1
|
Li E, van der Heyden MAG. The network of cardiac K IR2.1: its function, cellular regulation, electrical signaling, diseases and new drug avenues. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6369-6389. [PMID: 38683369 PMCID: PMC11422472 DOI: 10.1007/s00210-024-03116-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
The functioning of the human heart relies on complex electrical and communication systems that coordinate cardiac contractions and sustain rhythmicity. One of the key players contributing to this intricate system is the KIR2.1 potassium ion channel, which is encoded by the KCNJ2 gene. KIR2.1 channels exhibit abundant expression in both ventricular myocytes and Purkinje fibers, exerting an important role in maintaining the balance of intracellular potassium ion levels within the heart. And by stabilizing the resting membrane potential and contributing to action potential repolarization, these channels have an important role in cardiac excitability also. Either gain- or loss-of-function mutations, but also acquired impairments of their function, are implicated in the pathogenesis of diverse types of cardiac arrhythmias. In this review, we aim to elucidate the system functions of KIR2.1 channels related to cellular electrical signaling, communication, and their contributions to cardiovascular disease. Based on this knowledge, we will discuss existing and new pharmacological avenues to modulate their function.
Collapse
Affiliation(s)
- Encan Li
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM, Utrecht, Netherlands
| | - Marcel A G van der Heyden
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM, Utrecht, Netherlands.
| |
Collapse
|
2
|
Li E, Kool W, Woolschot L, van der Heyden MAG. Chronic Propafenone Application Increases Functional K IR2.1 Expression In Vitro. Pharmaceuticals (Basel) 2023; 16:ph16030404. [PMID: 36986503 PMCID: PMC10056987 DOI: 10.3390/ph16030404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
Expression and activity of inwardly rectifying potassium (KIR) channels within the heart are strictly regulated. KIR channels have an important role in shaping cardiac action potentials, having a limited conductance at depolarized potentials but contributing to the final stage of repolarization and resting membrane stability. Impaired KIR2.1 function causes Andersen-Tawil Syndrome (ATS) and is associated with heart failure. Restoring KIR2.1 function by agonists of KIR2.1 (AgoKirs) would be beneficial. The class 1c antiarrhythmic drug propafenone is identified as an AgoKir; however, its long-term effects on KIR2.1 protein expression, subcellular localization, and function are unknown. Propafenone's long-term effect on KIR2.1 expression and its underlying mechanisms in vitro were investigated. KIR2.1-carried currents were measured by single-cell patch-clamp electrophysiology. KIR2.1 protein expression levels were determined by Western blot analysis, whereas conventional immunofluorescence and advanced live-imaging microscopy were used to assess the subcellular localization of KIR2.1 proteins. Acute propafenone treatment at low concentrations supports the ability of propafenone to function as an AgoKir without disturbing KIR2.1 protein handling. Chronic propafenone treatment (at 25-100 times higher concentrations than in the acute treatment) increases KIR2.1 protein expression and KIR2.1 current densities in vitro, which are potentially associated with pre-lysosomal trafficking inhibition.
Collapse
Affiliation(s)
- Encan Li
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Willy Kool
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Liset Woolschot
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Marcel A G van der Heyden
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
3
|
Li E, Loen V, van Ham WB, Kool W, van der Heyden MAG, Takanari H. Quantitative Analysis of the Cytoskeleton's Role in Inward Rectifier K IR 2.1 Forward and Backward Trafficking. Front Physiol 2022; 12:812572. [PMID: 35145427 PMCID: PMC8821923 DOI: 10.3389/fphys.2021.812572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Alteration of the inward rectifier current IK1, carried by KIR2.1 channels, affects action potential duration, impacts resting membrane stability and associates with cardiac arrhythmias. Congenital and acquired KIR2.1 malfunction frequently associates with aberrant ion channel trafficking. Cellular processes underlying trafficking are intertwined with cytoskeletal function. The extent to which the cytoskeleton is involved in KIR2.1 trafficking processes is unknown. We aimed to quantify the dependence of KIR2.1 trafficking on cytoskeleton function. GFP or photoconvertible Dendra2 tagged KIR2.1 constructs were transfected in HEK293 or HeLa cells. Photoconversion of the Dendra2 probe at the plasma membrane and subsequent live imaging of trafficking processes was performed by confocal laser-scanning microscopy. Time constant of green fluorescent recovery (τg,s) represented recruitment of new KIR2.1 at the plasma membrane. Red fluorescent decay (τr,s) represented internalization of photoconverted KIR2.1. Patch clamp electrophysiology was used to quantify IKIR2.1. Biochemical methods were used for cytoskeleton isolation and detection of KIR2.1-cytoskeleton interactions. Cytochalasin B (20 μM), Nocodazole (30 μM) and Dyngo-4a (10 nM) were used to modify the cytoskeleton. Chloroquine (10 μM, 24 h) was used to impair KIR2.1 breakdown. Cytochalasin B and Nocodazole, inhibitors of actin and tubulin filament formation respectively, strongly inhibited the recovery of green fluorescence at the plasma membrane suggestive for inhibition of KIR2.1 forward trafficking [τg,s 13 ± 2 vs. 131 ± 31* and 160 ± 40* min, for control, Cytochalasin B and Nocodazole, respectively (*p < 0.05 vs. control)]. Dyngo-4a, an inhibitor of dynamin motor proteins, strongly slowed the rate of photoconverted channel internalization, whereas Nocodazole and Cytochalasin B had less effect [τr,s 20 ± 2 vs. 87 ± 14*, 60 ± 16 and 64 ± 20 min (*p < 0.05 vs. control)]. Cytochalasin B treatment (20 μM, 24 h) inhibited IKIR2.1. Chloroquine treatment (10 μM, 24 h) induced intracellular aggregation of KIR2.1 channels and enhanced interaction with the actin/intermediate filament system (103 ± 90 fold; p < 0.05 vs. control). Functional actin and tubulin cytoskeleton systems are essential for forward trafficking of KIR2.1 channels, whereas initial backward trafficking relies on a functional dynamin system. Chronic disturbance of the actin system inhibits KIR2.1 currents. Internalized KIR2.1 channels become recruited to the cytoskeleton, presumably in lysosomes.
