1
|
Liu Z, Yin R, Ma W, Li Z, Guo Y, Wu H, Lin Y, Chekhonin VP, Peltzer K, Li H, Mao M, Jian X, Zhang C. Bone metastasis prediction in non-small-cell lung cancer: primary CT-based radiomics signature and clinical feature. BMC Med Imaging 2024; 24:203. [PMID: 39103775 DOI: 10.1186/s12880-024-01383-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Radiomics provided opportunities to quantify the tumor phenotype non-invasively. This study extracted contrast-enhanced computed tomography (CECT) radiomic signatures and evaluated clinical features of bone metastasis in non-small-cell lung cancer (NSCLC). With the combination of the revealed radiomics and clinical features, the predictive modeling on bone metastasis in NSCLC was established. METHODS A total of 318 patients with NSCLC at the Tianjin Medical University Cancer Institute & Hospital was enrolled between January 2009 and December 2019, which included a feature-learning cohort (n = 223) and a validation cohort (n = 95). We trained a radiomics model in 318 CECT images from feature-learning cohort to extract the radiomics features of bone metastasis in NSCLC. The Kruskal-Wallis and the least absolute shrinkage and selection operator regression (LASSO) were used to select bone metastasis-related features and construct the CT radiomics score (Rad-score). Multivariate logistic regression was performed with the combination of the Rad-score and clinical data. A predictive nomogram was subsequently developed. RESULTS Radiomics models using CECT scans were significant on bone metastasis prediction in NSCLC. Model performance was enhanced with each information into the model. The radiomics nomogram achieved an AUC of 0.745 (95% confidence interval [CI]: 0.68,0.80) on predicting bone metastasis in the training set and an AUC of 0.808(95% confidence interval [CI]: 0.71,0.88) in the validation set. CONCLUSION The revealed invisible image features were of significance on guiding bone metastasis prediction in NSCLC. Based on the combination of the image features and clinical characteristics, the predictive nomogram was established. Such nomogram can be used for the auxiliary screening of bone metastasis in NSCLC.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Bone and Soft Tissue Tumor, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- The Sino-Russian Joint Research Center for Bone Metastasis in Malignant Tumor, Tianjin, China
- Department of Orthopedics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong province, China
| | - Rui Yin
- The Sino-Russian Joint Research Center for Bone Metastasis in Malignant Tumor, Tianjin, China
- School of Biomedical Engineering & Technology, Tianjin Medical University, Tianjin, China
| | - Wenjuan Ma
- Department of Bone and Soft Tissue Tumor, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- The Sino-Russian Joint Research Center for Bone Metastasis in Malignant Tumor, Tianjin, China
| | - Zhijun Li
- Department of Bone and Soft Tissue Tumor, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- The Sino-Russian Joint Research Center for Bone Metastasis in Malignant Tumor, Tianjin, China
| | - Yijun Guo
- Department of Bone and Soft Tissue Tumor, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- The Sino-Russian Joint Research Center for Bone Metastasis in Malignant Tumor, Tianjin, China
| | - Haixiao Wu
- Department of Bone and Soft Tissue Tumor, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- The Sino-Russian Joint Research Center for Bone Metastasis in Malignant Tumor, Tianjin, China
| | - Yile Lin
- The Sino-Russian Joint Research Center for Bone Metastasis in Malignant Tumor, Tianjin, China
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Vladimir P Chekhonin
- The Sino-Russian Joint Research Center for Bone Metastasis in Malignant Tumor, Tianjin, China
- Department of Basic and Applied Neurobiology, Federal Medical Research Center for Psychiatry and Narcology, Moscow, Russian Federation
| | - Karl Peltzer
- The Sino-Russian Joint Research Center for Bone Metastasis in Malignant Tumor, Tianjin, China
- Department of Psychology, University of the Free State, Turfloop, South Africa
| | - Huiyang Li
- The Sino-Russian Joint Research Center for Bone Metastasis in Malignant Tumor, Tianjin, China
| | - Min Mao
- Department of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiqi Jian
- School of Biomedical Engineering & Technology, Tianjin Medical University, Tianjin, China.
| | - Chao Zhang
- Department of Bone and Soft Tissue Tumor, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- The Sino-Russian Joint Research Center for Bone Metastasis in Malignant Tumor, Tianjin, China.
| |
Collapse
|
2
|
Paik SH, Jin GY. [Using Artificial Intelligence Software for Diagnosing Emphysema and Interstitial Lung Disease]. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2024; 85:714-726. [PMID: 39130780 PMCID: PMC11310433 DOI: 10.3348/jksr.2024.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/23/2024] [Accepted: 07/18/2024] [Indexed: 08/13/2024]
Abstract
Researchers have developed various algorithms utilizing artificial intelligence (AI) to automatically and objectively diagnose patterns and extent of pulmonary emphysema or interstitial lung diseases on chest CT scans. Studies show that AI-based quantification of emphysema on chest CT scans reveals a connection between an increase in the relative percentage of emphysema and a decline in lung function. Notably, quantifying centrilobular emphysema has proven helpful in predicting clinical symptoms or mortality rates of chronic obstructive pulmonary disease. In the context of interstitial lung diseases, AI can classify the usual interstitial pneumonia pattern on CT scans into categories like normal, ground-glass opacity, reticular opacity, honeycombing, emphysema, and consolidation. This classification accuracy is comparable to chest radiologists (70%-80%). However, the results generated by AI are influenced by factors such as scan parameters, reconstruction algorithms, radiation doses, and the training data used to develop the AI. These limitations currently restrict the widespread adoption of AI for quantifying pulmonary emphysema and interstitial lung diseases in daily clinical practice. This paper will showcase the authors' experience using AI for diagnosing and quantifying emphysema and interstitial lung diseases through case studies. We will primarily focus on the advantages and limitations of AI for these two diseases.
