1
|
Jiang Z, Huxter JR, Bowyer SA, Blockeel AJ, Butler J, Imtiaz SA, Wafford KA, Phillips KG, Tricklebank MD, Marston HM, Rodriguez-Villegas E. TaiNi: Maximizing research output whilst improving animals' welfare in neurophysiology experiments. Sci Rep 2017; 7:8086. [PMID: 28808347 PMCID: PMC5556067 DOI: 10.1038/s41598-017-08078-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/04/2017] [Indexed: 11/22/2022] Open
Abstract
Understanding brain function at the cell and circuit level requires representation of neuronal activity through multiple recording sites and at high sampling rates. Traditional tethered recording systems restrict movement and limit the environments suitable for testing, while existing wireless technology is still too heavy for extended recording in mice. Here we tested TaiNi, a novel ultra-lightweight (<2 g) low power wireless system allowing 72-hours of recording from 16 channels sampled at ~19.5 KHz (9.7 KHz bandwidth). We captured local field potentials and action-potentials while mice engaged in unrestricted behaviour in a variety of environments and while performing tasks. Data was synchronized to behaviour with sub-second precision. Comparisons with a state-of-the-art wireless system demonstrated a significant improvement in behaviour owing to reduced weight. Parallel recordings with a tethered system revealed similar spike detection and clustering. TaiNi represents a significant advance in both animal welfare in electrophysiological experiments, and the scope for continuously recording large amounts of data from small animals.
Collapse
Affiliation(s)
- Zhou Jiang
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK.,TainiTec Ltd., Barking Road, London, UK
| | | | - Stuart A Bowyer
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK.,TainiTec Ltd., Barking Road, London, UK
| | | | | | - Syed A Imtiaz
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK.,TainiTec Ltd., Barking Road, London, UK
| | | | | | - Mark D Tricklebank
- Department of Neuroimaging Sciences, Institute of Psychiatry, Kings College London, London, UK
| | | | - Esther Rodriguez-Villegas
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK. .,TainiTec Ltd., Barking Road, London, UK.
| |
Collapse
|
2
|
Weiergräber M, Papazoglou A, Broich K, Müller R. Sampling rate, signal bandwidth and related pitfalls in EEG analysis. J Neurosci Methods 2016; 268:53-5. [PMID: 27172844 DOI: 10.1016/j.jneumeth.2016.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 12/31/2022]
Abstract
This submission contains a commentary.
Collapse
Affiliation(s)
- Marco Weiergräber
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany.
| | - Anna Papazoglou
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Karl Broich
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Ralf Müller
- Department of Psychiatry and Psychotherapy, University of Cologne, Faculty of Medicine, Kerpener-Str. 62, Cologne, Germany
| |
Collapse
|
3
|
Papazoglou A, Lundt A, Wormuth C, Ehninger D, Henseler C, Soós J, Broich K, Weiergräber M. Non-restraining EEG Radiotelemetry: Epidural and Deep Intracerebral Stereotaxic EEG Electrode Placement. J Vis Exp 2016. [PMID: 27404845 DOI: 10.3791/54216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Implantable EEG radiotelemetry is of central relevance in the neurological characterization of transgenic mouse models of neuropsychiatric and neurodegenerative diseases as well as epilepsies. This powerful technique does not only provide valuable insights into the underlying pathophysiological mechanisms, i.e., the etiopathogenesis of CNS related diseases, it also facilitates the development of new translational, i.e., therapeutic approaches. Whereas competing techniques that make use of recorder systems used in jackets or tethered systems suffer from their unphysiological restraining to semi-restraining character, radiotelemetric EEG recordings overcome these disadvantages. Technically, implantable EEG radiotelemetry allows for precise and highly sensitive measurement of epidural and deep, intracerebral EEGs under various physiological and pathophysiological conditions. First, we present a detailed protocol of a straight forward, successful, quick and efficient technique for epidural (surface) EEG recordings resulting in high-quality electrocorticograms. Second, we demonstrate how to implant deep, intracerebral EEG electrodes, e.g., in the hippocampus (electrohippocampogram). For both approaches, a computerized 3D stereotaxic electrode implantation system is used. The radiofrequency transmitter itself is implanted into a subcutaneous pouch in both mice and rats. Special attention also has to be paid to pre-, peri- and postoperative treatment of the experimental animals. Preoperative preparation of mice and rats, suitable anesthesia as well as postoperative treatment and pain management are described in detail.