Collapse
Affiliation(s)
- Encan Li
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Vera Loen
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Willem B van Ham
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Willy Kool
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marcel A G van der Heyden
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Hiroki Takanari
- Department of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics, University of Tokushima, Tokushima, Japan
| |
Collapse
|
4
|
Electrophysiology of hiPSC-Cardiomyocytes Co-Cultured with HEK Cells Expressing the Inward Rectifier Channel. Int J Mol Sci 2021; 22:ijms22126621. [PMID: 34205607 PMCID: PMC8235371 DOI: 10.3390/ijms22126621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 11/23/2022] Open
Abstract
The immature electrophysiology of human-induced pluripotent stem cell-derived cardiomyocytes (hiCMs) complicates their use for therapeutic and pharmacological purposes. An insufficient inward rectifying current (IK1) and the presence of a funny current (if) cause spontaneous electrical activity. This study tests the hypothesis that the co-culturing of hiCMs with a human embryonic kidney (HEK) cell-line expressing the Kir2.1 channel (HEK-IK1) can generate an electrical syncytium with an adult-like cardiac electrophysiology. The mechanical activity of co-cultures using different HEK-IK1:hiCM ratios was compared with co-cultures using wildtype (HEK–WT:hiCM) or hiCM alone on days 3–8 after plating. Only ratios of 1:3 and 1:1 showed a significant reduction in spontaneous rate at days 4 and 6, suggesting that IK1 was influencing the electrophysiology. Detailed analysis at day 4 revealed an increased incidence of quiescent wells or sub-areas. Electrical activity showed a decreased action potential duration (APD) at 20% and 50%, but not at 90%, alongside a reduced amplitude of the aggregate AP signal. A computational model of the 1:1 co-culture replicates the electrophysiological effects of HEK–WT. The addition of the IK1 conductance reduced the spontaneous rate and APD20, 50 and 90, and minor variation in the intercellular conductance caused quiescence. In conclusion, a 1:1 co-culture HEK-IK1:hiCM caused changes in electrophysiology and spontaneous activity consistent with the integration of IK1 into the electrical syncytium. However, the additional electrical effects of the HEK cell at 1:1 increased the possibility of electrical quiescence before sufficient IK1 was integrated into the syncytium.
Collapse
|
5
|
Qile M, Beekman HDM, Sprenkeler DJ, Houtman MJC, van Ham WB, Stary-Weinzinger A, Beyl S, Hering S, van den Berg DJ, de Lange ECM, Heitman LH, IJzerman AP, Vos MA, van der Heyden MAG. LUF7244, an allosteric modulator/activator of K v 11.1 channels, counteracts dofetilide-induced torsades de pointes arrhythmia in the chronic atrioventricular block dog model. Br J Pharmacol 2019; 176:3871-3885. [PMID: 31339551 PMCID: PMC6780032 DOI: 10.1111/bph.14798] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Kv 11.1 (hERG) channel blockade is an adverse effect of many drugs and lead compounds, associated with lethal cardiac arrhythmias. LUF7244 is a negative allosteric modulator/activator of Kv 11.1 channels that inhibits early afterdepolarizations in vitro. We tested LUF7244 for antiarrhythmic efficacy and potential proarrhythmia in a dog model. EXPERIMENTAL APPROACH LUF7244 was tested in vitro for (a) increasing human IKv11.1 and canine IKr and (b) decreasing dofetilide-induced action potential lengthening and early afterdepolarizations in cardiomyocytes derived from human induced pluripotent stem cells and canine isolated ventricular cardiomyocytes. In vivo, LUF7244 was given intravenously to anaesthetized dogs in sinus rhythm or with chronic atrioventricular block. KEY RESULTS LUF7244 (0.5-10 μM) concentration dependently increased IKv11.1 by inhibiting inactivation. In vitro, LUF7244 (10 μM) had no effects on IKIR2.1 , INav1.5 , ICa-L , and IKs , doubled IKr , shortened human and canine action potential duration by approximately 50%, and inhibited dofetilide-induced early afterdepolarizations. LUF7244 (2.5 mg·kg-1 ·15 min-1 ) in dogs with sinus rhythm was not proarrhythmic and shortened, non-significantly, repolarization parameters (QTc: -6.8%). In dogs with chronic atrioventricular block, LUF7244 prevented dofetilide-induced torsades de pointes arrhythmias in 5/7 animals without normalization of the QTc. Peak LUF7244 plasma levels were 1.75 ± 0.80 during sinus rhythm and 2.34 ± 1.57 μM after chronic atrioventricular block. CONCLUSIONS AND IMPLICATIONS LUF7244 counteracted dofetilide-induced early afterdepolarizations in vitro and torsades de pointes in vivo. Allosteric modulators/activators of Kv 11.1 channels might neutralize adverse cardiac effects of existing drugs and newly developed compounds that display QTc lengthening.