Collapse
|
3
|
Chen JX, Shen YC, Peng SL, Chen YW, Fang HY, Lan JL, Shih CT. Pattern classification of interstitial lung diseases from computed tomography images using a ResNet-based network with a split-transform-merge strategy and split attention. Phys Eng Sci Med 2024; 47:755-767. [PMID: 38436886 DOI: 10.1007/s13246-024-01404-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/09/2024] [Indexed: 03/05/2024]
Abstract
In patients with interstitial lung disease (ILD), accurate pattern assessment from their computed tomography (CT) images could help track lung abnormalities and evaluate treatment efficacy. Based on excellent image classification performance, convolutional neural networks (CNNs) have been massively investigated for classifying and labeling pathological patterns in the CT images of ILD patients. However, previous studies rarely considered the three-dimensional (3D) structure of the pathological patterns of ILD and used two-dimensional network input. In addition, ResNet-based networks such as SE-ResNet and ResNeXt with high classification performance have not been used for pattern classification of ILD. This study proposed a SE-ResNeXt-SA-18 for classifying pathological patterns of ILD. The SE-ResNeXt-SA-18 integrated the multipath design of the ResNeXt and the feature weighting of the squeeze-and-excitation network with split attention. The classification performance of the SE-ResNeXt-SA-18 was compared with the ResNet-18 and SE-ResNeXt-18. The influence of the input patch size on classification performance was also evaluated. Results show that the classification accuracy was increased with the increase of the patch size. With a 32 × 32 × 16 input, the SE-ResNeXt-SA-18 presented the highest performance with average accuracy, sensitivity, and specificity of 0.991, 0.979, and 0.994. High-weight regions in the class activation maps of the SE-ResNeXt-SA-18 also matched the specific pattern features. In comparison, the performance of the SE-ResNeXt-SA-18 is superior to the previously reported CNNs in classifying the ILD patterns. We concluded that the SE-ResNeXt-SA-18 could help track or monitor the progress of ILD through accuracy pattern classification.
Collapse
Affiliation(s)
- Jian-Xun Chen
- Department of Thoracic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Cheng Shen
- Department of Thoracic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Yi-Wen Chen
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Hsin-Yuan Fang
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Joung-Liang Lan
- School of Medicine, China Medical University, Taichung, Taiwan
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Ting Shih
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan.
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
4
|
Zhang L, Xiao Z, Jiang W, Luo C, Ye M, Yue G, Chen Z, Ouyang S, Liu Y. Liver fibrosis MR images classification based on higher-order interaction and sample distribution rebalancing. Health Inf Sci Syst 2023; 11:51. [PMID: 37954065 PMCID: PMC10632346 DOI: 10.1007/s13755-023-00255-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
The fractal features of liver fibrosis MR images exhibit an irregular fragmented distribution, and the diffuse feature distribution lacks interconnectivity, result- ing in incomplete feature learning and poor recognition accuracy. In this paper, we insert recursive gated convolution into the ResNet18 network to introduce spatial information interactions during the feature learning process and extend it to higher orders using recursion. Higher-order spatial information interactions enhance the correlation between features and enable the neural network to focus more on the pixel-level dependencies, enabling a global interpretation of liver MR images. Additionally, the existence of light scattering and quantum noise during the imaging process, coupled with environmental factors such as breathing artifacts caused by long time breath holding, affects the quality of the MR images. To improve the classification performance of the neural network and better cap- ture sample features, we introduce the Adaptive Rebalance loss function and incorporate the feature paradigm as a learnable adaptive attribute into the angular margin auxiliary function. Adaptive Rebalance loss function can expand the inter-class distance and narrow the intra-class difference to further enhance discriminative ability of the model. We conduct extensive experiments on liver fibrosis MR imaging involving 209 patients. The results demonstrate an average improvement of two percent in recognition accuracy compared to ResNet18. The github is at https://github.com/XZN1233/paper.git.
Collapse
Affiliation(s)
- Ling Zhang
- School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, 510006 Guangdong China
| | - Zhennan Xiao
- School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, 510006 Guangdong China
| | - Wenchao Jiang
- School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, 510006 Guangdong China
| | - Chengbin Luo
- School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, 510006 Guangdong China
| | - Ming Ye
- School of Computer Science and Technology, Guangdong University of Technology, Guangzhou, 510006 Guangdong China
| | - Guanghui Yue
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060 Guangdong China
| | - Zhiyuan Chen
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120 Guangdong China
| | - Shuman Ouyang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120 Guangdong China
| | - Yupin Liu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120 Guangdong China
| |
Collapse
|
5
|
Handa T. The potential role of artificial intelligence in the clinical practice of interstitial lung disease. Respir Investig 2023; 61:702-710. [PMID: 37708636 DOI: 10.1016/j.resinv.2023.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/26/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023]
Abstract
Artificial intelligence (AI) is being widely applied in the field of medicine, in areas such as drug discovery, diagnostic support, and assistance with medical practice. Among these, medical imaging is an area where AI is expected to make a significant contribution. In Japan, as of November 2022, 23 AI medical devices have received regulatory approval; all these devices are related to image analysis. In interstitial lung diseases, technologies have been developed that use AI to analyze high-resolution computed tomography and pathological images, and gene expression patterns in tissue taken from transbronchial lung biopsies to assist in the diagnosis of idiopathic pulmonary fibrosis. Some of these technologies are already being used in clinical practice in the United States. AI is expected to reduce the burden on physicians, improve reproducibility, and advance personalized medicine. Obtaining sufficient data for diseases with a small number of patients is difficult. Additionally, certain issues must be addressed in order for AI to be applied in healthcare. These issues include taking responsibility for the AI results output, updating software after the launch of technology, and adapting to new imaging technologies. Establishing research infrastructures such as large-scale databases and common platforms is important for the development of AI technology: their use requires an understanding of the characteristics and limitations of the systems. CLINICAL TRIAL REGISTRATION: Not applicable.
