1
|
Manon BDN, Ketani T, Bastard C, Rosi G, Lomani HA, Flouzat-Lachaniette CH, Dubory A, Haïat G. An Instrumented Hammer to Detect the Bone Transitions During an High Tibial Osteotomy: An Animal Study. J Biomech Eng 2025; 147:064502. [PMID: 40192639 DOI: 10.1115/1.4068372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Indexed: 05/06/2025]
Abstract
High tibial osteotomy is a common procedure for knee osteoarthritis during which the surgeon partially opens the tibia and must stop impacting when cortical bone is reached by the osteotome. Surgeons rely on their proprioception and fluoroscopy to conduct the surgery. Our group has developed an instrumented hammer to assess the mechanical properties of the material surrounding the osteotome tip. The aim of this ex vivo study is to determine whether this hammer can be used to detect the transition from cortical to trabecular bone and vice versa. Osteotomies were performed until rupture in pig tibia using the instrumented hammer. An algorithm was developed to detect both transitions based on the relative variation of an indicator derived from the time variation of the force. The detection by the algorithm of both transitions was compared with the position of the osteotome measured with a video camera and with surgeon proprioception. The difference between the detection of the video and the algorithm (respectively, the video and the surgeon; the surgeon and the algorithm) is 1.0±1.5 impacts (respectively, 0.5±0.6 impacts; 1.4±1.8 impacts), for the detection of the transition from the cortical to trabecular bone. For the transition from the trabecular to cortical bone, the difference is 3.6±2.6 impacts (respectively, 3.9±2.4 impacts; 0.8±0.9 impacts), and the detection by the algorithm was always done before the sample rupture. This ex vivo study demonstrates that this method could prevent impacts leading to hinge rupture.
Collapse
Affiliation(s)
- Bas-Dit-Nugues Manon
- CNRS, Univ Paris Est Creteil, Univ Gustave Eiffel, UMR 8208, MSME, 61 Avenue du Général de Gaulle, Créteil Cedex 94010, France
- CNRS Ingénierie
| | - Teddy Ketani
- CNRS, Univ Paris Est Creteil, Univ Gustave Eiffel, UMR 8208, MSME, 61 Avenue du Général de Gaulle, Créteil Cedex 94010, France
- CNRS Ingénierie
| | - Claire Bastard
- Service de Chirurgie de la Main, Service d'Orthopédie et de Traumatologique, Hôpital Saint-Antoine, Sorbonne Université, 184, rue du Faubourg-Saint-Antoine, Paris 75012, France
- CNRS Ingénierie
| | - Giuseppe Rosi
- Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, UMR 8208, MSME, 61 Avenue du Général de Gaulle, Créteil Cedex 94010, France
| | - Hugues Albini Lomani
- CNRS, Univ Paris Est Creteil, Univ Gustave Eiffel, UMR 8208, MSME, 61 Avenue du Général de Gaulle, Créteil Cedex 94010, France
- CNRS Ingénierie
| | - Charles-Henri Flouzat-Lachaniette
- INSERM U955, IMRB, Université Paris-Est, 51 avenue du Maréchal de Lattre de Tassigny, Créteil 94000, France; Service de Chirurgie Orthopédique et Traumatologique, Hôpital Henri Mondor AP-HP, CHU Paris 12, Université Paris-Est, 51 avenue du Maréchal de Lattre de Tassigny, Créteil 94000, France
| | - Arnaud Dubory
- INSERM U955, IMRB, Université Paris-Est, 51 avenue du Maréchal de Lattre de Tassigny, Créteil 94000, France; Service de Chirurgie Orthopédique et Traumatologique, Hôpital Henri Mondor AP-HP, CHU Paris 12, Université Paris-Est, 51 avenue du Maréchal de Lattre de Tassigny, Créteil 94000, France
| | - Guillaume Haïat
- CNRS, Univ Paris Est Creteil, Univ Gustave Eiffel, UMR 8208, MSME, 61 Avenue du Général de Gaulle, Créteil Cedex 94010, France
| |
Collapse
|
2
|
Bouffandeau A, Poudrel AS, Brossier C, Rosi G, Nguyen VH, Flouzat-Lachaniette CH, Meningaud JP, Haïat G. Assessment of the Mechanical Properties of Soft Tissue Phantoms Using Impact Analysis. SENSORS (BASEL, SWITZERLAND) 2025; 25:1344. [PMID: 40096164 PMCID: PMC11902684 DOI: 10.3390/s25051344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/06/2025] [Accepted: 02/20/2025] [Indexed: 03/19/2025]
Abstract
Skin physiopathological conditions have a strong influence on its biomechanical properties. However, it remains difficult to accurately assess the surface stiffness of soft tissues. The aim of this study was to evaluate the performances of an impact-based analysis method (IBAM) and to compare them with those of an existing digital palpation device, MyotonPro®. The IBAM is based on the impact of an instrumented hammer equipped with a force sensor on a cylindrical punch in contact with agar-based phantoms mimicking soft tissues. The indicator Δt is estimated by analyzing the force signal obtained from the instrumented hammer. Various phantom geometries, stiffnesses and structures (homogeneous and bilayer) were used to estimate the performances of both methods. Measurements show that the IBAM is sensitive to a volume of interest equivalent to a sphere approximately twice the punch diameter. The sensitivity of the IBAM to changes in Young's modulus is similar to that of dynamic mechanical analysis (DMA) and significantly better compared to MyotonPro. The axial (respectively, lateral) resolution is two (respectively, five) times lower with the IBAM than with MyotonPro. The present study paves the way for the development of a simple, quantitative and non-invasive method to measure skin biomechanical properties.
Collapse
Affiliation(s)
- Arthur Bouffandeau
- Laboratoire Modélisation et Simulation Multi Echelle, Centre National de la Recherche Scientifique, MSME UMR 8208 CNRS, 61 Avenue du Général de Gaulle, 94010 Créteil, France; (A.B.)
| | - Anne-Sophie Poudrel
- Laboratoire Modélisation et Simulation Multi Echelle, Centre National de la Recherche Scientifique, MSME UMR 8208 CNRS, 61 Avenue du Général de Gaulle, 94010 Créteil, France; (A.B.)
| | - Chloé Brossier
- Laboratoire Modélisation et Simulation Multi Echelle, Centre National de la Recherche Scientifique, MSME UMR 8208 CNRS, 61 Avenue du Général de Gaulle, 94010 Créteil, France; (A.B.)
| | - Giuseppe Rosi
- Laboratoire Modélisation et Simulation Multi Echelle, Université Paris Est Créteil, MSME UMR 8208 CNRS, 61 Avenue du Général de Gaulle, 94010 Créteil, France
| | - Vu-Hieu Nguyen
- Laboratoire Modélisation et Simulation Multi Echelle, Université Paris Est Créteil, MSME UMR 8208 CNRS, 61 Avenue du Général de Gaulle, 94010 Créteil, France
| | - Charles-Henri Flouzat-Lachaniette
- Service de Chirurgie Orthopédique et Traumatologique, Hôpital Henri Mondor AP-HP, Laboratoire IMRB INSERM U955—Université Paris—Est Créteil, 8 rue du Général Sarrail, 94010 Créteil, France;
| | - Jean-Paul Meningaud
- Service de Chirurgie Plastique, Reconstructrice, Esthétique et Maxillo-Faciale, Hôpital Henri Mondor AP-HP, Laboratoire IMRB INSERM U955—Université Paris—Est Créteil, 8 rue du Général Sarrail, 94010 Créteil, France
| | - Guillaume Haïat
- Laboratoire Modélisation et Simulation Multi Echelle, Centre National de la Recherche Scientifique, MSME UMR 8208 CNRS, 61 Avenue du Général de Gaulle, 94010 Créteil, France; (A.B.)