Collapse
Affiliation(s)
- Muge Qile
- Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Henriette D M Beekman
- Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - David J Sprenkeler
- Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Marien J C Houtman
- Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Willem B van Ham
- Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands.,Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | | | - Stanislav Beyl
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Steffen Hering
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Dirk-Jan van den Berg
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Elizabeth C M de Lange
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Ad P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Marc A Vos
- Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
6
|
Nguyen HX, Kirkton RD, Bursac N. Generation and customization of biosynthetic excitable tissues for electrophysiological studies and cell-based therapies. Nat Protoc 2018; 13:927-945. [PMID: 29622805 PMCID: PMC6050172 DOI: 10.1038/nprot.2018.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We describe a two-stage protocol to generate electrically excitable and actively conducting cell networks with stable and customizable electrophysiological phenotypes. Using this method, we have engineered monoclonally derived excitable tissues as a robust and reproducible platform to investigate how specific ion channels and mutations affect action potential (AP) shape and conduction. In the first stage of the protocol, we combine computational modeling, site-directed mutagenesis, and electrophysiological techniques to derive optimal sets of mammalian and/or prokaryotic ion channels that produce specific AP shape and conduction characteristics. In the second stage of the protocol, selected ion channels are stably expressed in unexcitable human cells by means of viral or nonviral delivery, followed by flow cytometry or antibiotic selection to purify the desired phenotype. This protocol can be used with traditional heterologous expression systems or primary excitable cells, and application of this method to primary fibroblasts may enable an alternative approach to cardiac cell therapy. Compared with existing methods, this protocol generates a well-defined, relatively homogeneous electrophysiological phenotype of excitable cells that facilitates experimental and computational studies of AP conduction and can decrease arrhythmogenic risk upon cell transplantation. Although basic cell culture and molecular biology techniques are sufficient to generate excitable tissues using the described protocol, experience with patch-clamp techniques is required to characterize and optimize derived cell populations.
Collapse
Affiliation(s)
- Hung X Nguyen
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA. Correspondence should be addressed to N.B. ()
| | - Robert D Kirkton
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA. Correspondence should be addressed to N.B. ()
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA. Correspondence should be addressed to N.B. ()
| |
Collapse
|
7
|
Ji Y, Takanari H, Qile M, Nalos L, Houtman MJC, Romunde FL, Heukers R, van Bergen En Henegouwen PMP, Vos MA, van der Heyden MAG. Class III antiarrhythmic drugs amiodarone and dronedarone impair K IR 2.1 backward trafficking. J Cell Mol Med 2017; 21:2514-2523. [PMID: 28425222 PMCID: PMC5618701 DOI: 10.1111/jcmm.13172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/24/2017] [Indexed: 01/16/2023] Open
Abstract
Drug‐induced ion channel trafficking disturbance can cause cardiac arrhythmias. The subcellular level at which drugs interfere in trafficking pathways is largely unknown. KIR2.1 inward rectifier channels, largely responsible for the cardiac inward rectifier current (IK1), are degraded in lysosomes. Amiodarone and dronedarone are class III antiarrhythmics. Chronic use of amiodarone, and to a lesser extent dronedarone, causes serious adverse effects to several organs and tissue types, including the heart. Both drugs have been described to interfere in the late‐endosome/lysosome system. Here we defined the potential interference in KIR2.1 backward trafficking by amiodarone and dronedarone. Both drugs inhibited IK1 in isolated rabbit ventricular cardiomyocytes at supraclinical doses only. In HK‐KWGF cells, both drugs dose‐ and time‐dependently increased KIR2.1 expression (2.0 ± 0.2‐fold with amiodarone: 10 μM, 24 hrs; 2.3 ± 0.3‐fold with dronedarone: 5 μM, 24 hrs) and late‐endosomal/lysosomal KIR2.1 accumulation. Increased KIR2.1 expression level was also observed in the presence of Nav1.5 co‐expression. Augmented KIR2.1 protein levels and intracellular accumulation were also observed in COS‐7, END‐2, MES‐1 and EPI‐7 cells. Both drugs had no effect on Kv11.1 ion channel protein expression levels. Finally, amiodarone (73.3 ± 10.3% P < 0.05 at −120 mV, 5 μM) enhanced IKIR2.1 upon 24‐hrs treatment, whereas dronedarone tended to increase IKIR2.1 and it did not reach significance (43.8 ± 5.5%, P = 0.26 at −120 mV; 2 μM). We conclude that chronic amiodarone, and potentially also dronedarone, treatment can result in enhanced IK1 by inhibiting KIR2.1 degradation.
Collapse
Affiliation(s)
- Yuan Ji
- Division of Heart & Lungs, Department of Medical Physiology, UMCU, Utrecht, The Netherlands
| | - Hiroki Takanari
- Division of Heart & Lungs, Department of Medical Physiology, UMCU, Utrecht, The Netherlands
| | - Muge Qile
- Division of Heart & Lungs, Department of Medical Physiology, UMCU, Utrecht, The Netherlands
| | - Lukas Nalos
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Marien J C Houtman
- Division of Heart & Lungs, Department of Medical Physiology, UMCU, Utrecht, The Netherlands
| | - Fee L Romunde
- Division of Heart & Lungs, Department of Medical Physiology, UMCU, Utrecht, The Netherlands
| | - Raimond Heukers
- Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | | | - Marc A Vos
- Division of Heart & Lungs, Department of Medical Physiology, UMCU, Utrecht, The Netherlands
| | | |
Collapse
|
8
|
Driessen HE, van Veen TAB, Boink GJJ. Emerging molecular therapies targeting myocardial infarction-related arrhythmias. Europace 2017; 19:518-528. [PMID: 28431070 DOI: 10.1093/europace/euw198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/06/2016] [Indexed: 12/18/2022] Open
Abstract
Cardiac disease is the leading cause of death in the developed world. Ventricular arrhythmias associated with myocardial ischaemia and/or infarction are a major contributor to cardiovascular mortality, and require improved prevention and treatment. Drugs, devices, and radiofrequency catheter ablation have made important inroads, but have significant limitations ranging from incomplete success to undesired toxicities and major side effects. These limitations derive from the nature of the intervention. Drugs are frequently ineffective, target the entire heart, and often do not deal with the specific arrhythmia trigger or substrate. Devices can terminate rapid rhythms but at best indirectly affect the underlying disease, while ablation, even when appropriately targeted, induces additional tissue damage. In contrast, exploration of gene and cell therapies are expected to provide a targeted, non-destructive, and potentially regenerative approach to ischaemia- and infarction-related arrhythmias. Although these approaches are in the early stages of development, they carry substantial potential to advance arrhythmia prevention and treatment.