Collapse
Affiliation(s)
- Tomohiro Handa
- Department of Advanced Medicine for Respiratory Failure and Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
6
|
Suman G, Koo CW. Recent Advancements in Computed Tomography Assessment of Fibrotic Interstitial Lung Diseases. J Thorac Imaging 2023; 38:S7-S18. [PMID: 37015833 DOI: 10.1097/rti.0000000000000705] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Interstitial lung disease (ILD) is a heterogeneous group of disorders with complex and varied imaging manifestations and prognosis. High-resolution computed tomography (HRCT) is the current standard-of-care imaging tool for ILD assessment. However, visual evaluation of HRCT is limited by interobserver variation and poor sensitivity for subtle changes. Such challenges have led to tremendous recent research interest in objective and reproducible methods to examine ILDs. Computer-aided CT analysis to include texture analysis and machine learning methods have recently been shown to be viable supplements to traditional visual assessment through improved characterization and quantification of ILDs. These quantitative tools have not only been shown to correlate well with pulmonary function tests and patient outcomes but are also useful in disease diagnosis, surveillance and management. In this review, we provide an overview of recent computer-aided tools in diagnosis, prognosis, and longitudinal evaluation of fibrotic ILDs, while outlining some of the pitfalls and challenges that have precluded further advancement of these tools as well as potential solutions and further endeavors.
Collapse
Affiliation(s)
- Garima Suman
- Division of Thoracic Imaging, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
7
|
Li H, Li H, Yuan L, Liu C, Xiao S, Liu Z, Zhou G, Dong T, Ouyang N, Liu L, Ma C, Feng Y, Zheng Y, Xia L, Fang B. The psc-CVM assessment system: A three-stage type system for CVM assessment based on deep learning. BMC Oral Health 2023; 23:557. [PMID: 37573308 PMCID: PMC10422791 DOI: 10.1186/s12903-023-03266-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/29/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Many scholars have proven cervical vertebral maturation (CVM) method can predict the growth and development and assist in choosing the best time for treatment. However, assessing CVM is a complex process. The experience and seniority of the clinicians have an enormous impact on judgment. This study aims to establish a fully automated, high-accuracy CVM assessment system called the psc-CVM assessment system, based on deep learning, to provide valuable reference information for the growth period determination. METHODS This study used 10,200 lateral cephalograms as the data set (7111 in train set, 1544 in validation set and 1545 in test set) to train the system. The psc-CVM assessment system is designed as three parts with different roles, each operating in a specific order. 1) Position Network for locating the position of cervical vertebrae; 2) Shape Recognition Network for recognizing and extracting the shapes of cervical vertebrae; and 3) CVM Assessment Network for assessing CVM according to the shapes of cervical vertebrae. Statistical analysis was conducted to detect the performance of the system and the agreement of CVM assessment between the system and the expert panel. Heat maps were analyzed to understand better what the system had learned. The area of the third (C3), fourth (C4) cervical vertebrae and the lower edge of second (C2) cervical vertebrae were activated when the system was assessing the images. RESULTS The system has achieved good performance for CVM assessment with an average AUC (the area under the curve) of 0.94 and total accuracy of 70.42%, as evaluated on the test set. The Cohen's Kappa between the system and the expert panel is 0.645. The weighted Kappa between the system and the expert panel is 0.844. The overall ICC between the psc-CVM assessment system and the expert panel was 0.946. The F1 score rank for the psc-CVM assessment system was: CVS (cervical vertebral maturation stage) 6 > CVS1 > CVS4 > CVS5 > CVS3 > CVS2. CONCLUSIONS The results showed that the psc-CVM assessment system achieved high accuracy in CVM assessment. The system in this study was significantly consistent with expert panels in CVM assessment, indicating that the system can be used as an efficient, accurate, and stable diagnostic aid to provide a clinical aid for determining growth and developmental stages by CVM.
Collapse
Affiliation(s)
- Hairui Li
- Department of Orthodontics, Shanghai Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Haizhen Li
- Department of Orthodontics, Shanghai Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Lingjun Yuan
- Department of Orthodontics, Shanghai Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chao Liu
- Department of Orthodontics, Shanghai Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shengzhao Xiao
- Department of Orthodontics, Shanghai Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zhen Liu
- Department of Orthodontics, Shanghai Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Guoli Zhou
- Department of Orthodontics, Shanghai Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ting Dong
- Department of Orthodontics, Shanghai Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ningjuan Ouyang
- Department of Orthodontics, Shanghai Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Lu Liu
- Department of Orthodontics, Shanghai Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | | | - Yang Feng
- Translational Medicine Research Platform of Oral Biomechanics and Artificial Intelligence, Department of Orthodontics, Shanghai Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Youyi Zheng
- State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China.
