1
|
Guo Q, Yang S, Ni G, Ji J, Luo M, Du W. The Preparation and Effects of Organic-Inorganic Antioxidative Biomaterials for Bone Repair. Biomedicines 2023; 12:70. [PMID: 38255177 PMCID: PMC10813766 DOI: 10.3390/biomedicines12010070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Reactive oxygen species (ROS) has great influence in many physiological or pathological processes in organisms. In the site of bone defects, the overproduced ROS significantly affects the dynamic balance process of bone regeneration. Many antioxidative organic and inorganic antioxidants showed good osteogenic ability, which has been widely used for bone repair. It is of great significance to summarize the antioxidative bone repair materials (ABRMs) to provide guidance for the future design and preparation of osteogenic materials with antioxidative function. Here, this review introduced the major research direction of ABRM at present in nanoscale, 2-dimensional coating, and 3-dimensional scaffolds. Moreover, the referring main active substances and antioxidative properties were classified, and the positive roles of antioxidative materials for bone repair have also been clearly summarized in signaling pathways, antioxidant enzymes, cellular responses and animal levels.
Collapse
Affiliation(s)
- Qihao Guo
- Key Laboratory of Textile Fiber and Products, Wuhan Textile University, Ministry of Education, Wuhan 430200, China;
| | - Shuoshuo Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, China
| | - Guoqi Ni
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, China; (G.N.); (J.J.); (M.L.)
| | - Jiale Ji
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, China; (G.N.); (J.J.); (M.L.)
| | - Mengwei Luo
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, China; (G.N.); (J.J.); (M.L.)
| | - Wei Du
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
2
|
Delghandi PS, Soleimani V, Fazly Bazzaz BS, Hosseinzadeh H. A review on oxidant and antioxidant effects of antibacterial agents: impacts on bacterial cell death and division and therapeutic effects or adverse reactions in humans. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2667-2686. [PMID: 37083711 DOI: 10.1007/s00210-023-02490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/11/2023] [Indexed: 04/22/2023]
Abstract
Reactive oxygen species (ROS) are produced in the mitochondrial respiratory pathway and cellular metabolism. They are responsible for creating oxidative stress and lipid peroxidation. In living organisms, there is a balance between oxidative stress and the antioxidant system, but some factors such as medicines disturb the balance and cause many problems. These effects can impact bacterial death and division and also in humans can induce therapeutic or adverse reactions. Web of Science and Pubmed databases were used for searching. This review focuses on the oxidant and antioxidant effects of different classes of antibacterial agents and the mechanisms of oxidative stress. Some of these agents have beneficial effects on killing bacteria due to their antioxidant or oxidant effects. However, some of their side effects may be due to their oxidative effects. Based on the results of this review, minocycline is an antioxidant, but aminoglycosides, chloramphenicol, glycopeptides, antituberculosis drugs, fluoroquinolones, and sulfamethoxazole agents have oxidant effects. Furthermore, cephalosporins, penicillins, metronidazole, and macrolides have both oxidant and antioxidant effects in different studies. It is concluded that some antibacterial agents have oxidant and other antioxidant effects. These activities may affect their therapeutic effects or side effects. Some antioxidants can prevent the adverse effects of antibacterial agents. Clarifying the exact oxidant and antioxidant effects of some antimicrobial agents needs more research projects.
Collapse
Affiliation(s)
| | - Vahid Soleimani
- School of Pharmacy, Mashhad University of Medical Science, Mashhad, IR, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, IR, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, IR, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, IR, Iran.