Collapse
Affiliation(s)
- Anna Papazoglou
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM)
| | - Andreas Lundt
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM)
| | - Carola Wormuth
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM)
| | - Dan Ehninger
- Molecular and Cellular Cognition Lab, German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE)
| | - Christina Henseler
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM)
| | - Julien Soós
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM)
| | - Karl Broich
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM)
| | - Marco Weiergräber
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM);
| |
Collapse
|
4
|
EEG Radiotelemetry in Small Laboratory Rodents: A Powerful State-of-the Art Approach in Neuropsychiatric, Neurodegenerative, and Epilepsy Research. Neural Plast 2015; 2016:8213878. [PMID: 26819775 PMCID: PMC4706962 DOI: 10.1155/2016/8213878] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/27/2015] [Indexed: 02/04/2023] Open
Abstract
EEG radiotelemetry plays an important role in the neurological characterization of transgenic mouse models of neuropsychiatric and neurodegenerative diseases as well as epilepsies providing valuable insights into underlying pathophysiological mechanisms and thereby facilitating the development of new translational approaches. We elaborate on the major advantages of nonrestraining EEG radiotelemetry in contrast to restraining procedures such as tethered systems or jacket systems containing recorders. Whereas a main disadvantage of the latter is their unphysiological, restraining character, telemetric EEG recording overcomes these disadvantages. It allows precise and highly sensitive measurement under various physiological and pathophysiological conditions. Here we present a detailed description of a straightforward successful, quick, and efficient technique for intraperitoneal as well as subcutaneous pouch implantation of a standard radiofrequency transmitter in mice and rats. We further present computerized 3D-stereotaxic placement of both epidural and deep intracerebral electrodes. Preoperative preparation of mice and rats, suitable anaesthesia, and postoperative treatment and pain management are described in detail. A special focus is on fields of application, technical and experimental pitfalls, and technical connections of commercially available radiotelemetry systems with other electrophysiological setups.
Collapse
|
5
|
Pinnell RC, Dempster J, Pratt J. Miniature wireless recording and stimulation system for rodent behavioural testing. J Neural Eng 2015; 12:066015. [PMID: 26468659 DOI: 10.1088/1741-2560/12/6/066015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Elucidation of neural activity underpinning rodent behaviour has traditionally been hampered by the use of tethered systems and human involvement. Furthermore the combination of deep-brain stimulation (DBS) and various neural recording modalities can lead to complex and time-consuming laboratory setups. For studies of this type, novel tools are required to drive forward this research. APPROACH A miniature wireless system weighing 8.5 g (including battery) was developed for rodent use that combined multichannel DBS and local-field potential (LFP) recordings. Its performance was verified in a working memory task that involved 4-channel fronto-hippocampal LFP recording and bilateral constant-current fimbria-fornix DBS. The system was synchronised with video-tracking for extraction of LFP at discrete task phases, and DBS was activated intermittently at discrete phases of the task. MAIN RESULTS In addition to having a fast set-up time, the system could reliably transmit continuous LFP at over 8 hours across 3-5 m distances. During the working memory task, LFP pertaining to discrete task phases was extracted and compared with well-known neural correlates of active exploratory behaviour in rodents. DBS could be wirelessly activated/deactivated at any part of the experiment during EEG recording and transmission, allowing for a seamless integration of this modality. SIGNIFICANCE The wireless system combines a small size with a level of robustness and versatility that can greatly simplify rodent behavioural experiments involving EEG recording and DBS. Designed for versatility and simplicity, the small size and low-cost of the system and its receiver allow for enhanced portability, fast experimental setup times, and pave the way for integration with more complex behaviour.
Collapse
Affiliation(s)
- R C Pinnell
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK. Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | | |
Collapse
|
6
|
Ball D, Kliese R, Windels F, Nolan C, Stratton P, Sah P, Wiles J. Rodent scope: a user-configurable digital wireless telemetry system for freely behaving animals. PLoS One 2014; 9:e89949. [PMID: 24587144 PMCID: PMC3938580 DOI: 10.1371/journal.pone.0089949] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/24/2014] [Indexed: 11/18/2022] Open
Abstract
This paper describes the design and implementation of a wireless neural telemetry system that enables new experimental paradigms, such as neural recordings during rodent navigation in large outdoor environments. RoSco, short for Rodent Scope, is a small lightweight user-configurable module suitable for digital wireless recording from freely behaving small animals. Due to the digital transmission technology, RoSco has advantages over most other wireless modules of noise immunity and online user-configurable settings. RoSco digitally transmits entire neural waveforms for 14 of 16 channels at 20 kHz with 8-bit encoding which are streamed to the PC as standard USB audio packets. Up to 31 RoSco wireless modules can coexist in the same environment on non-overlapping independent channels. The design has spatial diversity reception via two antennas, which makes wireless communication resilient to fading and obstacles. In comparison with most existing wireless systems, this system has online user-selectable independent gain control of each channel in 8 factors from 500 to 32,000 times, two selectable ground references from a subset of channels, selectable channel grounding to disable noisy electrodes, and selectable bandwidth suitable for action potentials (300 Hz-3 kHz) and low frequency field potentials (4 Hz-3 kHz). Indoor and outdoor recordings taken from freely behaving rodents are shown to be comparable to a commercial wired system in sorting for neural populations. The module has low input referred noise, battery life of 1.5 hours and transmission losses of 0.1% up to a range of 10 m.