| |
Collapse
|
3
|
Bas Dit Nugues M, Lamassoure L, Rosi G, Flouzat-Lachaniette CH, Khonsari RH, Haiat G. An Instrumented Hammer to Detect the Rupture of the Pterygoid Plates. Ann Biomed Eng 2025; 53:59-70. [PMID: 39174762 PMCID: PMC11782435 DOI: 10.1007/s10439-024-03596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/29/2024] [Indexed: 08/24/2024]
Abstract
PURPOSE Craniofacial osteotomies involving pterygomaxillary disjunction are common procedures in maxillofacial surgery. Surgeons still rely on their proprioception to determine when to stop impacting the osteotome, which is important to avoid complications such as dental damage and bleeding. Our group has developed a technique consisting in using an instrumented hammer that can provide information on the mechanical properties of the tissue located around the osteotome tip. The aim of this study is to determine whether a mallet instrumented with a force sensor can be used to predict the crossing of the osteotome through the pterygoid plates. METHODS 31 osteotomies were carried out in 16 lamb skulls. For each impact, the force signal obtained was analysed using a dedicated signal processing technique. A prediction algorithm based on an SVM classifier and a cost matrix was applied to the database. RESULTS We showed that the device could always detect the crossing of the osteotome, sometimes before its occurrence. The prediction accuracy of the device was 94.7%. The method seemed to be sensitive to the thickness of the plate and to crack apparition and propagation. CONCLUSION These results pave the way for the development of a per-operative decision support system in maxillofacial surgery.
Collapse
Affiliation(s)
- Manon Bas Dit Nugues
- CNRS, Univ Paris Est Creteil, Univ Gustave Eiffel, UMR 8208, MSME, 61, Avenue du Général de Gaulle, 94010, Créteil Cedex, France
| | - Leo Lamassoure
- APHP, Hôpital Henri-Mondor, Service de Chirurgie Orthopédique, 94010, Créteil, France
| | - Giuseppe Rosi
- Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, UMR 8208, MSME, 94010, Créteil, France
| | - Charles Henri Flouzat-Lachaniette
- INSERM U955, IMRB Université Paris-Est, 51 avenue du Maréchal de Lattre de Tassigny, 94000, Créteil, France
- Service de Chirurgie Orthopédique et Traumatologique, Hôpital Henri Mondor AP-HP, Université Paris-Est, CHU Paris 12, 51 avenue du Maréchal de Lattre de Tassigny, 94000, Créteil, France
| | - Roman Hossein Khonsari
- APHP, Hôpital Necker-Enfants Malades, Service de Chirurgie maxillo-faciale et chirurgie plastique, Laboratoire 'Forme et Croissance du Crâne', 75015, Paris, France
| | - Guillaume Haiat
- CNRS, Univ Paris Est Creteil, Univ Gustave Eiffel, UMR 8208, MSME, 61, Avenue du Général de Gaulle, 94010, Créteil Cedex, France.
| |
Collapse
|
4
|
Poudrel AS, Bouffandeau A, Rosi G, Dubory A, Lachaniette CHF, Nguyen VH, Haiat G. 3-D finite element model of the impaction of a press-fitted femoral stem under various biomechanical environments. Comput Biol Med 2024; 174:108405. [PMID: 38613890 DOI: 10.1016/j.compbiomed.2024.108405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/04/2024] [Accepted: 04/01/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Uncemented femoral stem insertion into the bone is achieved by applying successive impacts on an inserter tool called "ancillary". Impact analysis has shown to be a promising technique to monitor the implant insertion and to improve its primary stability. METHOD This study aims to provide a better understanding of the dynamic phenomena occurring between the hammer, the ancillary, the implant and the bone during femoral stem insertion, to validate the use of impact analyses for implant insertion monitoring. A dynamic 3-D finite element model of the femoral stem insertion via an impaction protocol is proposed. The influence of the trabecular bone Young's modulus (Et), the interference fit (IF), the friction coefficient at the bone-implant interface (μ) and the impact velocity (v0) on the implant insertion and on the impact force signal is evaluated. RESULTS For all configurations, a decrease of the time difference between the two first peaks of the impact force signal is observed throughout the femoral stem insertion, up to a threshold value of 0.23 ms. The number of impacts required to reach this value depends on Et, v0 and IF and varies between 3 and 8 for the set of parameters considered herein. The bone-implant contact ratio reached after ten impacts varies between 60% and 98%, increases as a function of v0 and decreases as a function of IF, μ and Et. CONCLUSION This study confirms the potential of an impact analyses-based method to monitor implant insertion and to retrieve bone-implant contact properties.
Collapse
Affiliation(s)
- Anne-Sophie Poudrel
- CNRS, Univ Paris Est Creteil, Univ Gustave Eiffel, UMR 8208, MSME, F-94010 Créteil, France
| | - Arthur Bouffandeau
- CNRS, Univ Paris Est Creteil, Univ Gustave Eiffel, UMR 8208, MSME, F-94010 Créteil, France
| | - Giuseppe Rosi
- Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, UMR 8208, MSME, F-94010 Créteil, France
| | - Arnaud Dubory
- Service de Chirurgie Orthopédique et Traumatologique, Hôpital Henri Mondor AP-HP, CHU Paris 12, Université Paris-Est, Créteil, France
| | - Charles-Henri Flouzat Lachaniette
- Service de Chirurgie Orthopédique et Traumatologique, Hôpital Henri Mondor AP-HP, CHU Paris 12, Université Paris-Est, Créteil, France
| | - Vu-Hieu Nguyen
- Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, UMR 8208, MSME, F-94010 Créteil, France
| | - Guillaume Haiat
- CNRS, Univ Paris Est Creteil, Univ Gustave Eiffel, UMR 8208, MSME, F-94010 Créteil, France.
| |
Collapse
|
5
|
Poudrel AS, Bouffandeau A, Demeet OL, Rosi G, Nguyen VH, Haiat G. Characterization of the concentration of agar-based soft tissue mimicking phantoms by impact analysis. J Mech Behav Biomed Mater 2024; 152:106465. [PMID: 38377641 DOI: 10.1016/j.jmbbm.2024.106465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 01/14/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
In various medical fields, a change of soft tissue stiffness is associated with its physio-pathological evolution. While elastography is extensively employed to assess soft tissue stiffness in vivo, its application requires a complex and expensive technology. The aim of this study is to determine whether an easy-to-use method based on impact analysis can be employed to determine the concentration of agar-based soft tissue mimicking phantoms. Impact analysis was performed on soft tissue mimicking phantoms made of agar gel with a mass concentration ranging from 1% to 5%. An indicator Δt is derived from the temporal variation of the impact force signal between the hammer and a small beam in contact with the sample. The results show a non-linear decrease of Δt as a function of the agar concentration (and thus of the sample stiffness). The value of Δt provides an estimation of the agar concentration with an error of 0.11%. This sensitivity of the impact analysis based method to the agar concentration is of the same order of magnitude than results obtained with elastography techniques. This study opens new paths towards the development of impact analysis for a fast, easy and relatively inexpensive clinical evaluation of soft tissue elastic properties.
