1
|
Dhali A, Kipkorir V, Maity R, Srichawla B, Biswas J, Rathna R, Bharadwaj H, Ongidi I, Chaudhry T, Morara G, Waithaka M, Rugut C, Lemashon M, Cheruiyot I, Ojuka D, Ray S, Dhali G. Artificial Intelligence-Assisted Capsule Endoscopy Versus Conventional Capsule Endoscopy for Detection of Small Bowel Lesions: A Systematic Review and Meta-Analysis. J Gastroenterol Hepatol 2025; 40:1105-1118. [PMID: 40083189 PMCID: PMC12062924 DOI: 10.1111/jgh.16931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/04/2025] [Accepted: 03/01/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Capsule endoscopy (CE) is a valuable tool used in the diagnosis of small intestinal lesions. The study aims to systematically review the literature and provide a meta-analysis of the diagnostic accuracy, specificity, sensitivity, and negative and positive predictive values of AI-assisted CE in the diagnosis of small bowel lesions in comparison to CE. METHODS Literature searches were performed through PubMed, SCOPUS, and EMBASE to identify studies eligible for inclusion. All publications up to 24 November 2024 were included. Original articles (including observational studies and randomized control trials), systematic reviews, meta-analyses, and case series reporting outcomes on AI-assisted CE in the diagnosis of small bowel lesions were included. The extracted data were pooled, and a meta-analysis was performed for the appropriate variables, considering the clinical and methodological heterogeneity among the included studies. Comprehensive Meta-Analysis v4.0 (Biostat Inc.) was used for the analysis of the data. RESULTS A total of 14 studies were included in the present study. The mean age of participants across the studies was 54.3 years (SD 17.7), with 55.4% men and 44.6% women. The pooled accuracy for conventional CE was 0.966 (95% CI: 0.925-0.988), whereas for AI-assisted CE, it was 0.9185 (95% CI: 0.9138-0.9233). Conventional CE exhibited a pooled sensitivity of 0.860 (95% CI: 0.786-0.934) compared with AI-assisted CE at 0.9239 (95% CI: 0.8648-0.9870). The positive predictive value for conventional CE was 0.982 (95% CI: 0.976-0.987), whereas AI-assisted CE had a PPV of 0.8928 (95% CI: 0.7554-0.999). The pooled specificity for conventional CE was 0.998 (95% CI: 0.996-0.999) compared with 0.5367 (95% CI: 0.5244-0.5492) for AI-assisted CE. Negative predictive values were higher in AI-assisted CE at 0.9425 (95% CI: 0.9389-0.9462) versus 0.760 (95% CI: 0.577-0.943) for conventional CE. CONCLUSION AI-assisted CE displays superior diagnostic accuracy, sensitivity, and positive predictive values albeit the lower pooled specificity in comparison with conventional CE. Its use would ensure accurate detection of small bowel lesions and further enhance their management.
Collapse
Affiliation(s)
- Arkadeep Dhali
- Academic Unit of GastroenterologySheffield Teaching Hospitals NHS Foundation TrustSheffieldUK
- School of Medicine and Population HealthUniversity of SheffieldSheffieldUK
| | | | - Rick Maity
- Institute of Post Graduate Medical Education and ResearchKolkataIndia
| | | | | | | | | | - Ibsen Ongidi
- Faculty of Health SciencesUniversity of NairobiNairobiKenya
| | - Talha Chaudhry
- Faculty of Health SciencesUniversity of NairobiNairobiKenya
| | - Gisore Morara
- Faculty of Health SciencesUniversity of NairobiNairobiKenya
| | | | - Clinton Rugut
- Faculty of Health SciencesUniversity of NairobiNairobiKenya
| | | | | | - Daniel Ojuka
- Faculty of Health SciencesUniversity of NairobiNairobiKenya
| | - Sukanta Ray
- Institute of Post Graduate Medical Education and ResearchKolkataIndia
| | | |
Collapse
|
2
|
Jiang Q, Yu Y, Ren Y, Li S, He X. A review of deep learning methods for gastrointestinal diseases classification applied in computer-aided diagnosis system. Med Biol Eng Comput 2025; 63:293-320. [PMID: 39343842 DOI: 10.1007/s11517-024-03203-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
Recent advancements in deep learning have significantly improved the intelligent classification of gastrointestinal (GI) diseases, particularly in aiding clinical diagnosis. This paper seeks to review a computer-aided diagnosis (CAD) system for GI diseases, aligning with the actual clinical diagnostic process. It offers a comprehensive survey of deep learning (DL) techniques tailored for classifying GI diseases, addressing challenges inherent in complex scenes, clinical constraints, and technical obstacles encountered in GI imaging. Firstly, the esophagus, stomach, small intestine, and large intestine were located to determine the organs where the lesions were located. Secondly, location detection and classification of a single disease are performed on the premise that the organ's location corresponding to the image is known. Finally, comprehensive classification for multiple diseases is carried out. The results of single and multi-classification are compared to achieve more accurate classification outcomes, and a more effective computer-aided diagnosis system for gastrointestinal diseases was further constructed.
