally with development until adulthood. Moreover, Sox30 is expressed not only in testis germ cells, but also in sertoli cells. Sox30 is hypo-methylated in testis, epididymis and lung of adult mice, in which Sox30 is expressed. By contrast, Sox30 is hypermethylated in ovary, heart, brain, liver, kidney, spleen, pancreas, muscle, intestine, pituitary gland, blood and hippocampus of adult mice, in which the Sox30 is absent. Importantly, decreased methylation at CpG islands of Sox30 is observed in mouse developmental testes after birth, which is associated with enhanced Sox30 expression. However, the hypermethylated status of Sox30 is maintained in ovaries that does not express Sox30 during this period. Further, following demethylation treatment using 5-aza-dC, Sox30 expression is restored in GC2, TM3 and TM4 cell lines. This observation convincingly confirms that methylation really contributes to Sox30 silencing. In summary, we show that Sox30 expression is under the control of DNA methylation status, and this expression pattern is associated with testis development in mice.
Collapse
|
27
|
Chen Y, Damayanti NP, Irudayaraj J, Dunn K, Zhou FC. Diversity of two forms of DNA methylation in the brain. Front Genet 2014; 5:46. [PMID: 24653733 PMCID: PMC3948076 DOI: 10.3389/fgene.2014.00046] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/12/2014] [Indexed: 11/13/2022] Open
Abstract
DNA methylation 5-methylcytosine (5mC) predicts a compacting chromatin inaccessible to transcription. The discovery of 5-hydroxymethylcytosine (5hmC), which is derived from 5mC, adds a new dimension to the mechanism and role of DNA methylation in epigenetics. Genomic evidence indicates that the 5hmC is located in the alternate regions to 5mC. However, the nature of 5hmC, as compared with classical 5mC remains unclear. Observing the mouse brain through embryonic development to the adult, first, we found that 5hmC is not merely an intermediate metabolite of demethylation, but is long lasting, chromatically distinct, and dynamically changing during neurodevelopment. Second, we found that 5hmC distinctly differs from 5mC in its chromatin affiliation during neural stem cell (NSC) development. Thirdly, we found both 5mC and 5hmC to be uniquely polarized and dynamic through the NSC development. 5mC was found to progressively polarize with MBD1 and MeCP2, and recruits H3K9me3 and H3K27me3; while 5hmC progressively co-localizes with MBD3 and recruits H3K4me2. Critical differential binding of 5mC with MBD1, and 5hmC with MBD3 was validated by Resonance Energy Transfer technique FLIM-FRET. This transition and polarization coincides with neuroprogenitor differentiation. Finally, at the time of synaptogenesis, 5mC gradually accumulates in the heterochromatin while 5hmC accumulates in the euchromatin, which is consistent with the co-localization of 5hmC with PolII, which mediates RNA transcription. Our data indicate that 5mC and 5hmC are diverse in their functional interactions with chromatin. This diversity is likely to contribute to the versatile epigenetic control of transcription mediating brain development and functional maintenance of adult brain.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine Indianapolis, IN, USA
| | - Nur P Damayanti
- Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue University West Lafayette, IN, USA
| | - Joseph Irudayaraj
- Agricultural and Biological Engineering, Bindley Bioscience Center, Purdue University West Lafayette, IN, USA
| | - Kenneth Dunn
- Division of Nephology, Department of Medicine, Indiana University School of Medicine Indianapolis, IN, USA
| | - Feng C Zhou
- Department of Anatomy and Cell Biology, Indiana University School of Medicine Indianapolis, IN, USA ; Stark Neuroscience Research Institute, Indiana University School of Medicine Indianapolis, IN, USA
| |
Collapse
|
28
|
Abstract
The etiology of many brain diseases remains allusive to date after intensive investigation of genomic background and symptomatology from the day of birth. Emerging evidences indicate that a third factor, epigenetics prior to the birth, can exert profound influence on the development and functioning of the brain and over many neurodevelopmental syndromes. This chapter reviews how aversive environmental exposure to parents might predispose or increase vulnerability of offspring to neurodevelopmental deficit through alteration of epigenetics. These epigenetic altering environmental factors will be discussed in the category of addictive agents, nutrition or diet, prescriptive medicine, environmental pollutant, and stress. Epigenetic alterations induced by these aversive environmental factors cover all aspects of epigenetics including DNA methylation, histone modification, noncoding RNA, and chromatin modification. Next, the mechanisms how these environmental inputs influence epigenetics will be discussed. Finally, how environmentally altered epigenetic marks affect neurodevelopment is exemplified by the alcohol-induced fetal alcohol syndrome. It is hoped that a thorough understanding of the nature of prenatal epigenetic inputs will enable researchers with a clear vision to better unravel neurodevelopmental deficit, late-onset neuropsychiatric diseases, or idiosyncratic mental disorders.