Collapse
Affiliation(s)
- Anne-Sophie Poudrel
- CNRS, Univ Paris Est Creteil, Univ Gustave Eiffel, UMR 8208, MSME, F-94010 Créteil, France
| | - Arthur Bouffandeau
- CNRS, Univ Paris Est Creteil, Univ Gustave Eiffel, UMR 8208, MSME, F-94010 Créteil, France
| | - Oriane Le Demeet
- CNRS, Univ Paris Est Creteil, Univ Gustave Eiffel, UMR 8208, MSME, F-94010 Créteil, France
| | - Giuseppe Rosi
- Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, UMR 8208, MSME, F-94010 Créteil, France
| | - Vu-Hieu Nguyen
- Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, UMR 8208, MSME, F-94010 Créteil, France
| | - Guillaume Haiat
- CNRS, Univ Paris Est Creteil, Univ Gustave Eiffel, UMR 8208, MSME, F-94010 Créteil, France.
| |
Collapse
|
6
|
Modeling the debonding process of osseointegrated implants due to coupled adhesion and friction. Biomech Model Mechanobiol 2023; 22:133-158. [PMID: 36284076 PMCID: PMC9957925 DOI: 10.1007/s10237-022-01637-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 09/06/2022] [Indexed: 11/02/2022]
Abstract
Cementless implants have become widely used for total hip replacement surgery. The long-term stability of these implants is achieved by bone growing around and into the rough surface of the implant, a process called osseointegration. However, debonding of the bone-implant interface can still occur due to aseptic implant loosening and insufficient osseointegration, which may have dramatic consequences. The aim of this work is to describe a new 3D finite element frictional contact formulation for the debonding of partially osseointegrated implants. The contact model is based on a modified Coulomb friction law by Immel et al. (2020), that takes into account the tangential debonding of the bone-implant interface. This model is extended in the direction normal to the bone-implant interface by considering a cohesive zone model, to account for adhesion phenomena in the normal direction and for adhesive friction of partially bonded interfaces. The model is applied to simulate the debonding of an acetabular cup implant. The influence of partial osseointegration and adhesive effects on the long-term stability of the implant is assessed. The influence of different patient- and implant-specific parameters such as the friction coefficient [Formula: see text], the trabecular Young's modulus [Formula: see text], and the interference fit [Formula: see text] is also analyzed, in order to determine the optimal stability for different configurations. Furthermore, this work provides guidelines for future experimental and computational studies that are necessary for further parameter calibration.
Collapse
|
7
|
Poudrel AS, Nguyen VH, Rosi G, Haiat G. Influence of the biomechanical environment on the femoral stem insertion and vibrational behavior: a 3-D finite element study. Biomech Model Mechanobiol 2022; 22:611-628. [PMID: 36542227 DOI: 10.1007/s10237-022-01667-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/04/2022] [Indexed: 12/24/2022]
Abstract
The long-term success of cementless surgery strongly depends on the implant primary stability. The femoral stem initial fixation relies on multiple geometrical and material factors, but their influence on the biomechanical phenomena occurring during the implant insertion is still poorly understood, as they are difficult to quantify in vivo. The aim of the present study is to evaluate the relationship between the resonance frequencies of the bone-implant-ancillary system and the stability of the femoral stem under various biomechanical environments. The interference fit IF, the trabecular bone Young's modulus [Formula: see text] and the bone-implant contact friction coefficient [Formula: see text] are varied to investigate their influence on the implant insertion phenomena and on the system vibration behavior. The results exhibit for all the configurations, a nonlinear increase in the bone-implant contact throughout femoral stem insertion, until the proximal contact is reached. While the pull-out force increases with [Formula: see text], IF and [Formula: see text], the bone-implant contact ratio decreases, which shows that a compromise on the set of parameters could be found in order to achieve the largest bone-implant contact while maintaining sufficient pull-out force. The modal analysis on the range [2-7] kHz shows that the resonance frequencies of the bone-implant-ancillary system increase with the bone-implant contact ratio and the trabecular bone Young's modulus, with a sensitivity that varies over the modes. Both the pull-out forces and the vibration behavior are consistent with previous experimental studies. This study demonstrates the potential of using vibration methods to guide the surgeons for optimizing implant stability in various patients and surgical configurations.
Collapse
|
8
|
Bishop NE, Wright P, Preutenborbeck M. A parametric numerical analysis of femoral stem impaction. PLoS One 2022; 17:e0268561. [PMID: 35594265 PMCID: PMC9122192 DOI: 10.1371/journal.pone.0268561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 05/02/2022] [Indexed: 11/19/2022] Open
Abstract
Press-fitted implants are implanted by impaction to ensure adequate seating, but without overloading the components, the surgeon, or the patient. To understand this interrelationship a uniaxial discretised model of the hammer/introducer/implant/bone/soft-tissues was developed. A parametric analysis of applied energy, component materials and geometry, and interactions between implant and bone and between bone and soft-tissues was performed, with implant seating and component stresses as outcome variables. To reduce the impaction effort (energy) required by the surgeon for implant seating and also reduce stresses in the hardware the following outcomes were observed: Reduce energy per hit with more hits / Increase hammer mass / Decrease introducer mass / Increase implant-bone resistance (eg stem roughness). Hardware stiffness and patient mechanics were found to be less important and soft tissue forces, due to inertial protection by the bone mass, were so low that their damage would be unlikely. This simple model provides a basic understanding of how stress waves travel through the impacted system, and an understanding of their relevance to implantation technique and component design.
Collapse
Affiliation(s)
- Nicholas E. Bishop
- Hamburg University of Applied Sciences, Faculty of Life Sciences, Hamburg, Germany
- * E-mail:
| | | | | |
Collapse
|
9
|
Modal Analysis of the Ancillary During Femoral Stem Insertion: A Study on Bone Mimicking Phantoms. Ann Biomed Eng 2022; 50:16-28. [PMID: 34993695 DOI: 10.1007/s10439-021-02887-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/03/2021] [Indexed: 11/01/2022]
Abstract
The femoral stem primary stability achieved by the impaction of an ancillary during its insertion is an important factor of success in cementless surgery. However, surgeons still rely on their proprioception, making the process highly subjective. The use of Experimental Modal Analysis (EMA) without sensor nor probe fixation on the implant or on the bone is a promising non destructive approach to determine the femoral stem stability. The aim of this study is to investigate whether EMA performed directly on the ancillary could be used to monitor the femoral stem insertion into the bone. To do so, a cementless femoral stem was inserted into 10 bone phantoms of human femurs and EMA was carried out on the ancillary using a dedicated impact hammer for each insertion step. Two bending modes could be identified in the frequency range [400-8000] Hz for which the resonance frequency was shown to be sensitive to the insertion step and to the bone-implant interface properties. A significant correlation was obtained between the two modal frequencies and the implant insertion depth (R2 = 0.95 ± 0.04 and R2 = 0.94 ± 0.06). This study opens new paths towards the development of noninvasive vibration based evaluation methods to monitor cementless implant insertion.