| | - Lunguo Xia
- Department of Orthodontics, Shanghai Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Bing Fang
- Department of Orthodontics, Shanghai Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
8
|
Exarchos KP, Gkrepi G, Kostikas K, Gogali A. Recent Advances of Artificial Intelligence Applications in Interstitial Lung Diseases. Diagnostics (Basel) 2023; 13:2303. [PMID: 37443696 DOI: 10.3390/diagnostics13132303] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Interstitial lung diseases (ILDs) comprise a rather heterogeneous group of diseases varying in pathophysiology, presentation, epidemiology, diagnosis, treatment and prognosis. Even though they have been recognized for several years, there are still areas of research debate. In the majority of ILDs, imaging modalities and especially high-resolution Computed Tomography (CT) scans have been the cornerstone in patient diagnostic approach and follow-up. The intricate nature of ILDs and the accompanying data have led to an increasing adoption of artificial intelligence (AI) techniques, primarily on imaging data but also in genetic data, spirometry and lung diffusion, among others. In this literature review, we describe the most prominent applications of AI in ILDs presented approximately within the last five years. We roughly stratify these studies in three categories, namely: (i) screening, (ii) diagnosis and classification, (iii) prognosis.
Collapse
Affiliation(s)
- Konstantinos P Exarchos
- Respiratory Medicine Department, University of Ioannina School of Medicine, 45110 Ioannina, Greece
| | - Georgia Gkrepi
- Respiratory Medicine Department, University of Ioannina School of Medicine, 45110 Ioannina, Greece
| | - Konstantinos Kostikas
- Respiratory Medicine Department, University of Ioannina School of Medicine, 45110 Ioannina, Greece
| | - Athena Gogali
- Respiratory Medicine Department, University of Ioannina School of Medicine, 45110 Ioannina, Greece
| |
Collapse
|
9
|
Zhang X, Dong X, Saripan MIB, Du D, Wu Y, Wang Z, Cao Z, Wen D, Liu Y, Marhaban MH. Deep learning PET/CT-based radiomics integrates clinical data: A feasibility study to distinguish between tuberculosis nodules and lung cancer. Thorac Cancer 2023. [PMID: 37183577 DOI: 10.1111/1759-7714.14924] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Radiomic diagnosis models generally consider only a single dimension of information, leading to limitations in their diagnostic accuracy and reliability. The integration of multiple dimensions of information into the deep learning model have the potential to improve its diagnostic capabilities. The purpose of study was to evaluate the performance of deep learning model in distinguishing tuberculosis (TB) nodules and lung cancer (LC) based on deep learning features, radiomic features, and clinical information. METHODS Positron emission tomography (PET) and computed tomography (CT) image data from 97 patients with LC and 77 patients with TB nodules were collected. One hundred radiomic features were extracted from both PET and CT imaging using the pyradiomics platform, and 2048 deep learning features were obtained through a residual neural network approach. Four models included traditional machine learning model with radiomic features as input (traditional radiomics), a deep learning model with separate input of image features (deep convolutional neural networks [DCNN]), a deep learning model with two inputs of radiomic features and deep learning features (radiomics-DCNN) and a deep learning model with inputs of radiomic features and deep learning features and clinical information (integrated model). The models were evaluated using area under the curve (AUC), sensitivity, accuracy, specificity, and F1-score metrics. RESULTS The results of the classification of TB nodules and LC showed that the integrated model achieved an AUC of 0.84 (0.82-0.88), sensitivity of 0.85 (0.80-0.88), and specificity of 0.84 (0.83-0.87), performing better than the other models. CONCLUSION The integrated model was found to be the best classification model in the diagnosis of TB nodules and solid LC.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Faculty of Engineering, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Biomedical Engineering, Chengde Medical University, Chengde, Hebei, China
| | - Xianling Dong
- Department of Biomedical Engineering, Chengde Medical University, Chengde, Hebei, China
- Hebei International Research Center of Medical Engineering and Hebei Provincial Key Laboratory of Nerve Injury and Repair, Chengde Medical University, Chengde, Hebei, China
| | | | - Dongyang Du
- School of Biomedical Engineering and Guangdong Province Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Yanjun Wu
- Department of Biomedical Engineering, Chengde Medical University, Chengde, Hebei, China
| | - Zhongxiao Wang
- Department of Biomedical Engineering, Chengde Medical University, Chengde, Hebei, China
| | - Zhendong Cao
- Department of Radiology, the Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Dong Wen
- Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing, China
| | - Yanli Liu
- Department of Biomedical Engineering, Chengde Medical University, Chengde, Hebei, China
| | | |
Collapse
|
10
|
Haubold J, Zeng K, Farhand S, Stalke S, Steinberg H, Bos D, Meetschen M, Kureishi A, Zensen S, Goeser T, Maier S, Forsting M, Nensa F. AI co-pilot: content-based image retrieval for the reading of rare diseases in chest CT. Sci Rep 2023; 13:4336. [PMID: 36928759 PMCID: PMC10020154 DOI: 10.1038/s41598-023-29949-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/13/2023] [Indexed: 03/18/2023] Open
Abstract
The aim of the study was to evaluate the impact of the newly developed Similar patient search (SPS) Web Service, which supports reading complex lung diseases in computed tomography (CT), on the diagnostic accuracy of residents. SPS is an image-based search engine for pre-diagnosed cases along with related clinical reference content ( https://eref.thieme.de ). The reference database was constructed using 13,658 annotated regions of interest (ROIs) from 621 patients, comprising 69 lung diseases. For validation, 50 CT scans were evaluated by five radiology residents without SPS, and three months later with SPS. The residents could give a maximum of three diagnoses per case. A maximum of 3 points was achieved if the correct diagnosis without any additional diagnoses was provided. The residents achieved an average score of 17.6 ± 5.0 points without SPS. By using SPS, the residents increased their score by 81.8% to 32.0 ± 9.5 points. The improvement of the score per case was highly significant (p = 0.0001). The residents required an average of 205.9 ± 350.6 s per case (21.9% increase) when SPS was used. However, in the second half of the cases, after the residents became more familiar with SPS, this increase dropped to 7%. Residents' average score in reading complex chest CT scans improved by 81.8% when the AI-driven SPS with integrated clinical reference content was used. The increase in time per case due to the use of the SPS was minimal.