Collapse
Affiliation(s)
- Helen E Driessen
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Toon A B van Veen
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gerard J J Boink
- Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.,Netherlands Heart Institute, Utrecht, The Netherlands
| |
Collapse
|
9
|
Varkevisser R, Houtman MJC, Linder T, de Git KCG, Beekman HDM, Tidwell RR, Ijzerman AP, Stary-Weinzinger A, Vos MA, van der Heyden MAG. Structure-activity relationships of pentamidine-affected ion channel trafficking and dofetilide mediated rescue. Br J Pharmacol 2014; 169:1322-34. [PMID: 23586323 DOI: 10.1111/bph.12208] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 02/13/2013] [Accepted: 04/04/2013] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Drug interference with normal hERG protein trafficking substantially reduces the channel density in the plasma membrane and thereby poses an arrhythmic threat. The chemical substructures important for hERG trafficking inhibition were investigated using pentamidine as a model drug. Furthermore, the relationship between acute ion channel block and correction of trafficking by dofetilide was studied. EXPERIMENTAL APPROACH hERG and K(IR)2.1 trafficking in HEK293 cells was evaluated by Western blot and immunofluorescence microscopy after treatment with pentamidine and six pentamidine analogues, and correction with dofetilide and four dofetilide analogues that displayed different abilities to inhibit IKr . Molecular dynamics simulations were used to address mode, number and type of interactions between hERG and dofetilide analogues. KEY RESULTS Structural modifications of pentamidine differentially affected plasma membrane levels of hERG and K(IR)2.1. Modification of the phenyl ring or substituents directly attached to it had the largest effect, affirming the importance of these chemical residues in ion channel binding. PA-4 had the mildest effects on both ion channels. Dofetilide corrected pentamidine-induced hERG, but not K(IR)2.1 trafficking defects. Dofetilide analogues that displayed high channel affinity, mediated by pi-pi stacks and hydrophobic interactions, also restored hERG protein levels, whereas analogues with low affinity were ineffective. CONCLUSIONS AND IMPLICATIONS Drug-induced trafficking defects can be minimized if certain chemical features are avoided or 'synthesized out'; this could influence the design and development of future drugs. Further analysis of such features in hERG trafficking correctors may facilitate the design of a non-blocking corrector for trafficking defective hERG proteins in both congenital and acquired LQTS.
Collapse
Affiliation(s)
- R Varkevisser
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hraha TH, Westacott MJ, Pozzoli M, Notary AM, McClatchey PM, Benninger RKP. Phase transitions in the multi-cellular regulatory behavior of pancreatic islet excitability. PLoS Comput Biol 2014; 10:e1003819. [PMID: 25188228 PMCID: PMC4154652 DOI: 10.1371/journal.pcbi.1003819] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 07/16/2014] [Indexed: 12/23/2022] Open
Abstract
The pancreatic islets of Langerhans are multicellular micro-organs integral to maintaining glucose homeostasis through secretion of the hormone insulin. β-cells within the islet exist as a highly coupled electrical network which coordinates electrical activity and insulin release at high glucose, but leads to global suppression at basal glucose. Despite its importance, how network dynamics generate this emergent binary on/off behavior remains to be elucidated. Previous work has suggested that a small threshold of quiescent cells is able to suppress the entire network. By modeling the islet as a Boolean network, we predicted a phase-transition between globally active and inactive states would emerge near this threshold number of cells, indicative of critical behavior. This was tested using islets with an inducible-expression mutation which renders defined numbers of cells electrically inactive, together with pharmacological modulation of electrical activity. This was combined with real-time imaging of intracellular free-calcium activity [Ca2+]i and measurement of physiological parameters in mice. As the number of inexcitable cells was increased beyond ∼15%, a phase-transition in islet activity occurred, switching from globally active wild-type behavior to global quiescence. This phase-transition was also seen in insulin secretion and blood glucose, indicating physiological impact. This behavior was reproduced in a multicellular dynamical model suggesting critical behavior in the islet may obey general properties of coupled heterogeneous networks. This study represents the first detailed explanation for how the islet facilitates inhibitory activity in spite of a heterogeneous cell population, as well as the role this plays in diabetes and its reversal. We further explain how islets utilize this critical behavior to leverage cellular heterogeneity and coordinate a robust insulin response with high dynamic range. These findings also give new insight into emergent multicellular dynamics in general which are applicable to many coupled physiological systems, specifically where inhibitory dynamics result from coupled networks. As science has successfully broken down the elements of many biological systems, the network dynamics of large-scale cellular interactions has emerged as a new frontier. One way to understand how dynamical elements within large networks behave collectively is via mathematical modeling. Diabetes, which is of increasing international concern, is commonly caused by a deterioration of these complex dynamics in a highly coupled micro-organ called the islet of Langerhans. Therefore, if we are to understand diabetes and how to treat it, we must understand how coupling affects ensemble dynamics. While the role of network connectivity in islet excitation under stimulatory conditions has been well studied, how connectivity also suppresses activity under fasting conditions remains to be elucidated. Here we use two network models of islet connectivity to investigate this process. Using genetically altered islets and pharmacological treatments, we show how suppression of islet activity is solely dependent on a threshold number of inactive cells. We found that the islet exhibits critical behavior in the threshold region, rapidly transitioning from global activity to inactivity. We therefore propose how the islet and multicellular systems in general can generate a robust stimulated response from a heterogeneous cell population.