Collapse
|
10
|
Determinants of the primary stability of cementless acetabular cup implants: A 3D finite element study. Comput Biol Med 2021; 135:104607. [PMID: 34242871 DOI: 10.1016/j.compbiomed.2021.104607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/31/2021] [Accepted: 06/22/2021] [Indexed: 11/20/2022]
Abstract
Primary stability of cementless implants is crucial for the surgical success and long-term stability. However, primary stability is difficult to quantify in vivo and the biomechanical phenomena occurring during the press-fit insertion of an acetabular cup (AC) implant are still poorly understood. The aim of this study is to investigate the influence of the cortical and trabecular bone Young's moduli Ec and Et, the interference fit IF and the sliding friction coefficient of the bone-implant interface μ on the primary stability of an AC implant. For each parameter combination, the insertion of the AC implant into the hip cavity and consequent pull-out are simulated with a 3D finite element model of a human hemi-pelvis. The primary stability is assessed by determining the polar gap and the maximum pull-out force. The polar gap increases along with all considered parameters. The pull-out force shows a continuous increase with Ec and Et and a non-linear variation as a function of μ and IF is obtained. For μ > 0.6 and IF > 1.4 mm the primary stability decreases, and a combination of smaller μ and IF lead to a better fixation. Based on the patient's bone stiffness, optimal combinations of μ and IF can be identified. The results are in good qualitative agreement with previous studies and provide a better understanding of the determinants of the AC implant primary stability. They suggest a guideline for the optimal choice of implant surface roughness and IF based on the patient's bone quality.
Collapse
|
11
|
Lamassoure L, Giunta J, Rosi G, Poudrel AS, Bosc R, Haïat G. Using an impact hammer to perform biomechanical measurements during osteotomies: Study of an animal model. Proc Inst Mech Eng H 2021; 235:838-845. [PMID: 33892610 DOI: 10.1177/09544119211011824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Osteotomies are common surgical procedures used for instance in rhinoplasty and usually performed using an osteotome impacted by a mallet. Visual control being difficult, osteotomies are often based on the surgeon proprioception to determine the number and energy of each impact. The aim of this study is to determine whether a hammer instrumented with a piezoelectric force sensor can be used to (i) follow the displacement of the osteotome and (ii) determine when the tip of the osteotome arrives in frontal bone, which corresponds to the end of the osteotomy pathway. Seven New Zealand White rabbit heads were collected, and two osteotomies were performed on their left and right nasal bones using the instrumented hammer to record the variation of the force as a function of time during each impact. The second peak time τ was derived from each signal while the displacement of the osteotome tip D was determined using video motion tracking. The results showed a significant correlation between τ and D (ρ2 = 0.74), allowing to estimate the displacement of the osteotome through the measurement of τ. The values of τ measured in the frontal bone were significantly lower than in the nasal bone (p<10-10), which allows to determine the transition between the nasal and frontal bones when τ becomes lower than 0.78 its initial averaged value. Although results should be validated clinically, this technology could be used by surgeons in the future as a decision support system to help assessing the osteotome environment.
Collapse
Affiliation(s)
- Léo Lamassoure
- CNRS, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Créteil Cedex, France
| | - Justine Giunta
- Service de Chirurgie Plastique, reconstructrice, esthétique et Maxillo-faciale du Centre Hospitalier Universitaire Henri Mondor, Créteil, France
| | - Giuseppe Rosi
- Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Université Paris-Est, Créteil Cedex, France
| | - Anne-Sophie Poudrel
- CNRS, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Créteil Cedex, France
| | - Romain Bosc
- Service de Chirurgie Plastique, reconstructrice, esthétique et Maxillo-faciale du Centre Hospitalier Universitaire Henri Mondor, Créteil, France.,Équipe 10, Groupe 5, IMRB U955, INSERM/UPEC, Créteil, France
| | - Guillaume Haïat
- CNRS, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Créteil Cedex, France
| |
Collapse
|
12
|
Hubert A, Rosi G, Bosc R, Haiat G. Using an Impact Hammer to Estimate Elastic Modulus and Thickness of a Sample During an Osteotomy. J Biomech Eng 2020; 142:071009. [PMID: 32005998 DOI: 10.1115/1.4046200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Indexed: 11/08/2022]
Abstract
Performing an osteotomy with a surgical mallet and an osteotome is a delicate intervention mostly based on the surgeon proprioception. It remains difficult to assess the properties of bone tissue being osteotomized. Mispositioning of the osteotome or too strong impacts may lead to bone fractures which may have dramatic consequences. The objective of this study is to determine whether an instrumented hammer may be used to retrieve information on the material properties around the osteotome tip. A hammer equipped with a piezo-electric force sensor was used to impact 100 samples of different composite materials and thicknesses. A model-based inversion technique was developed based on the analysis of two indicators derived from the analysis of the variation of the force as a function of time in order to (i) classify the samples depending on their material types, (ii) determine the materials stiffness, and (iii) estimate the samples thicknesses. The model resulting from the classification using support vector machines (SVM) learning techniques can efficiently predict the material of a new sample, with an estimated 89% prediction performance. A good agreement between the forward analytical model and the experimental data was obtained, leading to an average error lower than 10% in the samples thickness estimation. Based on these results, navigation and decision-support tools could be developed and allows surgeons to adapt their surgical strategy in a patient-specific manner.
Collapse
Affiliation(s)
- Alexis Hubert
- CNRS, Laboratoire Modélisation et Simulation Multi-Echelle, UMR CNRS 8208, 61 Avenue du Général de Gaulle, Créteil 94010, France
| | - Giuseppe Rosi
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 61 av du Général de Gaulle, Créteil 94010, France
| | - Romain Bosc
- INSERM U955, Team 16, Vaccine Research Institute (VRI), Faculté de Médecine, Créteil 94010, France; Université Paris Est, Plastic, Reconstructive, Aesthetic and Maxillofacial Surgery Department, Hopital Henri Mondor, 50, avenue du Maréchal de Lattre de Tassigny, Créteil 94000, France
| | - Guillaume Haiat
- CNRS, Laboratoire Modélisation et Simulation Multi-Echelle, UMR CNRS 8208, 61 Avenue du Général de Gaulle, Créteil 94010, France
| |
Collapse
|
13
|
Time-dependent Viscoelastic Response of Acetabular Bone and Implant Seating during Dynamic Implantation of Press-fit Cups. Med Eng Phys 2020; 81:68-76. [PMID: 32507677 DOI: 10.1016/j.medengphy.2020.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 04/04/2020] [Accepted: 05/13/2020] [Indexed: 11/24/2022]
Abstract
Deformation of an acetabular cup implant during cementless implantation is indicative of the radial compressive forces, and such of the initial implant fixation strength. Stress relaxation in the surrounding bone tissue following implantation could reduce the deformation of the cup and thus primary implant fixation. The aim of this study was therefore to determine the early shape change of the implanted cup immediately after implantation with different press-fit levels and whether recording the force during cup impaction can be used to estimate initial cup fixation. Cup implantations into porcine acetabulae (n=10) were performed using a drop tower. The force induced by the drop weight and cup seating after each impact was recorded. Deformation of the implanted cup was determined with strain gauges over a period of 10min. Lever-out torques were measured to assess the initial fixation strength. Stress relaxation in the bone caused a reduction in cup deformation of 13.52±4.06% after 1min and 29.34±5.11% after 10min. The fixation strength increased with a higher force magnitude during impaction (Rs2=0.810, p=0.037). Reduction of the radial compressive forces due to stress relaxation of the surrounding bone should be considered during press-fit cup implantation in order to compensate for the reduced fixation strength over time. In addition, recording the implantation force could help to estimate initial fixation strength.