Collapse
Affiliation(s)
- Qianru Jiang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, P.R. China
| | - Yulin Yu
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, P.R. China
| | - Yipei Ren
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, P.R. China
| | - Sheng Li
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, P.R. China
| | - Xiongxiong He
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, P.R. China.
| |
Collapse
|
3
|
Eidler P, Kopylov U, Ukashi O. Capsule Endoscopy in Inflammatory Bowel Disease: Evolving Role and Recent Advances. Gastrointest Endosc Clin N Am 2025; 35:73-102. [PMID: 39510694 DOI: 10.1016/j.giec.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Capsule endoscopy has been proven as an efficient and accurate tool in the diagnosing and monitoring patients with inflammatory bowel disease, especially Crohn's disease (CD). The current European Crohn's and Colitis Organization guidelines recommend small bowel disease assessment in newly diagnosed CD, wherein small bowel capsule endoscopy (SBCE) is of prime importance. SBCE plays an essential role in assessing mucosal healing in patients with CD, serving as a monitoring tool in a treat to target strategy, and is capable of identifying high-risk patients for future flares.
Collapse
Affiliation(s)
- Pinhas Eidler
- Gastroenterology Institute, Sheba Medical Center Tel Hashomer, Ramat Gan 52621, Israel
| | - Uri Kopylov
- Gastroenterology Institute, Sheba Medical Center Tel Hashomer, Ramat Gan 52621, Israel; Faculty of Medical and Health Sciences, Tel-Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Offir Ukashi
- Gastroenterology Institute, Sheba Medical Center Tel Hashomer, Ramat Gan 52621, Israel; Faculty of Medical and Health Sciences, Tel-Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.
| |
Collapse
|
4
|
Lv H, Li HY, Zhang HN, Liu Y. Delayed diagnosis in inflammatory bowel disease: Time to consider solutions. World J Gastroenterol 2024; 30:3954-3958. [PMID: 39351057 PMCID: PMC11438659 DOI: 10.3748/wjg.v30.i35.3954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/18/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
In this editorial, we discuss a recently published manuscript by Blüthner et al in the World Journal of Gastroenterology, with a specific focus on the delayed diagnosis of inflammatory bowel disease (IBD). IBD, which includes Crohn's disease and ulcerative colitis, is a chronic intestinal disorder. A time lag may exist between the onset of inflammation and the appearance of signs and symptoms, potentially leading to an incorrect or delayed diagnosis, a situation referred to as the delayed diagnosis of IBD. Early diagnosis is crucial for effective patient treatment and prognosis, yet delayed diagnosis remains common. The reasons for delayed diagnosis of IBD are numerous and not yet fully understood. One key factor is the nonspecific nature of IBD symptoms, which can easily be mistaken for other conditions. Additionally, the lack of specific diagnostic methods for IBD contributes to these delays. Delayed diagnosis of IBD can result in numerous adverse consequences, including increased intestinal damage, fibrosis, a higher risk of colorectal cancer, and a decrease in the quality of life of the patient. Therefore, it is essential to diagnose IBD promptly by raising physician awareness, enhancing patient education, and developing new diagnostic methods.
Collapse
Affiliation(s)
- Hao Lv
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an 710004, Shaanxi Province, China
| | - Hao-Yu Li
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an 710004, Shaanxi Province, China
| | - Hao-Nan Zhang
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an 710004, Shaanxi Province, China
| | - Yang Liu
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an 710004, Shaanxi Province, China
| |
Collapse
|
5
|
Syed S, Boland BS, Bourke LT, Chen LA, Churchill L, Dobes A, Greene A, Heller C, Jayson C, Kostiuk B, Moss A, Najdawi F, Plung L, Rioux JD, Rosen MJ, Torres J, Zulqarnain F, Satsangi J. Challenges in IBD Research 2024: Precision Medicine. Inflamm Bowel Dis 2024; 30:S39-S54. [PMID: 38778628 DOI: 10.1093/ibd/izae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Indexed: 05/25/2024]
Abstract
Precision medicine is part of 5 focus areas of the Challenges in IBD Research 2024 research document, which also includes preclinical human IBD mechanisms, environmental triggers, novel technologies, and pragmatic clinical research. Building on Challenges in IBD Research 2019, the current Challenges aims to provide a comprehensive overview of current gaps in inflammatory bowel diseases (IBDs) research and deliver actionable approaches to address them with a focus on how these gaps can lead to advancements in interception, remission, and restoration for these diseases. The document is the result of multidisciplinary input from scientists, clinicians, patients, and funders, and represents a valuable resource for patient-centric research prioritization. In particular, the precision medicine section is focused on the main research gaps in elucidating how to bring the best care to the individual patient in IBD. Research gaps were identified in biomarker discovery and validation for predicting disease progression and choosing the most appropriate treatment for each patient. Other gaps were identified in making the best use of existing patient biosamples and clinical data, developing new technologies to analyze large datasets, and overcoming regulatory and payer hurdles to enable clinical use of biomarkers. To address these gaps, the Workgroup suggests focusing on thoroughly validating existing candidate biomarkers, using best-in-class data generation and analysis tools, and establishing cross-disciplinary teams to tackle regulatory hurdles as early as possible. Altogether, the precision medicine group recognizes the importance of bringing basic scientific biomarker discovery and translating it into the clinic to help improve the lives of IBD patients.