Collapse
Affiliation(s)
- Thomas H. Hraha
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Matthew J. Westacott
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Marina Pozzoli
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Aleena M. Notary
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - P. Mason McClatchey
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Richard K. P. Benninger
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
11
|
Takanari H, Nalos L, Stary-Weinzinger A, de Git KCG, Varkevisser R, Linder T, Houtman MJC, Peschar M, de Boer TP, Tidwell RR, Rook MB, Vos MA, van der Heyden MAG. Efficient and specific cardiac IK1 inhibition by a new pentamidine analogue. Cardiovasc Res 2013; 99:203-14. [DOI: 10.1093/cvr/cvt103] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Kirkton RD, Bursac N. Genetic engineering of somatic cells to study and improve cardiac function. Europace 2013; 14 Suppl 5:v40-v49. [PMID: 23104914 DOI: 10.1093/europace/eus269] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIMS To demonstrate the utility of genetically engineered excitable cells for studies of basic electrophysiology and cardiac cell therapy. METHODS AND RESULTS 'Zig-zag' networks of neonatal rat ventricular myocytes (NRVMs) were micropatterned onto thin elastomeric films to mimic the slow action potential (AP) conduction found in fibrotic myocardium. Addition of genetically engineered excitable human embryonic kidney cells (HEK-293 cells) ('Ex-293' cells stably expressing Kir2.1, Na(v)1.5, and Cx43 channels) increased both cardiac conduction velocity by 370% and twitch force amplitude by 64%. Furthermore, we stably expressed mutant Na(v)1.5 [A1924T (fast sodium channel mutant (substitution of alanine by threonine at amino acid 1924)] channels with hyperpolarized steady-state activation and showed that, despite a 71.6% reduction in peak I(Na), these cells propagated APs at the same velocity as the wild-type Na(v)1.5-expressing Ex-293 cells. Stable expression of Ca(v)3.3 (T-type voltage-gated calcium) channels in Ex-293 cells (to generate an 'ExCa-293' line) significantly increased their AP duration and reduced repolarization gradients in cocultures of these cells and NRVMs. Additional expression of an optogenetic construct [ChIEF (light-gated Channelrhodopsin mutant)]enabled light-based control of AP firing in ExCa-293 cells. CONCLUSION We show that, despite being non-contractile, genetically engineered excitable cells can significantly improve both electrical and mechanical function of engineered cardiac tissues in vitro. We further demonstrate the utility of engineered cells for tissue-level studies of basic electrophysiology and cardiac channelopathies. In the future, this novel platform could be utilized in the high-throughput design of new genetically encoded indicators of cell electrical function, validation, and improvement of computer models of AP conduction, and development of novel engineered somatic cell therapies for the treatment of cardiac infarction and arrhythmias.
Collapse
Affiliation(s)
- Robert D Kirkton
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
13
|
van Vliet P, Goumans MJ, Doevendans PA, Sluijter JPG. Human cardiomyocyte progenitor cells: a short history of nearly everything. J Cell Mol Med 2012; 16:1669-73. [PMID: 22260290 PMCID: PMC3822680 DOI: 10.1111/j.1582-4934.2012.01535.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The high occurrence of cardiac disease in the Western world has driven clinicians and cardiovascular biologists to look for alternative strategies to treat patients. A challenging approach is the use of stem cells to repair the heart, in itself an inspiring thought. In the past 10 years, stem cells from different sources have been under intense investigation and, as a result, a multitude of studies have been published on the identification, isolation, and characterization, of cardiovascular progenitor cells and repair in different animal models. However, relatively few cardiovascular progenitor populations have been identified in human hearts, including, but not limited to, cardiosphere-derived cells, cKit+ human cardiac stem cells , Isl1+ cardiovascular progenitors, and, in our lab, cardiomyocyte progenitor cells (CMPCs). Here, we aim to provide a comprehensive summary of the past findings and present challenges for future therapeutic potential of CMPCs.
Collapse
Affiliation(s)
- Patrick van Vliet
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
14
|
Inhibiting the clathrin-mediated endocytosis pathway rescues KIR2.1 downregulation by pentamidine. Pflugers Arch 2012. [DOI: 10.1007/s00424-012-1189-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Cell and gene therapy for arrhythmias: Repair of cardiac conduction damage. J Geriatr Cardiol 2012; 8:147-58. [PMID: 22783301 PMCID: PMC3390069 DOI: 10.3724/sp.j.1263.2011.00147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/10/2011] [Accepted: 08/17/2011] [Indexed: 11/25/2022] Open
Abstract
Action potentials generated in the sinoatrial node (SAN) dominate the rhythm and rate of a healthy human heart. Subsequently, these action potentials propagate to the whole heart via its conduction system. Abnormalities of impulse generation and/or propagation in a heart can cause arrhythmias. For example, SAN dysfunction or conduction block of the atrioventricular node can lead to serious bradycardia which is currently treated with an implanted electronic pacemaker. On the other hand, conduction damage may cause reentrant tachyarrhythmias which are primarily treated pharmacologically or by medical device-based therapies, including defibrillation and tissue ablation. However, drug therapies sometimes may not be effective or are associated with serious side effects. Device-based therapies for cardiac arrhythmias, even with well developed technology, still face inadequacies, limitations, hardware complications, and other challenges. Therefore, scientists are actively seeking other alternatives for antiarrhythmic therapy. In particular, cells and genes used for repairing cardiac conduction damage/defect have been investigated in various studies both in vitro and in vivo. Despite the complexities of the excitation and conduction systems of the heart, cell and gene-based strategies provide novel alternatives for treatment or cure of cardiac arrhythmias. This review summarizes some highlights of recent research progress in this field.