Collapse
Affiliation(s)
- Johannes Haubold
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.
- Institute of Artificial Intelligence in Medicine, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.
| | - Ke Zeng
- Siemens Medical Solutions Inc., Malvern, PA, USA
| | | | | | - Hannah Steinberg
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Denise Bos
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Mathias Meetschen
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Anisa Kureishi
- Institute of Artificial Intelligence in Medicine, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Sebastian Zensen
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Tim Goeser
- Department of Radiology and Neuroradiology, Kliniken Maria Hilf, Viersener Str. 450, 41063, Mönchengladbach, NRW, Germany
| | - Sandra Maier
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Michael Forsting
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Felix Nensa
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
- Institute of Artificial Intelligence in Medicine, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| |
Collapse
|
11
|
Karthika K, Jothilakshmi GR. An early prediction of lung cancer, solid, liquid and semi-liquid deposition and its classification through measurement of physical characteristics using CT scan images. THE IMAGING SCIENCE JOURNAL 2023. [DOI: 10.1080/13682199.2022.2163538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- K. Karthika
- Electronics and Communication Engineering, Vels Institute of Science, Technology & Advanced Studies, Chennai, Tamil Nadu, India
| | - G. R. Jothilakshmi
- Electronics and Communication Engineering, Vels Institute of Science, Technology & Advanced Studies, Chennai, Tamil Nadu, India
| |
Collapse
|
12
|
Barnes H, Humphries SM, George PM, Assayag D, Glaspole I, Mackintosh JA, Corte TJ, Glassberg M, Johannson KA, Calandriello L, Felder F, Wells A, Walsh S. Machine learning in radiology: the new frontier in interstitial lung diseases. Lancet Digit Health 2023; 5:e41-e50. [PMID: 36517410 DOI: 10.1016/s2589-7500(22)00230-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/03/2022] [Accepted: 11/14/2022] [Indexed: 12/15/2022]
Abstract
Challenges for the effective management of interstitial lung diseases (ILDs) include difficulties with the early detection of disease, accurate prognostication with baseline data, and accurate and precise response to therapy. The purpose of this Review is to describe the clinical and research gaps in the diagnosis and prognosis of ILD, and how machine learning can be applied to image biomarker research to close these gaps. Machine-learning algorithms can identify ILD in at-risk populations, predict the extent of lung fibrosis, correlate radiological abnormalities with lung function decline, and be used as endpoints in treatment trials, exemplifying how this technology can be used in care for people with ILD. Advances in image processing and analysis provide further opportunities to use machine learning that incorporates deep-learning-based image analysis and radiomics. Collaboration and consistency are required to develop optimal algorithms, and candidate radiological biomarkers should be validated against appropriate predictors of disease outcomes.
Collapse
Affiliation(s)
- Hayley Barnes
- Department of Respiratory Medicine, Alfred Health, Melbourne, VIC, Australia; Central Clinical School, Monash University, Melbourne, VIC, Australia; Centre for Occupational and Environmental Health, Monash University, Melbourne, VIC, Australia.
| | | | - Peter M George
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Hospitals, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Deborah Assayag
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Ian Glaspole
- Department of Respiratory Medicine, Alfred Health, Melbourne, VIC, Australia; Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - John A Mackintosh
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Tamera J Corte
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Central Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Marilyn Glassberg
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Arizona College of Medicine Phoenix, Phoenix, AR, USA
| | | | - Lucio Calandriello
- Department of Diagnostic Imaging, Oncological Radiotherapy and Haematology, Fondazione Policlinico Universitario A Gemelli, IRCCS, Rome, Italy
| | - Federico Felder
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Athol Wells
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Hospitals, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Simon Walsh
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
13
|
Chen X, Peng Y, Guo Y, Sun J, Li D, Cui J. MLRD-Net: 3D multiscale local cross-channel residual denoising network for MRI-based brain tumor segmentation. Med Biol Eng Comput 2022; 60:3377-3395. [DOI: 10.1007/s11517-022-02673-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 09/17/2022] [Indexed: 11/11/2022]
|
14
|
Jiang L, Li M, Jiang H, Tao L, Yang W, Yuan H, He B. Development of an Artificial Intelligence Model for Analyzing the Relationship between Imaging Features and Glucocorticoid Sensitivity in Idiopathic Interstitial Pneumonia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13099. [PMID: 36293674 PMCID: PMC9602820 DOI: 10.3390/ijerph192013099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
High-resolution CT (HRCT) imaging features of idiopathic interstitial pneumonia (IIP) patients are related to glucocorticoid sensitivity. This study aimed to develop an artificial intelligence model to assess glucocorticoid efficacy according to the HRCT imaging features of IIP. The medical records and chest HRCT images of 150 patients with IIP were analyzed retrospectively. The U-net framework was used to create a model for recognizing different imaging features, including ground glass opacities, reticulations, honeycombing, and consolidations. Then, the area ratio of those imaging features was calculated automatically. Forty-five patients were treated with glucocorticoids, and according to the drug efficacy, they were divided into a glucocorticoid-sensitive group and a glucocorticoid-insensitive group. Models assessing the correlation between imaging features and glucocorticoid sensitivity were established using the k-nearest neighbor (KNN) algorithm. The total accuracy (ACC) and mean intersection over union (mIoU) of the U-net model were 0.9755 and 0.4296, respectively. Out of the 45 patients treated with glucocorticoids, 34 and 11 were placed in the glucocorticoid-sensitive and glucocorticoid-insensitive groups, respectively. The KNN-based model had an accuracy of 0.82. An artificial intelligence model was successfully developed for recognizing different imaging features of IIP and a preliminary model for assessing the correlation between imaging features and glucocorticoid sensitivity in IIP patients was established.