Collapse
Affiliation(s)
- Sana Syed
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
- Patient representative for Crohn's & Colitis Foundation, New York, NY, USA
| | - Brigid S Boland
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lauren T Bourke
- Precision Medicine Drug Development, Early Respiratory and Immunology, AstraZeneca, Boston, MA, USA
| | - Lea Ann Chen
- Division of Gastroenterology, Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Laurie Churchill
- Leona M. and Harry B. Helmsley Charitable Trust, New York, NY, USA
| | | | - Adam Greene
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | | | | | | | - Alan Moss
- Crohn's & Colitis Foundation, New York, NY, USA
| | | | - Lori Plung
- Patient representative for Crohn's & Colitis Foundation, New York, NY, USA
| | - John D Rioux
- Research Center, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Michael J Rosen
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Joana Torres
- Division of Gastroenterology, Hospital Beatriz Ângelo, Hospital da Luz, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Fatima Zulqarnain
- Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - Jack Satsangi
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Li L, Yang L, Zhang B, Yan G, Bao Y, Zhu R, Li S, Wang H, Chen M, Jin C, Chen Y, Yu C. Automated detection of small bowel lesions based on capsule endoscopy using deep learning algorithm. Clin Res Hepatol Gastroenterol 2024; 48:102334. [PMID: 38582328 DOI: 10.1016/j.clinre.2024.102334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND In order to overcome the challenges of lesion detection in capsule endoscopy (CE), we improved the YOLOv5-based deep learning algorithm and established the CE-YOLOv5 algorithm to identify small bowel lesions captured by CE. METHODS A total of 124,678 typical abnormal images from 1,452 patients were enrolled to train the CE-YOLOv5 model. Then 298 patients with suspected small bowel lesions detected by CE were prospectively enrolled in the testing phase of the study. Small bowel images and videos from the above 298 patients were interpreted by the experts, non-experts and CE-YOLOv5, respectively. RESULTS The sensitivity of CE-YOLOv5 in diagnosing vascular lesions, ulcerated/erosive lesions, protruding lesions, parasite, diverticulum, active bleeding and villous lesions based on CE videos was 91.9 %, 92.2 %, 91.4 %, 93.1 %, 93.3 %, 95.1 %, and 100 % respectively. Furthermore, CE-YOLOv5 achieved specificity and accuracy of more than 90 % for all lesions. Compared with experts, the CE-YOLOv5 showed comparable overall sensitivity, specificity and accuracy (all P > 0.05). Compared with non-experts, the CE-YOLOv5 showed significantly higher overall sensitivity (P < 0.0001) and overall accuracy (P < 0.0001), and a moderately higher overall specificity (P = 0.0351). Furthermore, the time for AI-reading (5.62 ± 2.81 min) was significantly shorter than that for the other two groups (both P < 0.0001). CONCLUSIONS CE-YOLOv5 diagnosed small bowel lesions in CE videos with high sensitivity, specificity and accuracy, providing a reliable approach for automated lesion detection in real-world clinical practice.
Collapse
Affiliation(s)
- Lan Li
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang 310003, China.
| | - Liping Yang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang 310003, China
| | - Bingling Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang 310003, China
| | - Guofei Yan
- Zhejiang Center for Medical Device Evaluation, Hangzhou, China
| | - Yaqing Bao
- GBA Center for Medical Device Evaluation and Inspection, National Medical Products Administration, Shenzhen, China
| | - Renke Zhu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang 310003, China
| | - Shengjie Li
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang 310003, China
| | - Huogen Wang
- Zhejiang Herymed Technology Co., Ltd, Hangzhou, China; Hithink RoyalFlush Information Network Co., Ltd, Hangzhou, China
| | - Ming Chen
- Hithink RoyalFlush Information Network Co., Ltd, Hangzhou, China
| | - Chaohui Jin
- Zhejiang Herymed Technology Co., Ltd, Hangzhou, China; Hithink RoyalFlush Information Network Co., Ltd, Hangzhou, China
| | - Yishu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang 310003, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
7
|
George AA, Tan JL, Kovoor JG, Lee A, Stretton B, Gupta AK, Bacchi S, George B, Singh R. Artificial intelligence in capsule endoscopy: development status and future expectations. MINI-INVASIVE SURGERY 2024. [DOI: 10.20517/2574-1225.2023.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
In this review, we aim to illustrate the state-of-the-art artificial intelligence (AI) applications in the field of capsule endoscopy. AI has made significant strides in gastrointestinal imaging, particularly in capsule endoscopy - a non-invasive procedure for capturing gastrointestinal tract images. However, manual analysis of capsule endoscopy videos is labour-intensive and error-prone, prompting the development of automated computational algorithms and AI models. While currently serving as a supplementary observer, AI has the capacity to evolve into an autonomous, integrated reading system, potentially significantly reducing capsule reading time while surpassing human accuracy. We searched Embase, Pubmed, Medline, and Cochrane databases from inception to 06 Jul 2023 for studies investigating the use of AI for capsule endoscopy and screened retrieved records for eligibility. Quantitative and qualitative data were extracted and synthesised to identify current themes. In the search, 824 articles were collected, and 291 duplicates and 31 abstracts were deleted. After a double-screening process and full-text review, 106 publications were included in the review. Themes pertaining to AI for capsule endoscopy included active gastrointestinal bleeding, erosions and ulcers, vascular lesions and angiodysplasias, polyps and tumours, inflammatory bowel disease, coeliac disease, hookworms, bowel prep assessment, and multiple lesion detection. This review provides current insights into the impact of AI on capsule endoscopy as of 2023. AI holds the potential for faster and precise readings and the prospect of autonomous image analysis. However, careful consideration of diagnostic requirements and potential challenges is crucial. The untapped potential within vision transformer technology hints at further evolution and even greater patient benefit.