Collapse
|
16
|
Halbach M, Krausgrill B, Hannes T, Wiedey M, Peinkofer G, Baumgartner S, Sahito RGA, Pfannkuche K, Pillekamp F, Reppel M, Müller-Ehmsen J, Hescheler J. Time-course of the electrophysiological maturation and integration of transplanted cardiomyocytes. J Mol Cell Cardiol 2012; 53:401-8. [PMID: 22728218 DOI: 10.1016/j.yjmcc.2012.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 05/15/2012] [Accepted: 06/13/2012] [Indexed: 12/30/2022]
Abstract
Electrophysiological maturation and integration of transplanted cardiomyocytes are essential to enhance safety and efficiency of cell replacement therapy. Yet, little is known about these important processes. The aim of our study was to perform a detailed analysis of electrophysiological maturation and integration of transplanted cardiomyocytes. Fetal cardiomyocytes expressing enhanced green fluorescent protein were transplanted into cryoinjured mouse hearts. At 6, 9 and 12 days after transplantation, viable slices of recipient hearts were prepared and action potentials of transplanted and host cardiomyocytes within the slices were recorded by microelectrodes. In transplanted cells embedded in healthy host myocardium, action potential duration at 50% repolarization (APD50) decreased from 32.2 ± 3.3 ms at day 6 to 27.9 ± 2.6 ms at day 9 and 19.6 ± 1.6 ms at day 12. The latter value matched the APD50 of host cells (20.5 ± 3.2 ms, P=0.78). Integration improved in the course of time: 26% of cells at day 6 and 53% at day 12 revealed no conduction blocks up to a stimulation frequency of 10 Hz. APD50 was inversely correlated to the quality of electrical integration. In transplanted cells embedded into the cryoinjury, which showed no electrical integration, APD50 was 49.2 ± 4.3 ms at day 12. Fetal cardiomyocytes transplanted into healthy myocardium integrate electrically and mature after transplantation, their action potential properties after 12 days are comparable to those of host cardiomyocytes. Quality of electrical integration improves over time, but conduction blocks still occur at day 12 after transplantation. The pace of maturation correlates with the quality of electrical integration. Transplanted cells embedded in cryoinjured tissue still possess immature electrophysiological properties after 12 days.
Collapse
Affiliation(s)
- Marcel Halbach
- Department of Internal Medicine III, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
McSpadden LC, Nguyen H, Bursac N. Size and ionic currents of unexcitable cells coupled to cardiomyocytes distinctly modulate cardiac action potential shape and pacemaking activity in micropatterned cell pairs. Circ Arrhythm Electrophysiol 2012; 5:821-30. [PMID: 22679057 DOI: 10.1161/circep.111.969329] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cardiac cell therapies can yield electric coupling of unexcitable donor cells to host cardiomyocytes with functional consequences that remain unexplored. METHODS AND RESULTS We micropatterned cell pairs consisting of a neonatal rat ventricular myocyte (NRVM) coupled to an engineered human embryonic kidney 293 (HEK293) cell expressing either connexin-43 (Cx43 HEK) or inward rectifier potassium channel 2.1 (Kir2.1) and Cx43 (Kir2.1+Cx43 HEK). The NRVM-HEK contact length was fixed yielding a coupling strength of 68.9±9.7 nS, whereas HEK size was systematically varied. With increase in Cx43 HEK size, NRVM maximal diastolic potential was reduced from -71.7±0.6 mV in single NRVMs to -35.1±1.3 mV in pairs with an HEK:NRVM cell surface area ratio of 1.7±0.1, whereas the action potential upstroke ([dV(m)/dt](max)) and duration decreased to 1.6±0.7% and increased to 177±32% in single NRVM values, respectively (n=21 cell pairs). Pacemaking occurred in all NRVM-Cx43 HEK pairs with cell surface area ratios of 1.1 to 1.9. In contrast, NRVMs, coupled with Kir2.1+Cx43 HEKs of increasing size, had similar maximal diastolic potentials, exhibited no spontaneous activity, and showed a gradual decrease in action potential duration (n=23). Furthermore, coupling single NRVMs to a dynamic clamp model of HEK cell ionic current reproduced the cardiac maximal diastolic potentials and pacemaking rates recorded in cell pairs, whereas reproducing changes in (dV(m)/dt)(max) and action potential duration required coupling to an HEK model that also included cell membrane capacitance. CONCLUSIONS Size and ionic currents of unexcitable cells electrically coupled to cardiomyocytes distinctly affect cardiac action potential shape and initiation with important implications for the safety of cardiac cell and gene therapies.
Collapse
Affiliation(s)
- Luke C McSpadden
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | | |
Collapse
|
18
|
Inhibition of lysosomal degradation rescues pentamidine-mediated decreases of KIR2.1 ion channel expression but not that of Kv11.1. Eur J Pharmacol 2011; 652:96-103. [DOI: 10.1016/j.ejphar.2010.10.093] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 10/13/2010] [Accepted: 10/29/2010] [Indexed: 11/19/2022]
|
19
|
Kirkton RD, Bursac N. Engineering biosynthetic excitable tissues from unexcitable cells for electrophysiological and cell therapy studies. Nat Commun 2011; 2:300. [PMID: 21556054 PMCID: PMC3388000 DOI: 10.1038/ncomms1302] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 04/05/2011] [Indexed: 01/03/2023] Open
Abstract
Patch-clamp recordings in single-cell expression systems have been traditionally used to study the function of ion channels. However, this experimental setting does not enable assessment of tissue-level function such as action potential (AP) conduction. Here we introduce a biosynthetic system that permits studies of both channel activity in single cells and electrical conduction in multicellular networks. We convert unexcitable somatic cells into an autonomous source of electrically excitable and conducting cells by stably expressing only three membrane channels. The specific roles that these expressed channels have on AP shape and conduction are revealed by different pharmacological and pacing protocols. Furthermore, we demonstrate that biosynthetic excitable cells and tissues can repair large conduction defects within primary 2- and 3-dimensional cardiac cell cultures. This approach enables novel studies of ion channel function in a reproducible tissue-level setting and may stimulate the development of new cell-based therapies for excitable tissue repair.