Collapse
Affiliation(s)
- David Ball
- School of Electrical Engineering and Computer Science, Queensland University of Technology, Queensland, Australia
| | - Russell Kliese
- TOPTICA Photonics AG, Lochhamer Schlag 19, Gräfelfing, Germany
| | - Francois Windels
- Queensland Brain Institute, The University of Queensland, Queensland, Australia
| | - Christopher Nolan
- Queensland Brain Institute, The University of Queensland, Queensland, Australia
| | - Peter Stratton
- Queensland Brain Institute, The University of Queensland, Queensland, Australia
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, Queensland, Australia
| | - Janet Wiles
- School of Information Technology and Electrical Engineering, The University of Queensland, Queensland, Australia
| |
Collapse
|
7
|
Schwerdt HN, Xu W, Shekhar S, Abbaspour-Tamijani A, Towe BC, Miranda FA, Chae J. A Fully-Passive Wireless Microsystem for Recording of Neuropotentials using RF Backscattering Methods. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS : A JOINT IEEE AND ASME PUBLICATION ON MICROSTRUCTURES, MICROACTUATORS, MICROSENSORS, AND MICROSYSTEMS 2011; 20:1119-1130. [PMID: 22267898 PMCID: PMC3259707 DOI: 10.1109/jmems.2011.2162487] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The ability to safely monitor neuropotentials is essential in establishing methods to study the brain. Current research focuses on the wireless telemetry aspect of implantable sensors in order to make these devices ubiquitous and safe. Chronic implants necessitate superior reliability and durability of the integrated electronics. The power consumption of implanted electronics must also be limited to within several milliwatts to microwatts to minimize heat trauma in the human body. In order to address these severe requirements, we developed an entirely passive and wireless microsystem for recording neuropotentials. An external interrogator supplies a fundamental microwave carrier to the microsystem. The microsystem comprises varactors that perform nonlinear mixing of neuropotential and fundamental carrier signals. The varactors generate third-order mixing products that are wirelessly backscattered to the external interrogator where the original neuropotential signals are recovered. Performance of the neuro-recording microsystem was demonstrated by wireless recording of emulated and in vivo neuropotentials. The obtained results were wireless recovery of neuropotentials as low as approximately 500 microvolts peak-to-peak (μV(pp)) with a bandwidth of 10 Hz to 3 kHz (for emulated signals) and with 128 epoch signal averaging of repetitive signals (for in vivo signals).
Collapse
Affiliation(s)
- Helen N Schwerdt
- School of Electrical, Computer, and Energy Engineering at Arizona State University, Tempe, AZ 85287 USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Roy S, Wang X. Wireless multi-channel single unit recording in freely moving and vocalizing primates. J Neurosci Methods 2011; 203:28-40. [PMID: 21933683 DOI: 10.1016/j.jneumeth.2011.09.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/31/2011] [Accepted: 09/06/2011] [Indexed: 11/29/2022]
Abstract
The ability to record well-isolated action potentials from individual neurons in naturally behaving animals is crucial for understanding neural mechanisms underlying natural behaviors. Traditional neurophysiology techniques, however, require the animal to be restrained which often restricts natural behavior. An example is the common marmoset (Callithrix jacchus), a highly vocal New World primate species, used in our laboratory to study the neural correlates of vocal production and sensory feedback. When restrained by traditional neurophysiological techniques marmoset vocal behavior is severely inhibited. Tethered recording systems, while proven effective in rodents pose limitations in arboreal animals such as the marmoset that typically roam in a three-dimensional environment. To overcome these obstacles, we have developed a wireless neural recording technique that is capable of collecting single-unit data from chronically implanted multi-electrodes in freely moving marmosets. A lightweight, low power and low noise wireless transmitter (headstage) is attached to a multi-electrode array placed in the premotor cortex of the marmoset. The wireless headstage is capable of transmitting 15 channels of neural data with signal-to-noise ratio (SNR) comparable to a tethered system. To minimize radio-frequency (RF) and electro-magnetic interference (EMI), the experiments were conducted within a custom designed RF/EMI and acoustically shielded chamber. The individual electrodes of the multi-electrode array were periodically advanced to densely sample the cortical layers. We recorded single-unit data over a period of several months from the frontal cortex of two marmosets. These recordings demonstrate the feasibility of using our wireless recording method to study single neuron activity in freely roaming primates.
Collapse
Affiliation(s)
- Sabyasachi Roy
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
9
|
Ultra wideband for wireless real-time monitoring of neural signals. Med Biol Eng Comput 2009; 47:649-54. [PMID: 19340472 DOI: 10.1007/s11517-009-0480-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 03/13/2009] [Indexed: 10/20/2022]
Abstract
Performance of an ultra wideband (UWB) wireless system for real-time neural signal monitoring is evaluated by comparing spiking characteristics between transmitted and received signals for different experimental set-ups. Spike detection quality is selected as the main spiking characteristic of evaluated signals. Results are presented in receiver-operating characteristics and area-under-the-curve (AUC). In order to assess spike detection quality, a set of artificially generated neural signals is constructed from real neural recordings such that the ground truth is known. Data analysis shows how channel signal-to-noise-ratio (SNR) variation affects AUC in different signal SNR cases. Signals with low SNRs get less affected by reduced channel SNRs than those with higher SNR. Increasing bit error rate modifies spiking characteristics such that an under-estimation of the spiking frequency occurs due to spike losses. For practical application of real-time neural signal monitoring, UWB seems to offer best transmission conditions in a near-body environment.
Collapse
|