Collapse
|
8
|
Mendes F, Mascarenhas M, Ribeiro T, Afonso J, Cardoso P, Martins M, Cardoso H, Andrade P, Ferreira JPS, Mascarenhas Saraiva M, Macedo G. Artificial Intelligence and Panendoscopy-Automatic Detection of Clinically Relevant Lesions in Multibrand Device-Assisted Enteroscopy. Cancers (Basel) 2024; 16:208. [PMID: 38201634 PMCID: PMC10778030 DOI: 10.3390/cancers16010208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Device-assisted enteroscopy (DAE) is capable of evaluating the entire gastrointestinal tract, identifying multiple lesions. Nevertheless, DAE's diagnostic yield is suboptimal. Convolutional neural networks (CNN) are multi-layer architecture artificial intelligence models suitable for image analysis, but there is a lack of studies about their application in DAE. Our group aimed to develop a multidevice CNN for panendoscopic detection of clinically relevant lesions during DAE. In total, 338 exams performed in two specialized centers were retrospectively evaluated, with 152 single-balloon enteroscopies (Fujifilm®, Porto, Portugal), 172 double-balloon enteroscopies (Olympus®, Porto, Portugal) and 14 motorized spiral enteroscopies (Olympus®, Porto, Portugal); then, 40,655 images were divided in a training dataset (90% of the images, n = 36,599) and testing dataset (10% of the images, n = 4066) used to evaluate the model. The CNN's output was compared to an expert consensus classification. The model was evaluated by its sensitivity, specificity, positive (PPV) and negative predictive values (NPV), accuracy and area under the precision recall curve (AUC-PR). The CNN had an 88.9% sensitivity, 98.9% specificity, 95.8% PPV, 97.1% NPV, 96.8% accuracy and an AUC-PR of 0.97. Our group developed the first multidevice CNN for panendoscopic detection of clinically relevant lesions during DAE. The development of accurate deep learning models is of utmost importance for increasing the diagnostic yield of DAE-based panendoscopy.
Collapse
Affiliation(s)
- Francisco Mendes
- Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (T.R.); (P.C.); (M.M.); (P.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal
| | - Miguel Mascarenhas
- Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (T.R.); (P.C.); (M.M.); (P.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Tiago Ribeiro
- Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (T.R.); (P.C.); (M.M.); (P.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - João Afonso
- Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (T.R.); (P.C.); (M.M.); (P.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Pedro Cardoso
- Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (T.R.); (P.C.); (M.M.); (P.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Miguel Martins
- Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (T.R.); (P.C.); (M.M.); (P.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal
| | - Hélder Cardoso
- Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (T.R.); (P.C.); (M.M.); (P.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Patrícia Andrade
- Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (T.R.); (P.C.); (M.M.); (P.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - João P. S. Ferreira
- Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- DigestAID—Digestive Artificial Intelligence Development, R. Alfredo Allen n°. 455/461, 4200-135 Porto, Portugal
| | | | - Guilherme Macedo
- Alameda Professor Hernâni Monteiro, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (F.M.); (T.R.); (P.C.); (M.M.); (P.A.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4050-345 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| |
Collapse
|
9
|
Musha A, Hasnat R, Mamun AA, Ping EP, Ghosh T. Computer-Aided Bleeding Detection Algorithms for Capsule Endoscopy: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:7170. [PMID: 37631707 PMCID: PMC10459126 DOI: 10.3390/s23167170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Capsule endoscopy (CE) is a widely used medical imaging tool for the diagnosis of gastrointestinal tract abnormalities like bleeding. However, CE captures a huge number of image frames, constituting a time-consuming and tedious task for medical experts to manually inspect. To address this issue, researchers have focused on computer-aided bleeding detection systems to automatically identify bleeding in real time. This paper presents a systematic review of the available state-of-the-art computer-aided bleeding detection algorithms for capsule endoscopy. The review was carried out by searching five different repositories (Scopus, PubMed, IEEE Xplore, ACM Digital Library, and ScienceDirect) for all original publications on computer-aided bleeding detection published between 2001 and 2023. The Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) methodology was used to perform the review, and 147 full texts of scientific papers were reviewed. The contributions of this paper are: (I) a taxonomy for computer-aided bleeding detection algorithms for capsule endoscopy is identified; (II) the available state-of-the-art computer-aided bleeding detection algorithms, including various color spaces (RGB, HSV, etc.), feature extraction techniques, and classifiers, are discussed; and (III) the most effective algorithms for practical use are identified. Finally, the paper is concluded by providing future direction for computer-aided bleeding detection research.