Collapse
Affiliation(s)
- Robert D Kirkton
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | | |
Collapse
|
20
|
Boink GJJ, Rosen MR. Regenerative therapies in electrophysiology and pacing: introducing the next steps. J Interv Card Electrophysiol 2010; 31:3-16. [PMID: 21161675 DOI: 10.1007/s10840-010-9529-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 11/04/2010] [Indexed: 12/27/2022]
Abstract
The morbidity and mortality of cardiac arrhythmias are major international health concerns. Drug and device therapies have made inroads but alternative approaches are still being sought. For example, gene and cell therapies have been explored for treatment of brady- and tachyarrhythmias, and proof of concept has been obtained for both biological pacing in the setting of heart block and gene therapy for ventricular tachycardias. This paper reviews the state of the art developments with regard to gene and cell therapies for cardiac arrhythmias and discusses next steps.
Collapse
Affiliation(s)
- Gerard J J Boink
- Heart Failure Research Center, Academic Medical Center, Amsterdam, Netherlands
| | | |
Collapse
|
21
|
van Vliet P, de Boer TP, van der Heyden MAG, El Tamer MK, Sluijter JPG, Doevendans PA, Goumans MJ. Hyperpolarization Induces Differentiation in Human Cardiomyocyte Progenitor Cells. Stem Cell Rev Rep 2010; 6:178-85. [DOI: 10.1007/s12015-010-9142-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
van Vliet P, Smits AM, de Boer TP, Korfage TH, Metz CHG, Roccio M, van der Heyden MAG, van Veen TAB, Sluijter JPG, Doevendans PA, Goumans MJ. Foetal and adult cardiomyocyte progenitor cells have different developmental potential. J Cell Mol Med 2010; 14:861-70. [PMID: 20219011 PMCID: PMC3823117 DOI: 10.1111/j.1582-4934.2010.01053.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In the past years, cardiovascular progenitor cells have been isolated from the human heart and characterized. Up to date, no studies have been reported in which the developmental potential of foetal and adult cardiovascular progenitors was tested simultaneously. However, intrinsic differences will likely affect interpretations regarding progenitor cell potential and application for regenerative medicine. Here we report a direct comparison between human foetal and adult heart-derived cardiomyocyte progenitor cells (CMPCs). We show that foetal and adult CMPCs have distinct preferences to differentiate into mesodermal lineages. Under pro-angiogenic conditions, foetal CMPCs form more endothelial but less smooth muscle cells than adult CMPCs. Foetal CMPCs can also develop towards adipocytes, whereas neither foetal nor adult CMPCs show significant osteogenic differentiation. Interestingly, although both cell types differentiate into heart muscle cells, adult CMPCs give rise to electrophysiologically more mature cardiomyocytes than foetal CMPCs. Taken together, foetal CMPCs are suitable for molecular cell biology and developmental studies. The potential of adult CMPCs to form mature cardiomyocytes and smooth muscle cells may be essential for cardiac repair after transplantation into the injured heart.
Collapse
Affiliation(s)
- Patrick van Vliet
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
de Boer TP, Nalos L, Stary A, Kok B, Houtman MJC, Antoons G, van Veen TAB, Beekman JDM, de Groot BL, Opthof T, Rook MB, Vos MA, van der Heyden MAG. The anti-protozoal drug pentamidine blocks KIR2.x-mediated inward rectifier current by entering the cytoplasmic pore region of the channel. Br J Pharmacol 2010; 159:1532-41. [PMID: 20180941 DOI: 10.1111/j.1476-5381.2010.00658.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Pentamidine is a drug used in treatment of protozoal infections. Pentamidine treatment may cause sudden cardiac death by provoking cardiac arrhythmias associated with QTc prolongation and U-wave alterations. This proarrhythmic effect was linked to inhibition of hERG trafficking, but not to acute block of ion channels contributing to the action potential. Because the U-wave has been linked to the cardiac inward rectifier current (I(K1)), we examined the action and mechanism of pentamidine-mediated I(K1) block. EXPERIMENTAL APPROACH Patch clamp measurements of I(K1) were made on cultured adult canine ventricular cardiomyocytes, K(IR)2.1-HEK293 cells and K(IR)2.x inside-out patches. Pentamidine binding to cytoplasmic amino acid residues of K(IR)2.1 channels was studied by molecular modelling. KEY RESULTS Pentamidine application (24 h) decreased I(K1) in cultured canine cardiomyocytes and K(IR)2.1-HEK293 cells under whole cell clamp conditions. Pentamidine inhibited I(K1) in K(IR)2.1-HEK293 cells 10 min after application. When applied to the cytoplasmic side under inside-out patch clamp conditions, pentamidine block of I(K1) was acute (IC(50)= 0.17 microM). Molecular modelling predicted pentamidine-channel interactions in the cytoplasmic pore region of K(IR)2.1 at amino acids E224, D259 and E299. Mutation of these conserved residues to alanine reduced pentamidine block of I(K1). Block was independent of the presence of spermine. K(IR)2.2, and K(IR)2.3 based I(K1) was also sensitive to pentamidine blockade. CONCLUSIONS AND IMPLICATIONS Pentamidine inhibits cardiac I(K1) by interacting with three negatively charged amino acids in the cytoplasmic pore region. Our findings may provide new insights for development of specific I(K1) blocking compounds.