Collapse
|
14
|
Ex vivo estimation of cementless femoral stem stability using an instrumented hammer. Clin Biomech (Bristol, Avon) 2020; 76:105006. [PMID: 32388077 DOI: 10.1016/j.clinbiomech.2020.105006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The success of cementless hip arthroplasty depends on the primary stability of the femoral stem. It remains difficult to assess the optimal number of impacts to guarantee the femoral stem stability while avoiding bone fracture. The aim of this study is to validate a method using a hammer instrumented with a force sensor to monitor the insertion of femoral stem in bovine femoral samples. METHODS Different cementless femoral stem were impacted into five bovine femur samples, leading to 99 configurations. Three methods were used to quantify the insertion endpoint: the impact hammer, video motion tracking and the surgeon proprioception. For each configuration, the number of impacts performed by the surgeon until he felt a correct insertion was noted Nsurg. The insertion depth E was measured through video motion tracking, and the impact number Nvid corresponding to the end of the insertion was estimated. Two indicators, noted I and D, were determined from the analysis of the time variation of the force, and the impact number Nd corresponding to a threshold reached in D variation was estimated. FINDINGS The pullout force of the femoral stem was significantly correlated with I (R2 = 0.81). The values of Nsurg, Nvid and Nd were similar for all configurations. INTERPRETATION The results validate the use of the impact hammer to assess the primary stability of the femoral stem and the moment when the surgeon should stop the impaction procedure for an optimal insertion, which could lead to the development of a decision support system.
Collapse
|
15
|
Raffa ML, Nguyen VH, Haiat G. Micromechanical modeling of the contact stiffness of an osseointegrated bone-implant interface. Biomed Eng Online 2019; 18:114. [PMID: 31796076 PMCID: PMC6889538 DOI: 10.1186/s12938-019-0733-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/21/2019] [Indexed: 12/20/2022] Open
Abstract
Background The surgical success of cementless implants is determined by the evolution of the biomechanical properties of the bone–implant interface (BII). One difficulty to model the biomechanical behavior of the BII comes from the implant surface roughness and from the partial contact between bone tissue and the implant. The determination of the constitutive law of the BII would be of interest in the context of implant finite element (FE) modeling to take into account the imperfect characteristics of the BII. The aim of the present study is to determine an effective contact stiffness \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left( {K_{c}^{\text{FEM}} } \right)$$\end{document}KcFEM of an osseointegrated BII accounting for its micromechanical features such as surface roughness, bone–implant contact ratio (BIC) and periprosthetic bone properties. To do so, a 2D FE model of the BII under normal contact conditions was developed and was used to determine the behavior of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K_{c}^{\text{FEM}}$$\end{document}KcFEM. Results The model is validated by comparison with three analytical schemes based on micromechanical homogenization including two Lekesiz’s models (considering interacting and non-interacting micro-cracks) and a Kachanov’s model. \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K_{c}^{\text{FEM}}$$\end{document}KcFEM is found to be comprised between 1013 and 1015 N/m3 according to the properties of the BII. \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K_{c}^{\text{FEM}}$$\end{document}KcFEM is shown to increase nonlinearly as a function of the BIC and to decrease as a function of the roughness amplitude for high BIC values (above around 20%). Moreover, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K_{c}^{\text{FEM}}$$\end{document}KcFEM decreases as a function of the roughness wavelength and increases linearly as a function of the Young’s modulus of periprosthetic bone tissue. Conclusions These results open new paths in implant biomechanical modeling since this model may be used in future macroscopic finite element models modeling the bone–implant system to replace perfectly rigid BII conditions. ![]()
Collapse
Affiliation(s)
- Maria Letizia Raffa
- CNRS, Laboratoire Modélisation et Simulation Multi Echelle, MSME, UMR CNRS 8208, 61 Avenue du Général de Gaulle, 94010, Créteil, France
| | - Vu-Hieu Nguyen
- CNRS, Laboratoire Modélisation et Simulation Multi Echelle, MSME, UMR CNRS 8208, 61 Avenue du Général de Gaulle, 94010, Créteil, France
| | - Guillaume Haiat
- CNRS, Laboratoire Modélisation et Simulation Multi Echelle, MSME, UMR CNRS 8208, 61 Avenue du Général de Gaulle, 94010, Créteil, France.
| |
Collapse
|
16
|
Dubory A, Rosi G, Tijou A, Lomami HA, Flouzat-Lachaniette CH, Haïat G. A cadaveric validation of a method based on impact analysis to monitor the femoral stem insertion. J Mech Behav Biomed Mater 2019; 103:103535. [PMID: 31778909 DOI: 10.1016/j.jmbbm.2019.103535] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 10/17/2019] [Accepted: 11/12/2019] [Indexed: 10/25/2022]
Abstract
The success of cementless hip arthroplasty depends on the primary stability of the femoral stem (FS). It remains difficult to assess the optimal impaction energy to guarantee the FS stability while avoiding bone fracture. The aim of this study is to compare the results of a method based on the use of an instrumented hammer to determine the insertion endpoint of cementless FS in a cadaveric model with two other methods using i) the surgeon proprioception and ii) video motion tracking. Different FS were impacted in nine human cadaveric femurs. For each configuration, the number of impacts realized when the surgeon felt that the FS was correctly inserted was noted Nsurg. For each impact, the insertion depth E was measured and an indicator D was determined based on the time-variation of the force. The impact number Nvid (respectively Nd), corresponding to the end of the migration phase, was estimated analyzing the evolution of E (respectively D). The respective difference between Nsurg, Nvid and Nd was similar and lower than 3 for more than 85% of the configurations. The results allow a validation of the use of an impact hammer to assess the moment when the surgeon should stop the impaction, paving the way towards the development of a decision support system to assist the surgeon.
Collapse
Affiliation(s)
- Arnaud Dubory
- Service de Chirurgie Orthopédique et Traumatologique, Hôpital Henri Mondor AP-HP, CHU Paris 12, Université Paris-Est, 51 avenue du Maréchal de Lattre de Tassigny, 94000, Créteil, France; INSERM U955, IMRB Université Paris-Est, 51 avenue du Maréchal de Lattre de Tassigny, 94000, Créteil, France
| | - Giuseppe Rosi
- CNRS, Laboratoire de Modélisation et de Simulation Multi-Echelle, UMR CNRS 8208, 61 Avenue du Général de Gaulle, Créteil, 94010, France
| | - Antoine Tijou
- CNRS, Laboratoire de Modélisation et de Simulation Multi-Echelle, UMR CNRS 8208, 61 Avenue du Général de Gaulle, Créteil, 94010, France
| | - Hugues Albini Lomami
- INSERM U955, IMRB Université Paris-Est, 51 avenue du Maréchal de Lattre de Tassigny, 94000, Créteil, France
| | - Charles-Henri Flouzat-Lachaniette
- Service de Chirurgie Orthopédique et Traumatologique, Hôpital Henri Mondor AP-HP, CHU Paris 12, Université Paris-Est, 51 avenue du Maréchal de Lattre de Tassigny, 94000, Créteil, France
| | - Guillaume Haïat
- CNRS, Laboratoire de Modélisation et de Simulation Multi-Echelle, UMR CNRS 8208, 61 Avenue du Général de Gaulle, Créteil, 94010, France.
| |
Collapse
|
17
|
Doyle R, van Arkel RJ, Jeffers JRT. Effect of impaction energy on dynamic bone strains, fixation strength, and seating of cementless acetabular cups. J Orthop Res 2019; 37:2367-2375. [PMID: 31317554 PMCID: PMC6851739 DOI: 10.1002/jor.24418] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/02/2019] [Indexed: 02/04/2023]
Abstract
Seating a cementless acetabular cup via impaction is a balancing act; good cup fixation must be obtained to ensure adequate bone in-growth and cup apposition, while acetabular fracture must be avoided. Good impaction technique is essential to the success of hip arthroplasty. Yet little guidance exists in the literature to inform surgeons on "how hard" to hit. A drop rig and synthetic bone model were used to vary the energy of impaction strikes in low and high-density synthetic bone, while key parameters such as dynamic strain (quantifying fracture risk), implant fixation, and polar gap were measured. For high energy impaction (15 J) in low-density synthetic bone, a peak tensile strain was observed during impaction that was up to 3.4× as large as post-strike strain, indicating a high fracture risk. Diminishing returns were observed for pushout fixation with increasing energy. Eighty-five percent of the pushout fixation achieved using a 15 J impaction strike was attained by using a 7.5 J strike energy. Similarly, polar gap was only minimally reduced at high impaction energies. Therefore it is suggested that higher energy strikes increase fracture risk, but do not offer large improvements to fixation or implant-bone apposition. It may difficult be for surgeons to accurately deliver specific impaction energies, suggesting there is scope for operative tools to manage implant seating. © 2019 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 37:2367-2375, 2019.