Collapse
Affiliation(s)
- Ahmmad Musha
- Department of Electrical and Electronic Engineering, Pabna University of Science and Technology, Pabna 6600, Bangladesh; (A.M.); (R.H.)
| | - Rehnuma Hasnat
- Department of Electrical and Electronic Engineering, Pabna University of Science and Technology, Pabna 6600, Bangladesh; (A.M.); (R.H.)
| | - Abdullah Al Mamun
- Faculty of Engineering and Technology, Multimedia University, Melaka 75450, Malaysia;
| | - Em Poh Ping
- Faculty of Engineering and Technology, Multimedia University, Melaka 75450, Malaysia;
| | - Tonmoy Ghosh
- Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA;
| |
Collapse
|
10
|
Ukashi O, Soffer S, Klang E, Eliakim R, Ben-Horin S, Kopylov U. Capsule Endoscopy in Inflammatory Bowel Disease: Panenteric Capsule Endoscopy and Application of Artificial Intelligence. Gut Liver 2023; 17:516-528. [PMID: 37305947 PMCID: PMC10352070 DOI: 10.5009/gnl220507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 06/13/2023] Open
Abstract
Video capsule endoscopy (VCE) of the small-bowel has been proven to accurately diagnose small-bowel inflammation and to predict future clinical flares among patients with Crohn's disease (CD). In 2017, the panenteric capsule (PillCam Crohn's system) was introduced for the first time, enabling a reliable evaluation of the whole small and large intestines. The great advantage of visualization of both parts of the gastrointestinal tract in a feasible and single procedure, holds a significant promise for patients with CD, enabling determination of the disease extent and severity, and potentially optimize disease management. In recent years, applications of machine learning, for VCE have been well studied, demonstrating impressive performance and high accuracy for the detection of various gastrointestinal pathologies, among them inflammatory bowel disease lesions. The use of artificial neural network models has been proven to accurately detect/classify and grade CD lesions, and shorten the VCE reading time, resulting in a less tedious process with a potential to minimize missed diagnosis and better predict clinical outcomes. Nevertheless, prospective, and real-world studies are essential to precisely examine artificial intelligence applications in real-life inflammatory bowel disease practice.
Collapse
Affiliation(s)
- Offir Ukashi
- Gastroenterology Institute, Sheba Medical Center, Tel Hashomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Internal Medicine A, Sheba Medical Center, Tel Hashomer, Israel
| | - Shelly Soffer
- Deep Vision Lab, Sheba Medical Center, Tel Hashomer, Israel
- Internal Medicine B, Assuta Medical Center, Ashdod, Israel
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Eyal Klang
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Deep Vision Lab, Sheba Medical Center, Tel Hashomer, Israel
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Israel
| | - Rami Eliakim
- Gastroenterology Institute, Sheba Medical Center, Tel Hashomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shomron Ben-Horin
- Gastroenterology Institute, Sheba Medical Center, Tel Hashomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Uri Kopylov
- Gastroenterology Institute, Sheba Medical Center, Tel Hashomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Zulqarnain F, Rhoads SF, Syed S. Machine and deep learning in inflammatory bowel disease. Curr Opin Gastroenterol 2023; 39:294-300. [PMID: 37144491 PMCID: PMC10256313 DOI: 10.1097/mog.0000000000000945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
PURPOSE OF REVIEW The Management of inflammatory bowel disease (IBD) has evolved with the introduction and widespread adoption of biologic agents; however, the advent of artificial intelligence technologies like machine learning and deep learning presents another watershed moment in IBD treatment. Interest in these methods in IBD research has increased over the past 10 years, and they offer a promising path to better clinical outcomes for IBD patients. RECENT FINDINGS Developing new tools to evaluate IBD and inform clinical management is challenging because of the expansive volume of data and requisite manual interpretation of data. Recently, machine and deep learning models have been used to streamline diagnosis and evaluation of IBD by automating review of data from several diagnostic modalities with high accuracy. These methods decrease the amount of time that clinicians spend manually reviewing data to formulate an assessment. SUMMARY Interest in machine and deep learning is increasing in medicine, and these methods are poised to revolutionize the way that we treat IBD. Here, we highlight the recent advances in using these technologies to evaluate IBD and discuss the ways that they can be leveraged to improve clinical outcomes.