Collapse
Affiliation(s)
- Chiao-Ling Lo
- Department of Anatomy and Cell Biology, Stark Neuroscience Research Institute, Indiana Alcohol Research Center, Indiana University School of Medicine, and Department of Psychology, Indiana University Purdue University at Indianapolis, Indianapolis, Indiana, USA
| | - Feng C Zhou
- Department of Anatomy and Cell Biology, Stark Neuroscience Research Institute, Indiana Alcohol Research Center, Indiana University School of Medicine, and Department of Psychology, Indiana University Purdue University at Indianapolis, Indianapolis, Indiana, USA.
| |
Collapse
|
29
|
Muralidharan P, Sarmah S, Zhou FC, Marrs JA. Fetal Alcohol Spectrum Disorder (FASD) Associated Neural Defects: Complex Mechanisms and Potential Therapeutic Targets. Brain Sci 2013; 3:964-91. [PMID: 24961433 PMCID: PMC4061856 DOI: 10.3390/brainsci3020964] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 02/02/2023] Open
Abstract
Fetal alcohol spectrum disorder (FASD), caused by prenatal alcohol exposure, can result in craniofacial dysmorphism, cognitive impairment, sensory and motor disabilities among other defects. FASD incidences are as high as 2% to 5 % children born in the US, and prevalence is higher in low socioeconomic populations. Despite various mechanisms being proposed to explain the etiology of FASD, the molecular targets of ethanol toxicity during development are unknown. Proposed mechanisms include cell death, cell signaling defects and gene expression changes. More recently, the involvement of several other molecular pathways was explored, including non-coding RNA, epigenetic changes and specific vitamin deficiencies. These various pathways may interact, producing a wide spectrum of consequences. Detailed understanding of these various pathways and their interactions will facilitate the therapeutic target identification, leading to new clinical intervention, which may reduce the incidence and severity of these highly prevalent preventable birth defects. This review discusses manifestations of alcohol exposure on the developing central nervous system, including the neural crest cells and sensory neural placodes, focusing on molecular neurodevelopmental pathways as possible therapeutic targets for prevention or protection.
Collapse
Affiliation(s)
- Pooja Muralidharan
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| | - Swapnalee Sarmah
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| | - Feng C Zhou
- Department of Anatomy and Cell Biology, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - James A Marrs
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| |
Collapse
|
30
|
Chen Y, Ozturk NC, Zhou FC. DNA methylation program in developing hippocampus and its alteration by alcohol. PLoS One 2013; 8:e60503. [PMID: 23544149 PMCID: PMC3609790 DOI: 10.1371/journal.pone.0060503] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 02/27/2013] [Indexed: 12/02/2022] Open
Abstract
During hippocampal development, the Cornus Ammonis (CA) and the dentate gyrus (DG) undergo waves of neurogenesis and neuronal migration and maturation independently. This stage is widely known to be vulnerable to environmental stresses, but its underlying mechanism is unclear. Alcohol exposure has been shown to alter the expression of genes that regulate the fate, survival, migration and differentiation of pyramidal and granule cells. Undermining this process might compromise hippocampal development underlying the learning and memory deficits known in Fetal Alcohol Spectrum Disorders (FASD). We have previously demonstrated that DNA methylation was programmed along with neural tube development. Here, we demonstrated that DNA methylation program (DMP) proceeded along with hippocampal neuronal differentiation and maturation, and how this DMP was affected by fetal alcohol exposure. C57BL/6 mice were treated with 4% v/v ethanol through a liquid diet along with pair-fed and chow-fed controls from gestation day (E) 7 to E16. We found that a characteristic DMP, including 5-methylcytidine (5mC), 5-hydroxylmethylcytidine (5hmC) and their binding proteins, led the hippocampal neuronal differentiation and maturation spatiotemporally as indicated by their phenotypic marks in the CA and DG pre- and post-natally. Alcohol hindered the acquisition and progression of methylation marks, and altered the chromatin translocation of these marks in the nucleus, which was correlated with developmental retardation.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | | | - Feng C. Zhou
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
31
|
Abstract
Epigenetic medicine is still in its infancy. To date, only a handful of diseases have documented epigenetic correlates upstream of gene regulation including cancer, developmental syndromes and late-onset diseases. The finding that epigenetic markers are dynamic and heterogeneous at tissue and cellular levels, combined with recent identification of a new form of functionally distinct DNA methylation has opened a wider window for investigators to pry into the epigenetic world. It is anticipated that many diseases will be elucidated through this epigenetic inquiry. In this review, we discuss the normal course of DNA methylation during development, taking alcohol as a demonstrator of the epigenetic impact of environmental factors in disease etiology, particularly the growth retardation and neurodevelopmental deficits of fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Marisol Resendiz
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yuanyuan Chen
- Department of Anatomy & Cell Biology, MS508, Indiana University School Medicine, Indianapolis, IN 46202, USA
| | - Nail C Öztürk
- Department of Anatomy & Cell Biology, MS508, Indiana University School Medicine, Indianapolis, IN 46202, USA
- Department of Anatomy, Mersin University School of Medicine, Turkey
| | - Feng C Zhou
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anatomy & Cell Biology, MS508, Indiana University School Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|