Collapse
Affiliation(s)
- T P de Boer
- Department of Medical Physiology, Division Heart & Lungs, UMCU, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
de Boer TP, van Veen TAB, Jonsson MKB, Kok BGJM, Metz CHG, Sluijter JPG, Doevendans PA, de Bakker JMT, Goumans MJ, van der Heyden MAG. Human cardiomyocyte progenitor cell-derived cardiomyocytes display a maturated electrical phenotype. J Mol Cell Cardiol 2009; 48:254-60. [PMID: 19460390 DOI: 10.1016/j.yjmcc.2009.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 04/16/2009] [Accepted: 05/06/2009] [Indexed: 11/27/2022]
Abstract
Cardiomyocyte progenitor cells (CMPCs) can be isolated from the human heart and differentiated into cardiomyocytes in vitro. A comprehensive assessment of their electrical phenotype upon differentiation is essential to predict potential future applications of this cell source. CMPCs isolated from human fetal heart were differentiated in vitro and examined using immunohistochemistry, Western blotting, RT-PCR, voltage clamp and current clamp techniques. Differentiated cultures presented up to 95% alpha-actinin positive cardiomyocytes. Adherens junction and desmosomal proteins beta-catenin, N-cadherin, desmin and plakophilin2 were upregulated. Expression levels of cardiac connexins were not affected by differentiation, however Cx43 phosphorylation was increased upon differentiation, accompanied by translocation of connexins to the cell border. RT-PCR analysis demonstrated upregulation of all major cardiac ion channel constituents during differentiation. Patch clamp experiments showed that cardiomyocytes had a stable resting membrane potential of -73.4+/-1.8 mV. Infusion of 1 mM BaCl(2) resulted in depolarization to -59.9+/-2.8 mV, indicating I(K1) channel activity. Subsequent voltage clamp experiments confirmed presence of near mature I(Na), I(Ca,L) and I(K1) current densities. Infusion of the I(Kr) blocker Almokalant caused prolongation of the action potential by 40%. Differentiated monolayers were not spontaneously contracting in the absence of serum, but responded to field stimulation, displaying adult ventricular-like action potentials. Human fetal CMPC-derived cardiomyocytes have a homogenous and rather mature electrical phenotype that benefits to in vitro physiology and pharmacology. In the context of cardiac repair, their properties may translate into a reduced pro-arrhythmic risk and enhanced electrical integration upon transplantation.
Collapse
Affiliation(s)
- Teun P de Boer
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lysosome mediated Kir2.1 breakdown directly influences inward rectifier current density. Biochem Biophys Res Commun 2008; 367:687-92. [DOI: 10.1016/j.bbrc.2007.12.168] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 12/21/2007] [Indexed: 01/23/2023]
|
26
|
Klinger R, Bursac N. Cardiac cell therapy in vitro: reproducible assays for comparing the efficacy of different donor cells. IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE : THE QUARTERLY MAGAZINE OF THE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY 2008; 27:72-80. [PMID: 18270054 PMCID: PMC2715011 DOI: 10.1109/memb.2007.913849] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Wilders R. Computer modelling of the sinoatrial node. Med Biol Eng Comput 2007; 45:189-207. [PMID: 17115219 DOI: 10.1007/s11517-006-0127-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 10/17/2006] [Indexed: 11/26/2022]
Abstract
Over the past decades patch-clamp experiments have provided us with detailed information on the different types of ion channels that are present in the cardiac cell membrane. Sophisticated cardiac cell models based on these data can help us understand how the different types of ion channels act together to produce the cardiac action potential. In the field of biological pacemaker engineering, such models provide important instruments for the assessment of the functional implications of changes in density of specific ion channels aimed at producing stable pacemaker activity. In this review, an overview is given of the progress made in cardiac cell modelling, with particular emphasis on the development of sinoatrial (SA) nodal cell models. Also, attention is given to the increasing number of publicly available tools for non-experts in computer modelling to run cardiac cell models.
Collapse
Affiliation(s)
- Ronald Wilders
- Department of Physiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
28
|
de Bakker JMT, Zaza A. Special issue on biopacemaking: clinically attractive, scientifically a challenge. Med Biol Eng Comput 2007; 45:115-8. [PMID: 17279397 PMCID: PMC1915637 DOI: 10.1007/s11517-007-0167-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 01/12/2007] [Indexed: 11/02/2022]
Affiliation(s)
- Jacques M. T. de Bakker
- Department of Experimental Cardiology, Heart Failure Research Center, Academic Medical Center, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
- The Heart Lung Center, University Medical Center, Utrecht, The Netherlands
- The Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands
| | - Antonio Zaza
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| |
Collapse
|
29
|
Opthof T. Embryological development of pacemaker hierarchy and membrane currents related to the function of the adult sinus node: implications for autonomic modulation of biopacemakers. Med Biol Eng Comput 2007; 45:119-32. [PMID: 17203321 DOI: 10.1007/s11517-006-0138-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Accepted: 11/22/2006] [Indexed: 10/23/2022]
Abstract
The sinus node is an inhomogeneous structure. In the embryonic heart all myocytes have sinus node type pacemaker channels (I (f)) in their sarcolemma. Shortly before birth, these channels disappear from the ventricular myocytes. The response of the adult sinus node to changes in the interstitium, in particular to (neuro)transmitters, results from the interplay between the responses of all of its constituent cells. The response of the whole sinus node cannot be simply deduced from these cellular responses, because all cells have different responses to specific agonists. A biological pacemaker will be more homogeneous. Therefore it can be anticipated that tuning of cycle length may be problematic. It is discussed that efforts to create a biological pacemaker responsive to vagal stimulation, may be counterproductive, because it may have the potential risk of 'standstill' of the biological pacemaker. A normal sinus node remains spontaneously active at high concentrations of acetylcholine, because it has areas that are unresponsive to acetylcholine. The same is pertinent to other substances with a negative chronotropic effect. Such functional inhomogeneity is lacking in biological pacemakers.
Collapse
Affiliation(s)
- Tobias Opthof
- Experimental and Molecular Cardiology Group, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|