Collapse
Affiliation(s)
- Ling Jiang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Meijiao Li
- Department of Radiology, Peking University Third Hospital, Beijing 100191, China
| | - Han Jiang
- OpenBayes (Tianjin) IT Co., Ltd., Beijing 100027, China
| | - Liyuan Tao
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
| | - Wei Yang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Huishu Yuan
- Department of Radiology, Peking University Third Hospital, Beijing 100191, China
| | - Bei He
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
15
|
Modeling global and local label correlation with graph convolutional networks for multi-label chest X-ray image classification. Med Biol Eng Comput 2022; 60:2567-2588. [DOI: 10.1007/s11517-022-02604-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/07/2022] [Indexed: 10/17/2022]
|
16
|
Guo WL, Geng AK, Geng C, Wang J, Dai YK. Combination of UNet++ and ResNeSt to classify chronic inflammation of the choledochal cystic wall in patients with pancreaticobiliary maljunction. Br J Radiol 2022; 95:20201189. [PMID: 35451311 PMCID: PMC10996311 DOI: 10.1259/bjr.20201189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/10/2022] [Accepted: 04/01/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES The aim of this study was to establish an automatic classification model for chronic inflammation of the choledoch wall using deep learning with CT images in patients with pancreaticobiliary maljunction (PBM). METHODS CT images were obtained from 76 PBM patients, including 61 cases assigned to the training set and 15 cases assigned to the testing set. The region of interest (ROI) containing the choledochal lesion was extracted and segmented using the UNet++ network. The degree of severity of inflammation in the choledochal wall was initially classified using the ResNeSt network. The final classification result was determined per decision rules. Grad-CAM was used to explain the association between the classification basis of the network and clinical diagnosis. RESULTS Segmentation of the lesion on the common bile duct wall was roughly obtained with the UNet++ segmentation model and the average value of Dice coefficient of the segmentation model in the testing set was 0.839 ± 0.150, which was verified through fivefold cross-validation. Inflammation was initially classified with ResNeSt18, which resulted in accuracy = 0.756, sensitivity = 0.611, specificity = 0.852, precision = 0.733, and area under curve (AUC) = 0.711. The final classification sensitivity was 0.8. Grad-CAM revealed similar distribution of inflammation of the choledochal wall and verified the inflammation classification. CONCLUSIONS By combining the UNet++ network and the ResNeSt network, we achieved automatic classification of chronic inflammation of the choledoch in PBM patients and verified the robustness through cross-validation performed five times. This study provided an important basis for classification of inflammation severity of the choledoch in PBM patients. ADVANCES IN KNOWLEDGE We combined the UNet++ network and the ResNeSt network to achieve automatic classification of chronic inflammation of the choledoch in PBM. These results provided an important basis for classification of choledochal inflammation in PBM and for surgical therapy.
Collapse
Affiliation(s)
- Wan-liang Guo
- Department of Radiology, Children’s Hospital of Soochow
University, Suzhou,
China
| | - An-kang Geng
- School of Biomedical Engineering (Suzhou), Division of Life
Sciences and Medicine, University of Science and Technology of China, 88
Keling Road, Suzhou,
China
- Suzhou Institute of Biomedical Engineering and Technology,
Chinese Academy of Sciences, 88 Keling Road,
Suzhou, China
| | - Chen Geng
- Suzhou Institute of Biomedical Engineering and Technology,
Chinese Academy of Sciences, 88 Keling Road,
Suzhou, China
| | - Jian Wang
- Pediatric Surgery, Children’s Hospital of Soochow
University, Suzhou,
China
| | - Ya-kang Dai
- Suzhou Institute of Biomedical Engineering and Technology,
Chinese Academy of Sciences, 88 Keling Road,
Suzhou, China
- Jinan Guoke Medical Engineering Technology Development Co.
LTD, Jinan,
China
| |
Collapse
|
17
|
Zuo B, Lee F, Chen Q. An efficient U-shaped network combined with edge attention module and context pyramid fusion for skin lesion segmentation. Med Biol Eng Comput 2022; 60:1987-2000. [PMID: 35538200 DOI: 10.1007/s11517-022-02581-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 04/22/2022] [Indexed: 12/17/2022]
Abstract
Skin lesion segmentation is an important process in skin diagnosis, but still a challenging problem due to the variety of shapes, colours, and boundaries of melanoma. In this paper, we propose a novel and efficient U-shaped network named EAM-CPFNet, which combines with edge attention module (EAM) and context pyramid fusion (CPF) to improve the performance of the skin lesion segmentation. First, we design a plug-and-play module named edge attention module (EAM), which is used to highlight the edge information learned in the encoder. Secondly, we integrate two pyramid modules collectively named context pyramid fusion (CPF) for context information fusion. One is multiple global pyramid guidance (GPG) modules, which replace the skip connections between the encoder and the decoder to capture global context information, and the other is scale-aware pyramid fusion (SAPF) module, which is designed to dynamically fuse multi-scale context information in high-level features by utilizing spatial and channel attention mechanisms. Furthermore, we introduce full-scale skip connections to enhance different levels of global context information. We evaluate the proposed method on the publicly available ISIC2018 dataset, and the experimental results demonstrate that our proposed method is very competitive compared with other state-of-the-art methods for the skin lesion segmentation.