| |
Collapse
|
3
|
Xin W, Baokun Z, Zhiheng C, Qiang S, Erzhu Y, Jianguang X, Xiaofeng L. Biodegradable bilayer hydrogel membranes loaded with bazedoxifene attenuate blood-spinal cord barrier disruption via the NF-κB pathway after acute spinal cord injury. Acta Biomater 2023; 159:140-155. [PMID: 36736849 DOI: 10.1016/j.actbio.2023.01.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
After spinal cord injury (SCI), blood-spinal cord barrier (BSCB) disruption and hemorrhage lead to blood cell infiltration and progressive secondary injuries. Therefore, early restoration of the BSCB represents a key step in the treatment of SCI. Bazedoxifene (BZA), a third-generation estrogen receptor modulator, has recently been reported to inhibit inflammation and alleviate blood-brain barrier disruption caused by traumatic brain injury, attracting great interest in the field of central nervous system injury and repair. However, whether BZA can attenuate BSCB disruption and contribute to SCI repair remains unknown. Here, we developed a new type of biomaterial carrier and constructed a BZA-loaded HSPT (hyaluronic acid (HA), sodium alginate (SA), polyvinyl alcohol (PVA), tetramethylpropane (TPA) material construction) (HSPT@Be) system to effectively deliver BZA to the site of SCI. We found that HSPT@Be could significantly reduce inflammation in the spinal cord in SCI rats and attenuate BSCB disruption by providing covering scaffold, inhibiting oxidative stress, and upregulating tight junction proteins, which was mediated by regulation of the NF-κB/MMP signaling pathway. Importantly, functional assessment showed the evident improvement of behavioral functions in the HSPT@Be-treated SCI rats. These results indicated that HSPT@Be can attenuate BSCB disruption via the NF-κB pathway after SCI, shedding light on its potential therapeutic benefit for SCI. STATEMENT OF SIGNIFICANCE: After spinal cord injury, blood-spinal cord barrier disruption and hemorrhage lead to blood cell infiltration and progressive secondary injuries. Bazedoxifene has recently been reported to inhibit inflammation and alleviate blood-brain barrier disruption caused by traumatic brain injury. However, whether BZA can attenuate BSCB disruption and contribute to SCI repair remains unknown. In this study, we developed a new type of biomaterial carrier and constructed a bazedoxifene-loaded HSPT (HSPT@Be) system to efficiently treat SCI. HSPT@Be could provide protective coverage, inhibit oxidative stress, and upregulate tight junction proteins through NF-κB/MMP pathway both in vivo and in vitro, therefore attenuating BSCB disruption. Our study fills the application gap of biomaterials in BSCB restoration.
Collapse
Affiliation(s)
- Wang Xin
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhang Baokun
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Chen Zhiheng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Shi Qiang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yang Erzhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xu Jianguang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Lian Xiaofeng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
4
|
Negut I, Ristoscu C, Tozar T, Dinu M, Parau AC, Grumezescu V, Hapenciuc C, Popa M, Stan MS, Marutescu L, Mihailescu IN, Chifiriuc MC. Implant Surfaces Containing Bioglasses and Ciprofloxacin as Platforms for Bone Repair and Improved Resistance to Microbial Colonization. Pharmaceutics 2022; 14:pharmaceutics14061175. [PMID: 35745748 PMCID: PMC9227520 DOI: 10.3390/pharmaceutics14061175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023] Open
Abstract
Coatings are an attractive and challenging selection for improving the bioperformance of metallic devices. Composite materials based on bioglass/antibiotic/polymer are herein proposed as multifunctional thin films for hard tissue implants. We deposited a thin layer of the polymeric material by matrix-assisted pulsed laser evaporation—MAPLE onto Ti substrates. A second layer consisting of bioglass + antibiotic was applied by MAPLE onto the initial thin film. The antimicrobial activity of MAPLE-deposited thin films was evaluated on Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa standard strains. The biocompatibility of obtained thin films was assessed on mouse osteoblast-like cells. The results of our study revealed that the laser-deposited coatings are biocompatible and resistant to microbial colonization and biofilm formation. Accordingly, they can be considered viable candidates for biomedical devices and contact surfaces that would otherwise be amenable to contact transmission.
Collapse
Affiliation(s)
- Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (I.N.); (T.T.); (V.G.); (C.H.); (I.N.M.)
| | - Carmen Ristoscu
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (I.N.); (T.T.); (V.G.); (C.H.); (I.N.M.)
- Correspondence:
| | - Tatiana Tozar
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (I.N.); (T.T.); (V.G.); (C.H.); (I.N.M.)