Collapse
Affiliation(s)
- Ruben Doyle
- Department of Mechanical EngineeringImperial College LondonLondonSW7 2AZUnited Kingdom
| | - Richard J. van Arkel
- Department of Mechanical EngineeringImperial College LondonLondonSW7 2AZUnited Kingdom
| | | |
Collapse
|
18
|
Raffa ML, Nguyen VH, Tabor E, Immel K, Housset V, Flouzat-Lachaniette CH, Haiat G. Dependence of the primary stability of cementless acetabular cup implants on the biomechanical environment. Proc Inst Mech Eng H 2019; 233:1237-1249. [DOI: 10.1177/0954411919879250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biomechanical phenomena occurring at the bone–implant interface during the press-fit insertion of acetabular cup implants are still poorly understood. This article presents a nonlinear geometrical two-dimensional axisymmetric finite element model aiming at describing the biomechanical behavior of the acetabular cup implant as a function of the bone Young’s modulus Eb, the diametric interference fit ( IF), and the friction coefficient µ. The numerical model was compared with experimental results obtained from an in vitro test, which allows to determine a reference configuration with the parameter set: μ* = 0.3, [Formula: see text], and IF* = 1 mm for which the maximal contact pressure tN = 10.7 MPa was found to be localized at the peri-equatorial rim of the acetabular cavity. Parametric studies were carried out, showing that an optimal value of the pull-out force can be defined as a function of μ, Eb, and IF. For the reference configuration, the optimal pull-out force is obtained for μ = 0.6 (respectively, Eb = 0.35 GPa and IF = 1.4 mm). For relatively low value of µ ( µ < 0.2), the optimal value of IF linearly increases as a function of µ independently of Eb, while for µ > 0.2, the optimal value of IF has a nonlinear dependence on µ and decreases as a function of Eb. The results can be used to help surgeons determine the optimal value of IF in a patient specific manner.
Collapse
Affiliation(s)
- Maria Letizia Raffa
- CNRS, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Créteil, France
| | - Vu-Hieu Nguyen
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Créteil, France
| | - Elisabeth Tabor
- CNRS, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Créteil, France
| | - Katharina Immel
- CNRS, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Créteil, France
- Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University, Aachen, Germany
| | - Victor Housset
- Service de Chirurgie Orthopédique et Traumatologique du Centre Hospitalier Universitaire Henri Mondor, Créteil, France
- Équipe 10, Groupe 5, IMRB U955, INSERM/UPEC, Créteil, France
| | - Charles-Henri Flouzat-Lachaniette
- Service de Chirurgie Orthopédique et Traumatologique du Centre Hospitalier Universitaire Henri Mondor, Créteil, France
- Équipe 10, Groupe 5, IMRB U955, INSERM/UPEC, Créteil, France
| | - Guillaume Haiat
- CNRS, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, Créteil, France
| |
Collapse
|
19
|
Gao X, Fraulob M, Haïat G. Biomechanical behaviours of the bone-implant interface: a review. J R Soc Interface 2019; 16:20190259. [PMID: 31362615 PMCID: PMC6685012 DOI: 10.1098/rsif.2019.0259] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/01/2019] [Indexed: 01/09/2023] Open
Abstract
In recent decades, cementless implants have been widely used in clinical practice to replace missing organs, to replace damaged or missing bone tissue or to restore joint functionality. However, there remain risks of failure which may have dramatic consequences. The success of an implant depends on its stability, which is determined by the biomechanical properties of the bone-implant interface (BII). The aim of this review article is to provide more insight on the current state of the art concerning the evolution of the biomechanical properties of the BII as a function of the implant's environment. The main characteristics of the BII and the determinants of implant stability are first introduced. Then, the different mechanical methods that have been employed to derive the macroscopic properties of the BII will be described. The experimental multi-modality approaches used to determine the microscopic biomechanical properties of periprosthetic newly formed bone tissue are also reviewed. Eventually, the influence of the implant's properties, in terms of both surface properties and biomaterials, is investigated. A better understanding of the phenomena occurring at the BII will lead to (i) medical devices that help surgeons to determine an implant's stability and (ii) an improvement in the quality of implants.
Collapse
Affiliation(s)
- Xing Gao
- CNRS, Laboratoire Modélisation et Simulation Multi Echelle, UMR CNRS 8208, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France
- Research Centre for Medical Robotics and Minimally Invasive Surgical Devices, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Manon Fraulob
- CNRS, Laboratoire Modélisation et Simulation Multi Echelle, UMR CNRS 8208, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France
| | - Guillaume Haïat
- CNRS, Laboratoire Modélisation et Simulation Multi Echelle, UMR CNRS 8208, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France
| |
Collapse
|
20
|
Wiznia DH, Schwarzkopf R, Iorio R, Long WJ. Factors That Influence Bone-Ingrowth Fixation of Press-Fit Acetabular Cups. JBJS Rev 2019; 7:e2. [DOI: 10.2106/jbjs.rvw.18.00147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
21
|
Liska WD, Israel SK, Poteet BA. Polar gap after cementless total hip replacement in dogs. Vet Surg 2019; 48:321-335. [DOI: 10.1111/vsu.13179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 09/26/2018] [Accepted: 10/29/2018] [Indexed: 11/29/2022]
Affiliation(s)
| | - Sarah K. Israel
- South Texas Veterinary Specialists ‐ Bluepearl Stone Oak San Antonio Texas
| | - Brian A. Poteet
- VitalRads Veterinary Teleradiology Consultants Cypress Texas
| |
Collapse
|
22
|
Modal frequency and shape curvature as a measure of implant fixation: A computer study on the acetabular cup. Med Eng Phys 2018; 60:30-38. [DOI: 10.1016/j.medengphy.2018.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 06/24/2018] [Accepted: 07/15/2018] [Indexed: 11/18/2022]
|
23
|
Tijou A, Rosi G, Vayron R, Lomami HA, Hernigou P, Flouzat-Lachaniette CH, Haïat G. Monitoring cementless femoral stem insertion by impact analyses: An in vitro study. J Mech Behav Biomed Mater 2018; 88:102-108. [PMID: 30144721 DOI: 10.1016/j.jmbbm.2018.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 06/07/2018] [Accepted: 08/08/2018] [Indexed: 11/24/2022]
Abstract
The primary stability of the femoral stem (FS) implant determines the surgical success of cementless hip arthroplasty. During the insertion, a compromise must be found for the number and energy of impacts that should be sufficiently large to obtain an adapted primary stability of the FS and not too high to decrease fracture risk. The aim of this study is to determine whether a hammer instrumented with a force sensor can be used to monitor the insertion of FS. Cementless FS of different sizes were impacted in four artificial femurs with an instrumented hammer, leading to 72 configurations. The impact number when the surgeon empirically felt that the FS was fully inserted was noted Nsurg. The insertion depth E was assessed using video motion tracking and the impact number Nvid corresponding to the end of the insertion was estimated. For each impact, two indicators noted I and D were determined based on the analysis of the variation of the force as a function of time. The pull-out force F was significantly correlated with the indicator I (R2 = 0.67). The variation of D was analyzed using a threshold to determine an impact number Nd, which is shown to be closely related to Nsurg and Nvid, with an average difference of around 0.2. This approach allows to determine i) the moment when the surgeon should stop the impaction procedure in order to obtain an optimal insertion of the FS and ii) the FS implant primary stability. This study paves the way towards the development of a decision support system to assist the surgeon in hip arthroplasty.