Collapse
Affiliation(s)
- Bin Zuo
- Shanghai Engineering Research Center of Assistive Devices, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Rehabilitation Engineering and Technology Institute, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Feifei Lee
- Shanghai Engineering Research Center of Assistive Devices, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
- Rehabilitation Engineering and Technology Institute, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Qiu Chen
- Major of Electrical Engineering and Electronics, Graduate School of Engineering, Kogakuin University, Tokyo, 163-8677, Japan.
| |
Collapse
|
18
|
|
19
|
Soffer S, Morgenthau AS, Shimon O, Barash Y, Konen E, Glicksberg BS, Klang E. Artificial Intelligence for Interstitial Lung Disease Analysis on Chest Computed Tomography: A Systematic Review. Acad Radiol 2022; 29 Suppl 2:S226-S235. [PMID: 34219012 DOI: 10.1016/j.acra.2021.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/22/2022]
Abstract
RATIONALE AND OBJECTIVES High-resolution computed tomography (HRCT) is paramount in the assessment of interstitial lung disease (ILD). Yet, HRCT interpretation of ILDs may be hampered by inter- and intra-observer variability. Recently, artificial intelligence (AI) has revolutionized medical image analysis. This technology has the potential to advance patient care in ILD. We aimed to systematically evaluate the application of AI for the analysis of ILD in HRCT. MATERIALS AND METHODS We searched MEDLINE/PubMed databases for original publications of deep learning for ILD analysis on chest CT. The search included studies published up to March 1, 2021. The risk of bias evaluation included tailored Quality Assessment of Diagnostic Accuracy Studies and the modified Joanna Briggs Institute Critical Appraisal checklist. RESULTS Data was extracted from 19 retrospective studies. Deep learning techniques included detection, segmentation, and classification of ILD on HRCT. Most studies focused on the classification of ILD into different morphological patterns. Accuracies of 78%-91% were achieved. Two studies demonstrated near-expert performance for the diagnosis of idiopathic pulmonary fibrosis (IPF). The Quality Assessment of Diagnostic Accuracy Studies tool identified a high risk of bias in 15/19 (78.9%) of the studies. CONCLUSION AI has the potential to contribute to the radiologic diagnosis and classification of ILD. However, the accuracy performance is still not satisfactory, and research is limited by a small number of retrospective studies. Hence, the existing published data may not be sufficiently reliable. Only well-designed prospective controlled studies can accurately assess the value of existing AI tools for ILD evaluation.
Collapse
|
20
|
Kumar A, Dhara AK, Thakur SB, Sadhu A, Nandi D. Special Convolutional Neural Network for Identification and Positioning of Interstitial Lung Disease Patterns in Computed Tomography Images. PATTERN RECOGNITION AND IMAGE ANALYSIS 2021. [PMCID: PMC8711684 DOI: 10.1134/s1054661821040027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this paper, automated detection of interstitial lung disease patterns in high resolution computed tomography images is achieved by developing a faster region-based convolutional network based detector with GoogLeNet as a backbone. GoogLeNet is simplified by removing few inception models and used as the backbone of the detector network. The proposed framework is developed to detect several interstitial lung disease patterns without doing lung field segmentation. The proposed method is able to detect the five most prevalent interstitial lung disease patterns: fibrosis, emphysema, consolidation, micronodules and ground-glass opacity, as well as normal. Five-fold cross-validation has been used to avoid bias and reduce over-fitting. The proposed framework performance is measured in terms of F-score on the publicly available MedGIFT database. It outperforms state-of-the-art techniques. The detection is performed at slice level and could be used for screening and differential diagnosis of interstitial lung disease patterns using high resolution computed tomography images.