- Extreme Light Infrastructure-Nuclear Physics, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 077125 Magurele, Romania
| | - Mihaela Dinu
- National Institute of Research and Development for Optoelectronics-INOE2000, 409 Atomistilor St., 077125 Magurele, Romania; (M.D.); (A.C.P.)
| | - Anca Constantina Parau
- National Institute of Research and Development for Optoelectronics-INOE2000, 409 Atomistilor St., 077125 Magurele, Romania; (M.D.); (A.C.P.)
| | - Valentina Grumezescu
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (I.N.); (T.T.); (V.G.); (C.H.); (I.N.M.)
| | - Claudiu Hapenciuc
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (I.N.); (T.T.); (V.G.); (C.H.); (I.N.M.)
| | - Marcela Popa
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania; (M.P.); (L.M.)
| | - Miruna Silvia Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania; (M.S.S.); (M.C.C.)
| | - Luminita Marutescu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania; (M.P.); (L.M.)
| | - Ion N. Mihailescu
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania; (I.N.); (T.T.); (V.G.); (C.H.); (I.N.M.)
| | - Mariana Carmen Chifiriuc
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania; (M.S.S.); (M.C.C.)
- Department of Microbiology, Faculty of Biology, University of Bucharest, Aleea Portocalelor Str. 1-3, District 5, 060101 Bucharest, Romania
- Romanian Academy of Scientists, 3 Ilfov Str., District 5, 050044 Bucharest, Romania
- The Romanian Academy, Calea Victoriei 25, District 1, 010071 Bucharest, Romania
| |
Collapse
|
5
|
Abstract
Diseases or complications that are caused by bone tissue damage affect millions of patients every year. Orthopedic and dental implants have become important treatment options for replacing and repairing missing or damaged parts of bones and teeth. In order to use a material in the manufacture of implants, the material must meet several requirements, such as mechanical stability, elasticity, biocompatibility, hydrophilicity, corrosion resistance, and non-toxicity. In the 1970s, a biocompatible glassy material called bioactive glass was discovered. At a later time, several glass materials with similar properties were developed. This material has a big potential to be used in formulating medical devices, but its fragility is an important disadvantage. The use of bioactive glasses in the form of coatings on metal substrates allows the combination of the mechanical hardness of the metal and the biocompatibility of the bioactive glass. In this review, an extensive study of the literature was conducted regarding the preparation methods of bioactive glass and the different techniques of coating on various substrates, such as stainless steel, titanium, and their alloys. Furthermore, the main doping agents that can be used to impart special properties to the bioactive glass coatings are described.
Collapse
|
6
|
Liang W, Wu X, Dong Y, Shao R, Chen X, Zhou P, Xu F. In vivo behavior of bioactive glass-based composites in animal models for bone regeneration. Biomater Sci 2021; 9:1924-1944. [PMID: 33506819 DOI: 10.1039/d0bm01663b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This review presents the recent advances and the current state-of-the-art of bioactive glass-based composite biomaterials intended for bone regeneration. Composite materials comprise two (or more) constituents at the nanometre scale, in which typically, one constituent is organic and functions as the matrix phase and the other constituent is inorganic and behaves as the reinforcing phase. Such materials, thereby, more closely resemble natural bio-nanocomposites such as bone. Various glass compositions in combination with a wide range of natural and synthetic polymers have been evaluated in vivo under experimental conditions ranging from unloaded critical-sized defects to mechanically-loaded, weight-bearing sites with highly favourable outcomes. Additional possibilities include controlled release of anti-osteoporotic drugs, ions, antibiotics, pro-angiogenic substances and pro-osteogenic substances. Histological and morphological evaluations suggest the formation of new, highly vascularised bone that displays signs of remodelling over time. With the possibility to tailor the mechanical and chemical properties through careful selection of individual components, as well as the overall geometry (from mesoporous particles and micro-/nanospheres to 3D scaffolds and coatings) through innovative manufacturing processes, such biomaterials present exciting new avenues for bone repair and regeneration.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan 316000, Zhejiang Province, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
7
|
Beherei HH, Shaltout AA, Mabrouk M, Abdelwahed NA, Das DB. Influence of Niobium Pentoxide Particulates on the Properties of Brushite/Gelatin/Alginate Membranes. J Pharm Sci 2018; 107:1361-1371. [DOI: 10.1016/j.xphs.2018.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 01/09/2018] [Accepted: 01/17/2018] [Indexed: 12/15/2022]
|
8
|
|