Collapse
Affiliation(s)
- Antoine Tijou
- CNRS, Laboratoire de Modélisation et de Simulation Multi-Echelle, UMR CNRS 8208, 61 Avenue du Général de Gaulle, Créteil 94010, France
| | - Giuseppe Rosi
- CNRS, Laboratoire de Modélisation et de Simulation Multi-Echelle, UMR CNRS 8208, 61 Avenue du Général de Gaulle, Créteil 94010, France
| | - Romain Vayron
- CNRS, Laboratoire de Modélisation et de Simulation Multi-Echelle, UMR CNRS 8208, 61 Avenue du Général de Gaulle, Créteil 94010, France
| | - Hugues Albini Lomami
- CNRS, Laboratoire de Modélisation et de Simulation Multi-Echelle, UMR CNRS 8208, 61 Avenue du Général de Gaulle, Créteil 94010, France
| | - Philippe Hernigou
- Service de Chirurgie Orthopédique et Traumatologique, Hôpital Henri Mondor AP-HP, CHU Paris 12, Université Paris-Est, 51 avenue du Maréchal de Lattre de Tassigny, 94000 Créteil, France
| | - Charles-Henri Flouzat-Lachaniette
- Service de Chirurgie Orthopédique et Traumatologique, Hôpital Henri Mondor AP-HP, CHU Paris 12, Université Paris-Est, 51 avenue du Maréchal de Lattre de Tassigny, 94000 Créteil, France
| | - Guillaume Haïat
- CNRS, Laboratoire de Modélisation et de Simulation Multi-Echelle, UMR CNRS 8208, 61 Avenue du Général de Gaulle, Créteil 94010, France.
| |
Collapse
|
24
|
Bosc R, Tijou A, Rosi G, Nguyen VH, Meningaud JP, Hernigou P, Flouzat-Lachaniette CH, Haiat G. Influence of soft tissue in the assessment of the primary fixation of acetabular cup implants using impact analyses. Clin Biomech (Bristol, Avon) 2018; 55:7-13. [PMID: 29625357 DOI: 10.1016/j.clinbiomech.2018.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 02/08/2018] [Accepted: 03/19/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The acetabular cup (AC) implant primary stability is an important determinant for the success of cementless hip surgery but it remains difficult to assess the AC implant fixation in the clinic. A method based on the analysis of the impact produced by an instrumented hammer on the ancillary has been developed by our group (Michel et al., 2016a). However, the soft tissue thickness present around the acetabulum may affect the impact response, which may hamper the robustness of the method. The aim of this study is to evaluate the influence of the soft tissue thickness (STT) on the acetabular cup implant primary fixation evaluation using impact analyses. METHODS To do so, different AC implants were inserted in five bovine bone samples. For each sample, different stability conditions were obtained by changing the cavity diameter. For each configuration, the AC implant was impacted 25 times with 10 and 30 mm of soft tissues positioned underneath the sample. The averaged indicator Im was determined based on the amplitude of the signal for each configuration and each STT and the pull-out force was measured. FINDINGS The results show that the resonance frequency of the system increases when the value of the soft tissue thickness decreases. Moreover, an ANOVA analysis shows that there was no significant effect of the value of soft tissue thickness on the values of the indicator Im (F = 2.33; p-value = 0.13). INTERPRETATION This study shows that soft tissue thickness does not appear to alter the prediction of the acetabular cup implant primary fixation obtained using the impact analysis approach, opening the path towards future clinical trials.
Collapse
Affiliation(s)
- Romain Bosc
- NSERM U955, Team 16, Créteil, France; Vaccine Research Institute (VRI), Faculté de Médecine, Créteil, France; Université Paris Est, Créteil, France; Hopital Henri Mondor, Plastic, Reconstructive, Aesthetic and Maxillofacial Surgery Department, 50, avenue du Maréchal de Lattre de Tassigny, 94000 Créteil, France.
| | - Antoine Tijou
- CNRS, Laboratoire de Modélisation et de Simulation Multi-Echelle, UMR CNRS 8208, 61 Avenue du Général de Gaulle, Créteil 94010, France
| | - Giuseppe Rosi
- CNRS, Laboratoire de Modélisation et de Simulation Multi-Echelle, UMR CNRS 8208, 61 Avenue du Général de Gaulle, Créteil 94010, France
| | - Vu-Hieu Nguyen
- CNRS, Laboratoire de Modélisation et de Simulation Multi-Echelle, UMR CNRS 8208, 61 Avenue du Général de Gaulle, Créteil 94010, France
| | - Jean-Paul Meningaud
- Hopital Henri Mondor, Plastic, Reconstructive, Aesthetic and Maxillofacial Surgery Department, 50, avenue du Maréchal de Lattre de Tassigny, 94000 Créteil, France
| | - Philippe Hernigou
- Service de Chirurgie Orthopédique et Traumatologique, Hôpital Henri Mondor AP-HP, CHU Paris 12, Université Paris-Est, 51 avenue du Maréchal de Lattre de Tassigny, 94000 Créteil, France
| | - Charles-Henri Flouzat-Lachaniette
- Service de Chirurgie Orthopédique et Traumatologique, Hôpital Henri Mondor AP-HP, CHU Paris 12, Université Paris-Est, 51 avenue du Maréchal de Lattre de Tassigny, 94000 Créteil, France; Équipe 10, Groupe 5, IMRB U955, INSERM/UPEC, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Guillaume Haiat
- CNRS, Laboratoire de Modélisation et de Simulation Multi-Echelle, UMR CNRS 8208, 61 Avenue du Général de Gaulle, Créteil 94010, France
| |
Collapse
|
25
|
Tijou A, Rosi G, Hernigou P, Flouzat-Lachaniette CH, Haïat G. Ex Vivo Evaluation of Cementless Acetabular Cup Stability Using Impact Analyses with a Hammer Instrumented with Strain Sensors. SENSORS 2017; 18:s18010062. [PMID: 29280982 PMCID: PMC5796378 DOI: 10.3390/s18010062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/14/2017] [Accepted: 12/23/2017] [Indexed: 11/16/2022]
Abstract
The acetabular cup (AC) implant stability is determinant for the success of cementless hip arthroplasty. A method based on the analysis of the impact force applied during the press-fit insertion of the AC implant using a hammer instrumented with a force sensor was developed to assess the AC implant stability. The aim of the present study was to investigate the performance of a method using a hammer equipped with strain sensors to retrieve the AC implant stability. Different AC implants were inserted in five bovine samples with different stability conditions leading to 57 configurations. The AC implant was impacted 16 times by the two hammers consecutively. For each impact; an indicator IS (respectively IF) determined by analyzing the time variation of the signal corresponding to the averaged strain (respectively force) obtained with the stress (respectively strain) hammer was calculated. The pull-out force F was measured for each configuration. F was significantly correlated with IS (R² = 0.79) and IF (R² = 0.80). The present method has the advantage of not modifying the shape of the hammer that can be sterilized easily. This study opens new paths towards the development of a decision support system to assess the AC implant stability.