Collapse
Affiliation(s)
- Abhishek Kumar
- School of Computer and Information Sciences University of Hyderabad, 500046 Hyderabad, India
| | - Ashis Kumar Dhara
- Electrical Engineering National Institute of Technology, 713209 Durgapur, India
| | - Sumitra Basu Thakur
- Department of Chest and Respiratory Care Medicine, Medical College, 700073 Kolkata, India
| | - Anup Sadhu
- EKO Diagnostic, Medical College, 700073 Kolkata, India
| | - Debashis Nandi
- Computer Science and Engineering National Institute of Technology, 713209 Durgapur, India
| |
Collapse
|
21
|
|
22
|
Carvalho ARS, Guimarães A, Werberich GM, de Castro SN, Pinto JSF, Schmitt WR, França M, Bozza FA, Guimarães BLDS, Zin WA, Rodrigues RS. COVID-19 Chest Computed Tomography to Stratify Severity and Disease Extension by Artificial Neural Network Computer-Aided Diagnosis. Front Med (Lausanne) 2020; 7:577609. [PMID: 33344471 PMCID: PMC7746855 DOI: 10.3389/fmed.2020.577609] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/30/2020] [Indexed: 11/25/2022] Open
Abstract
Purpose: This work aims to develop a computer-aided diagnosis (CAD) to quantify the extent of pulmonary involvement (PI) in COVID-19 as well as the radiological patterns referred to as lung opacities in chest computer tomography (CT). Methods: One hundred thirty subjects with COVID-19 pneumonia who underwent chest CT at hospital admission were retrospectively studied (141 sets of CT scan images). Eighty-eight healthy individuals without radiological evidence of acute lung disease served as controls. Two radiologists selected up to four regions of interest (ROI) per patient (totaling 1,475 ROIs) visually regarded as well-aerated regions (472), ground-glass opacity (GGO, 413), crazy paving and linear opacities (CP/LO, 340), and consolidation (250). After balancing with 250 ROIs for each class, the density quantiles (2.5, 25, 50, 75, and 97.5%) of 1,000 ROIs were used to train (700), validate (150), and test (150 ROIs) an artificial neural network (ANN) classifier (60 neurons in a single-hidden-layer architecture). Pulmonary involvement was defined as the sum of GGO, CP/LO, and consolidation volumes divided by total lung volume (TLV), and the cutoff of normality between controls and COVID-19 patients was determined with a receiver operator characteristic (ROC) curve. The severity of pulmonary involvement in COVID-19 patients was also assessed by calculating Z scores relative to the average volume of parenchymal opacities in controls. Thus, COVID-19 cases were classified as mild (
Collapse
Affiliation(s)
- Alysson Roncally S. Carvalho
- UnIC, Faculty of Medicine, Cardiovascular R&D Center, Centro Hospitalar Universitário Do Porto (CHUP), Porto University, Porto, Portugal
- Laboratory of Pulmonary Engineering, Biomedical Engineering Program, Alberto Luiz Coimbra Institute of Post-Graduation and Research in Engineering, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alan Guimarães
- Laboratory of Pulmonary Engineering, Biomedical Engineering Program, Alberto Luiz Coimbra Institute of Post-Graduation and Research in Engineering, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Stephane Nery de Castro
- Hospital Barra D'Or, Rio de Janeiro, Brazil
- National Institute of Infectious Disease, Oswaldo Cruz Foundation (INI/Fiocruz), Rio de Janeiro, Brazil
| | - Joana Sofia F. Pinto
- Radiology Department, Centro Hospitalar Complexo Universitário Do Porto (CHUP), Porto, Portugal
| | | | - Manuela França
- Radiology Department, Centro Hospitalar Complexo Universitário Do Porto (CHUP), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Porto University, Porto, Portugal
| | - Fernando Augusto Bozza
- National Institute of Infectious Disease, Oswaldo Cruz Foundation (INI/Fiocruz), Rio de Janeiro, Brazil
- IDOR - D'Or Institute for Research and Education, Rio de Janeiro, Brazil
| | | | - Walter Araujo Zin
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rosana Souza Rodrigues
- Department of Radiology, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- IDOR - D'Or Institute for Research and Education, Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Ohno Y, Aoyagi K, Takenaka D, Yoshikawa T, Ikezaki A, Fujisawa Y, Murayama K, Hattori H, Toyama H. Machine learning for lung CT texture analysis: Improvement of inter-observer agreement for radiological finding classification in patients with pulmonary diseases. Eur J Radiol 2020; 134:109410. [PMID: 33246272 DOI: 10.1016/j.ejrad.2020.109410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/12/2020] [Accepted: 11/06/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE To evaluate the capability ML-based CT texture analysis for improving interobserver agreement and accuracy of radiological finding assessment in patients with COPD, interstitial lung diseases or infectious diseases. MATERIALS AND METHODS Training cases (n = 28), validation cases (n = 17) and test cases (n = 89) who underwent thin-section CT at a 320-detector row CT with wide volume scan and two 64-detector row CTs with helical scan were enrolled in this study. From 89 CT data, a total of 350 computationally selected ROI including normal lung, emphysema, nodular lesion, ground-glass opacity, reticulation and honeycomb were evaluated by three radiologists as well as by the software. Inter-observer agreements between consensus reading with and without using the software or software alone and standard references determined by consensus of pulmonologists and chest radiologists were determined using κ statistics. Overall distinguishing accuracies were compared among all methods by McNemar's test. RESULTS Agreements for consensus readings obtained with and without the software or the software alone with standard references were determined as significant and substantial or excellent (with the software: κ = 0.91, p < 0.0001; without the software: κ = 0.81, p < 0.0001; the software alone: κ = 0.79, p < 0.0001). Overall differentiation accuracy of consensus reading using the software (94.9 [332/350] %) was significantly higher than that of consensus reading without using the software (84.3 [295/350] %, p < 0.0001) and the software alone (82.3 [288/350] %, p < 0.0001). CONCLUSION ML-based CT texture analysis software has potential for improving interobserver agreement and accuracy for radiological finding assessments in patients with COPD, interstitial lung diseases or infectious diseases.
Collapse
Affiliation(s)
- Yoshiharu Ohno
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan; Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan; Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.
| | - Kota Aoyagi
- Canon Medical Systems Corporation, Otawara, Tochigi, Japan
| | - Daisuke Takenaka
- Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi, Hyogo, Japan
| | - Takeshi Yoshikawa
- Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan; Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi, Hyogo, Japan
| | - Aina Ikezaki
- Canon Medical Systems Corporation, Otawara, Tochigi, Japan
| | | | - Kazuhiro Murayama
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Hidekazu Hattori
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|