Collapse
Affiliation(s)
- Fatima Zulqarnain
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | | | |
Collapse
|
12
|
Ribeiro T, Mascarenhas Saraiva MJ, Afonso J, Cardoso P, Mendes F, Martins M, Andrade AP, Cardoso H, Mascarenhas Saraiva M, Ferreira J, Macedo G. Design of a Convolutional Neural Network as a Deep Learning Tool for the Automatic Classification of Small-Bowel Cleansing in Capsule Endoscopy. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040810. [PMID: 37109768 PMCID: PMC10145655 DOI: 10.3390/medicina59040810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023]
Abstract
Background and objectives: Capsule endoscopy (CE) is a non-invasive method to inspect the small bowel that, like other enteroscopy methods, requires adequate small-bowel cleansing to obtain conclusive results. Artificial intelligence (AI) algorithms have been seen to offer important benefits in the field of medical imaging over recent years, particularly through the adaptation of convolutional neural networks (CNNs) to achieve more efficient image analysis. Here, we aimed to develop a deep learning model that uses a CNN to automatically classify the quality of intestinal preparation in CE. Methods: A CNN was designed based on 12,950 CE images obtained at two clinical centers in Porto (Portugal). The quality of the intestinal preparation was classified for each image as: excellent, ≥90% of the image surface with visible mucosa; satisfactory, 50-90% of the mucosa visible; and unsatisfactory, <50% of the mucosa visible. The total set of images was divided in an 80:20 ratio to establish training and validation datasets, respectively. The CNN prediction was compared with the classification established by consensus of a group of three experts in CE, currently considered the gold standard to evaluate cleanliness. Subsequently, how the CNN performed in diagnostic terms was evaluated using an independent validation dataset. Results: Among the images obtained, 3633 were designated as unsatisfactory preparation, 6005 satisfactory preparation, and 3312 with excellent preparation. When differentiating the classes of small-bowel preparation, the algorithm developed here achieved an overall accuracy of 92.1%, with a sensitivity of 88.4%, a specificity of 93.6%, a positive predictive value of 88.5%, and a negative predictive value of 93.4%. The area under the curve for the detection of excellent, satisfactory, and unsatisfactory classes was 0.98, 0.95, and 0.99, respectively. Conclusions: A CNN-based tool was developed to automatically classify small-bowel preparation for CE, and it was seen to accurately classify intestinal preparation for CE. The development of such a system could enhance the reproducibility of the scales used for such purposes.
Collapse
Affiliation(s)
- Tiago Ribeiro
- Department of Gasteroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- Gastroenterology and Hepatology, WGO Gastroenterology and Hepatology Training Centre, 4050-345 Porto, Portugal
| | - Miguel José Mascarenhas Saraiva
- Department of Gasteroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- Gastroenterology and Hepatology, WGO Gastroenterology and Hepatology Training Centre, 4050-345 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - João Afonso
- Department of Gasteroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- Gastroenterology and Hepatology, WGO Gastroenterology and Hepatology Training Centre, 4050-345 Porto, Portugal
| | - Pedro Cardoso
- Department of Gasteroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- Gastroenterology and Hepatology, WGO Gastroenterology and Hepatology Training Centre, 4050-345 Porto, Portugal
| | - Francisco Mendes
- Department of Gasteroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- Gastroenterology and Hepatology, WGO Gastroenterology and Hepatology Training Centre, 4050-345 Porto, Portugal
| | - Miguel Martins
- Department of Gasteroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- Gastroenterology and Hepatology, WGO Gastroenterology and Hepatology Training Centre, 4050-345 Porto, Portugal
| | - Ana Patrícia Andrade
- Department of Gasteroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- Gastroenterology and Hepatology, WGO Gastroenterology and Hepatology Training Centre, 4050-345 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Hélder Cardoso
- Department of Gasteroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- Gastroenterology and Hepatology, WGO Gastroenterology and Hepatology Training Centre, 4050-345 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | | | - João Ferreira
- Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- INEGI-Institute of Science and Innovation in Mechanical and Industrial Engineering, 4200-465 Porto, Portugal
| | - Guilherme Macedo
- Department of Gasteroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- Gastroenterology and Hepatology, WGO Gastroenterology and Hepatology Training Centre, 4050-345 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
13
|
Mascarenhas M, Afonso J, Ribeiro T, Andrade P, Cardoso H, Macedo G. The Promise of Artificial Intelligence in Digestive Healthcare and the Bioethics Challenges It Presents. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040790. [PMID: 37109748 PMCID: PMC10145124 DOI: 10.3390/medicina59040790] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023]
Abstract
With modern society well entrenched in the digital area, the use of Artificial Intelligence (AI) to extract useful information from big data has become more commonplace in our daily lives than we perhaps realize. Medical specialties that rely heavily on imaging techniques have become a strong focus for the incorporation of AI tools to aid disease diagnosis and monitoring, yet AI-based tools that can be employed in the clinic are only now beginning to become a reality. However, the potential introduction of these applications raises a number of ethical issues that must be addressed before they can be implemented, among the most important of which are issues related to privacy, data protection, data bias, explainability and responsibility. In this short review, we aim to highlight some of the most important bioethical issues that will have to be addressed if AI solutions are to be successfully incorporated into healthcare protocols, and ideally, before they are put in place. In particular, we contemplate the use of these aids in the field of gastroenterology, focusing particularly on capsule endoscopy and highlighting efforts aimed at resolving the issues associated with their use when available.