Collapse
Affiliation(s)
- Antoine Tijou
- Laboratoire de Modélisation et de Simulation Multi-Echelle, CNRS, UMR CNRS 8208, 61 Avenue du Général de Gaulle, 94010 Créteil, France;
| | - Giuseppe Rosi
- Laboratoire de Modélisation et de Simulation Multi-Echelle, UMR CNRS 8208, Université Paris-Est, 61 Avenue du Général de Gaulle, 94010 Créteil, France;
| | - Philippe Hernigou
- Service de Chirurgie Orthopédique et Traumatologique, Hôpital Henri Mondor AP-HP, CHU Paris 12, Université Paris-Est, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France; (P.H.); (C.-H.F.-L.)
- Équipe 10, Groupe 5, IMRB U955, INSERM/UPEC, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Charles-Henri Flouzat-Lachaniette
- Service de Chirurgie Orthopédique et Traumatologique, Hôpital Henri Mondor AP-HP, CHU Paris 12, Université Paris-Est, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France; (P.H.); (C.-H.F.-L.)
- Équipe 10, Groupe 5, IMRB U955, INSERM/UPEC, 51 Avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Guillaume Haïat
- Laboratoire de Modélisation et de Simulation Multi-Echelle, CNRS, UMR CNRS 8208, 61 Avenue du Général de Gaulle, 94010 Créteil, France;
- Correspondence: ; Tel.: +33-1-45-17-14-31
| |
Collapse
|
26
|
Nguyen VH, Rosi G, Naili S, Michel A, Raffa ML, Bosc R, Meningaud JP, Chappard C, Takano N, Haiat G. Influence of anisotropic bone properties on the biomechanical behavior of the acetabular cup implant: a multiscale finite element study. Comput Methods Biomech Biomed Engin 2017; 20:1312-1325. [PMID: 28768422 DOI: 10.1080/10255842.2017.1357703] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although the biomechanical behavior of the acetabular cup (AC) implant is determinant for the surgical success, it remains difficult to be assessed due to the multiscale and anisotropic nature of bone tissue. The aim of the present study was to investigate the influence of the anisotropic properties of peri-implant trabecular bone tissue on the biomechanical behavior of the AC implant at the macroscopic scale. Thirteen bovine trabecular bone samples were imaged using micro-computed tomography (μCT) with a resolution of 18 μm. The anisotropic biomechanical properties of each sample were determined at the scale of the centimeter based on a dedicated method using asymptotic homogenization. The material properties obtained with this multiscale approach were used as input data in a 3D finite element model to simulate the macroscopic mechanical behavior of the AC implant under different loading conditions. The largest stress and strain magnitudes were found around the equatorial rim and in the polar area of the AC implant. All macroscopic stiffness quantities were significantly correlated (R2 > 0.85, p < 6.5 e-6) with BV/TV (bone volume/total volume). Moreover, the maximum value of the von Mises stress field was significantly correlated with BV/TV (R2 > 0.61, p < 1.6 e-3) and was always found at the bone-implant interface. However, the mean value of the microscopic stress (at the scale of the trabeculae) decrease as a function of BV/TV for vertical and torsional loading and do not depend on BV/TV for horizontal loading. These results highlight the importance of the anisotropic properties of bone tissue.
Collapse
Affiliation(s)
- Vu-Hieu Nguyen
- a Laboratoire de Modélisation et de Simulation MultiEchelle, UMR CNRS 8208 , Université Paris-Est , Créteil , France
| | - Giuseppe Rosi
- a Laboratoire de Modélisation et de Simulation MultiEchelle, UMR CNRS 8208 , Université Paris-Est , Créteil , France
| | - Salah Naili
- a Laboratoire de Modélisation et de Simulation MultiEchelle, UMR CNRS 8208 , Université Paris-Est , Créteil , France
| | - Adrien Michel
- a Laboratoire de Modélisation et de Simulation MultiEchelle, UMR CNRS 8208 , Université Paris-Est , Créteil , France
| | - Maria-Letizia Raffa
- a Laboratoire de Modélisation et de Simulation MultiEchelle, UMR CNRS 8208 , Université Paris-Est , Créteil , France
| | - Romain Bosc
- b INSERM U955 , Université Paris-Est , Créteil , France
| | | | - Christine Chappard
- c Laboratoire Bioingénierie Biomécanique Ostéo-Articulaires, UMR CNRS 7052 , Université Paris Diderot , Paris , France
| | - Naoki Takano
- d Faculty of Science and Engineering, Department of Mechanical Engineering , Keio University , Yokohama , Japan
| | - Guillaume Haiat
- e Laboratoire de Modélisation et de Simulation Multi-Echelle, UMR CNRS 8208 , Créteil , France.,f École de technologie supérieure , Montreal , Canada.,g Research Center, Hôpital du Sacré-Cœur de Montréal , Montreal , Canada
| |
Collapse
|
27
|
Michel A, Bosc R, Meningaud JP, Hernigou P, Haiat G. Assessing the Acetabular Cup Implant Primary Stability by Impact Analyses: A Cadaveric Study. PLoS One 2016; 11:e0166778. [PMID: 27893757 PMCID: PMC5125605 DOI: 10.1371/journal.pone.0166778] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 11/03/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The primary stability of the acetabular cup (AC) implant is an important determinant for the long term success of cementless hip surgery. However, it remains difficult to assess the AC implant stability due to the complex nature of the bone-implant interface. A compromise should be found when inserting the AC implant in order to obtain a sufficient implant stability without risking bone fracture. The aim of this study is to evaluate the potential of impact signals analyses to assess the primary stability of AC implants inserted in cadaveric specimens. METHODS AC implants with various sizes were inserted in 12 cadaveric hips following the same protocol as the one employed in the clinic, leading to 86 different configurations. A hammer instrumented with a piezoelectric force sensor was then used to measure the variation of the force as a function of time produced during the impact between the hammer and the ancillary. Then, an indicator I was determined for each impact based on the impact momentum. For each configuration, twelve impacts were realized with the hammer, the value of the maximum amplitude being comprised between 2500 and 4500 N, which allows to determine an averaged value IM of the indicator for each configuration. The pull-out force F was measured using a tangential pull-out biomechanical test. RESULTS A significant correlation (R2 = 0.69) was found between IM and F when pooling all data, which indicates that information related to the AC implant biomechanical stability can be retrieved from the analysis of impact signals obtained in cadavers. CONCLUSION These results open new paths in the development of a medical device that could be used in the future in the operative room to help orthopedic surgeons adapt the surgical protocol in a patient specific manner.
Collapse
Affiliation(s)
- Adrien Michel
- CNRS, Laboratoire de Modélisation et de Simulation Multi-Echelle, Créteil, France
| | - Romain Bosc
- INSERM U955, IMRB Université Paris-Est, Créteil, France
| | | | - Philippe Hernigou
- Service de Chirurgie Orthopédique et Traumatologique, Hôpital Henri Mondor AP-HP, CHU Paris 12, Université Paris-Est, Créteil, France
| | - Guillaume Haiat
- CNRS, Laboratoire de Modélisation et de Simulation Multi-Echelle, Créteil, France
- * E-mail:
| |
Collapse
|