Collapse
Affiliation(s)
- Miguel Mascarenhas
- Faculty of Medicine, University of Porto, 4200-437 Porto, Portugal
- Precision Medicine Unit, Department of Gastroenterology, Hospital São João, 4200-437 Porto, Portugal
- WGO Training Center, 4200-437 Porto, Portugal
| | - João Afonso
- Precision Medicine Unit, Department of Gastroenterology, Hospital São João, 4200-437 Porto, Portugal
- WGO Training Center, 4200-437 Porto, Portugal
| | - Tiago Ribeiro
- Precision Medicine Unit, Department of Gastroenterology, Hospital São João, 4200-437 Porto, Portugal
- WGO Training Center, 4200-437 Porto, Portugal
| | - Patrícia Andrade
- Faculty of Medicine, University of Porto, 4200-437 Porto, Portugal
- Precision Medicine Unit, Department of Gastroenterology, Hospital São João, 4200-437 Porto, Portugal
- WGO Training Center, 4200-437 Porto, Portugal
| | - Hélder Cardoso
- Faculty of Medicine, University of Porto, 4200-437 Porto, Portugal
- Precision Medicine Unit, Department of Gastroenterology, Hospital São João, 4200-437 Porto, Portugal
- WGO Training Center, 4200-437 Porto, Portugal
| | - Guilherme Macedo
- Faculty of Medicine, University of Porto, 4200-437 Porto, Portugal
- Precision Medicine Unit, Department of Gastroenterology, Hospital São João, 4200-437 Porto, Portugal
- WGO Training Center, 4200-437 Porto, Portugal
| |
Collapse
|
14
|
Deep-Learning and Device-Assisted Enteroscopy: Automatic Panendoscopic Detection of Ulcers and Erosions. Medicina (B Aires) 2023; 59:medicina59010172. [PMID: 36676796 PMCID: PMC9865285 DOI: 10.3390/medicina59010172] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/17/2023] Open
Abstract
Background and Objectives: Device-assisted enteroscopy (DAE) has a significant role in approaching enteric lesions. Endoscopic observation of ulcers or erosions is frequent and can be associated with many nosological entities, namely Crohn's disease. Although the application of artificial intelligence (AI) is growing exponentially in various imaged-based gastroenterology procedures, there is still a lack of evidence of the AI technical feasibility and clinical applicability of DAE. This study aimed to develop and test a multi-brand convolutional neural network (CNN)-based algorithm for automatically detecting ulcers and erosions in DAE. Materials and Methods: A unicentric retrospective study was conducted for the development of a CNN, based on a total of 250 DAE exams. A total of 6772 images were used, of which 678 were considered ulcers or erosions after double-validation. Data were divided into a training and a validation set, the latter being used for the performance assessment of the model. Our primary outcome measures were sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), and an area under the curve precision-recall curve (AUC-PR). Results: Sensitivity, specificity, PPV, and NPV were respectively 88.5%, 99.7%, 96.4%, and 98.9%. The algorithm's accuracy was 98.7%. The AUC-PR was 1.00. The CNN processed 293.6 frames per second, enabling AI live application in a real-life clinical setting in DAE. Conclusion: To the best of our knowledge, this is the first study regarding the automatic multi-brand panendoscopic detection of ulcers and erosions throughout the digestive tract during DAE, overcoming a relevant interoperability challenge. Our results highlight that using a CNN to detect this type of lesion is associated with high overall accuracy. The development of binary CNN for automatically detecting clinically relevant endoscopic findings and assessing endoscopic inflammatory activity are relevant steps toward AI application in digestive endoscopy, particularly for panendoscopic evaluation.
Collapse
|
15
|
Galati JS, Duve RJ, O'Mara M, Gross SA. Artificial intelligence in gastroenterology: A narrative review. Artif Intell Gastroenterol 2022; 3:117-141. [DOI: 10.35712/aig.v3.i5.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Artificial intelligence (AI) is a complex concept, broadly defined in medicine as the development of computer systems to perform tasks that require human intelligence. It has the capacity to revolutionize medicine by increasing efficiency, expediting data and image analysis and identifying patterns, trends and associations in large datasets. Within gastroenterology, recent research efforts have focused on using AI in esophagogastroduodenoscopy, wireless capsule endoscopy (WCE) and colonoscopy to assist in diagnosis, disease monitoring, lesion detection and therapeutic intervention. The main objective of this narrative review is to provide a comprehensive overview of the research being performed within gastroenterology on AI in esophagogastroduodenoscopy, WCE and colonoscopy.
Collapse
Affiliation(s)
- Jonathan S Galati
- Department of Medicine, NYU Langone Health, New York, NY 10016, United States
| | - Robert J Duve
- Department of Internal Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, United States
| | - Matthew O'Mara
- Division of Gastroenterology, NYU Langone Health, New York, NY 10016, United States
| | - Seth A Gross
- Division of Gastroenterology, NYU Langone Health, New York, NY 10016, United States
| |
Collapse
|
16
|
Chung J, Akter S, Han S, Shin Y, Choi TG, Kang I, Kim SS. Diagnosis by Volatile Organic Compounds in Exhaled Breath in Exhaled Breath from Patients with Gastric and Colorectal Cancers. Int J Mol Sci 2022; 24:129. [PMID: 36613569 PMCID: PMC9820758 DOI: 10.3390/ijms24010129] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
One in three cancer deaths worldwide are caused by gastric and colorectal cancer malignancies. Although the incidence and fatality rates differ significantly from country to country, the rates of these cancers in East Asian nations such as South Korea and Japan have been increasing each year. Above all, the biggest danger of this disease is how challenging it is to recognize in its early stages. Moreover, most patients with these cancers do not present with any disease symptoms before receiving a definitive diagnosis. Currently, volatile organic compounds (VOCs) are being used for the early prediction of several other diseases, and research has been carried out on these applications. Exhaled VOCs from patients possess remarkable potential as novel biomarkers, and their analysis could be transformative in the prevention and early diagnosis of colon and stomach cancers. VOCs have been spotlighted in recent studies due to their ease of use. Diagnosis on the basis of patient VOC analysis takes less time than methods using gas chromatography, and results in the literature demonstrate that it is possible to determine whether a patient has certain diseases by using organic compounds in their breath as indicators. This study describes how VOCs can be used to precisely detect cancers; as more data are accumulated, the accuracy of this method will increase, and it can be applied in more fields.
Collapse
Affiliation(s)
- Jinwook Chung
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Salima Akter
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoonhwa Shin
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Tae Gyu Choi
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
17
|
Deep Learning Multi-Domain Model Provides Accurate Detection and Grading of Mucosal Ulcers in Different Capsule Endoscopy Types. Diagnostics (Basel) 2022; 12:diagnostics12102490. [PMID: 36292178 PMCID: PMC9600959 DOI: 10.3390/diagnostics12102490] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
Background and Aims: The aim of our study was to create an accurate patient-level combined algorithm for the identification of ulcers on CE images from two different capsules. Methods: We retrospectively collected CE images from PillCam-SB3′s capsule and PillCam-Crohn’s capsule. ML algorithms were trained to classify small bowel CE images into either normal or ulcerated mucosa: a separate model for each capsule type, a cross-domain model (training the model on one capsule type and testing on the other), and a combined model. Results: The dataset included 33,100 CE images: 20,621 PillCam-SB3 images and 12,479 PillCam-Crohn’s images, of which 3582 were colonic images. There were 15,684 normal mucosa images and 17,416 ulcerated mucosa images. While the separate model for each capsule type achieved excellent accuracy (average AUC 0.95 and 0.98, respectively), the cross-domain model achieved a wide range of accuracies (0.569–0.88) with an AUC of 0.93. The combined model achieved the best results with an average AUC of 0.99 and average mean patient accuracy of 0.974. Conclusions: A combined model for two different capsules provided high and consistent diagnostic accuracy. Creating a holistic AI model for automated capsule reading is an essential part of the refinement required in ML models on the way to adapting them to clinical practice.
Collapse
|
18
|
Hosoe N, Horie T, Tojo A, Sakurai H, Hayashi Y, Limpias Kamiya KJL, Sujino T, Takabayashi K, Ogata H, Kanai T. Development of a Deep-Learning Algorithm for Small Bowel-Lesion Detection and a Study of the Improvement in the False-Positive Rate. J Clin Med 2022; 11:3682. [PMID: 35806969 PMCID: PMC9267395 DOI: 10.3390/jcm11133682] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Deep learning has recently been gaining attention as a promising technology to improve the identification of lesions, and deep-learning algorithms for lesion detection have been actively developed in small-bowel capsule endoscopy (SBCE). We developed a detection algorithm for abnormal findings by deep learning (convolutional neural network) the SBCE imaging data of 30 cases with abnormal findings. To enable the detection of a wide variety of abnormal findings, the training data were balanced to include all major findings identified in SBCE (bleeding, angiodysplasia, ulceration, and neoplastic lesions). To reduce the false-positive rate, "findings that may be responsible for hemorrhage" and "findings that may require therapeutic intervention" were extracted from the images of abnormal findings and added to the training dataset. For the performance evaluation, the sensitivity and the specificity were calculated using 271 detectable findings in 35 cases. The sensitivity was calculated using 68,494 images of non-abnormal findings. The sensitivity and specificity were 93.4% and 97.8%, respectively. The average number of images detected by the algorithm as having abnormal findings was 7514. We developed an image-reading support system using deep learning for SBCE and obtained a good detection performance.
Collapse
Affiliation(s)
- Naoki Hosoe
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; (T.S.); (K.T.); (H.O.)
| | - Tomofumi Horie
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; (T.H.); (A.T.); (H.S.); (Y.H.); (K.J.-L.L.K.); (T.K.)
| | - Anna Tojo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; (T.H.); (A.T.); (H.S.); (Y.H.); (K.J.-L.L.K.); (T.K.)
| | - Hinako Sakurai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; (T.H.); (A.T.); (H.S.); (Y.H.); (K.J.-L.L.K.); (T.K.)
| | - Yukie Hayashi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; (T.H.); (A.T.); (H.S.); (Y.H.); (K.J.-L.L.K.); (T.K.)
| | - Kenji Jose-Luis Limpias Kamiya
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; (T.H.); (A.T.); (H.S.); (Y.H.); (K.J.-L.L.K.); (T.K.)
| | - Tomohisa Sujino
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; (T.S.); (K.T.); (H.O.)
| | - Kaoru Takabayashi
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; (T.S.); (K.T.); (H.O.)
| | - Haruhiko Ogata
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan; (T.S.); (K.T.); (H.O.)
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; (T.H.); (A.T.); (H.S.); (Y.H.); (K.J.-L.L.K.); (T.K.)
| |
Collapse
|