1
|
Batchelor TT, Gerstner ER, Ye X, Desideri S, Duda DG, Peereboom D, Lesser GJ, Chowdhary S, Wen PY, Grossman S, Supko JG. Feasibility, phase I, and phase II studies of tandutinib, an oral platelet-derived growth factor receptor-β tyrosine kinase inhibitor, in patients with recurrent glioblastoma. Neuro Oncol 2017; 19:567-575. [PMID: 27663390 PMCID: PMC5464374 DOI: 10.1093/neuonc/now185] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/20/2016] [Indexed: 01/27/2023] Open
Abstract
Background Platelet-derived growth factor (PDGF) signaling is important in gliomagenesis and PDGF receptor-β is expressed on most endothelial cells in glioblastoma specimens. Methods We report the results of feasibility, phase I, and phase II studies of tandutinib (MLN518), an orally bioavailable inhibitor of type III receptor tyrosine kinases including PDGF receptor-β, Fms-like tyrosine kinase 3, and c-Kit in patients with recurrent glioblastoma. Results In an initial feasibility study, 6 patients underwent resection for recurrent glioblastoma after receiving tandutinib 500mg twice daily for 7 days. The mean ratio of tandutinib concentration in brain tumor-to-plasma was 13.1±8.9 in 4 of the 6 patients. In the phase I study, 19 patients were treated at 500, 600, and 700mg twice daily dose levels. The maximum tolerated dose was found to be 600mg twice daily, and 30 patients were treated with this dose in the phase II study. The trial was closed after interim analysis, as the prespecified goal of patients alive and progression-free survival at 6 months was not achieved. Biomarker studies suggested that tandutinib treatment could lead to vascular disruption rather than normalization, which was associated with rapid progression. Conclusions Tandutinib readily distributed into the brain following oral administration and achieved concentrations within the tumor that exceed the corresponding concentration in plasma. The phase II study was closed at interim analysis due to lack of efficacy, although this study was not enriched for glioblastomas with alterations of the PDGF pathway.
Collapse
Affiliation(s)
- Tracy T Batchelor
- Departments of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Hematology and Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth R Gerstner
- Departments of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Hematology and Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaobu Ye
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Serena Desideri
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel G Duda
- Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Glenn J Lesser
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina, USA
| | | | - Patrick Y Wen
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Stuart Grossman
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey G Supko
- Division of Hematology and Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Hada N, Netzer WJ, Belhassan F, Wennogle LP, Gizurarson S. Nose-to-brain transport of imatinib mesylate: A pharmacokinetic evaluation. Eur J Pharm Sci 2017; 102:46-54. [PMID: 28238945 DOI: 10.1016/j.ejps.2017.02.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/01/2017] [Accepted: 02/22/2017] [Indexed: 01/12/2023]
Abstract
The delivery of drugs to the brain is a constant challenge due to limitations imposed by the blood-brain barrier (BBB). Various methods of bypassing the BBB are under investigation. One approach is intranasal administration, where the olfactory region of the nasal cavity extends up to the cranial cavity and provides direct access to the brain. The pharmacokinetics of this transport and factors that determine transport rates and capacity is of vital importance for evaluating the clinical value of this route. Here, the pharmacokinetics of intranasally administered imatinib has been explored. Imatinib is distributed into the brain following intravenous administration, and then rapidly removed. Following intravenous administration, the brain/plasma ratio for imatinib was calculated to be 2% and remained at this ratio for 30min. The brain/plasma ratio following intranasal administration, however, was found to be 5.3% and remained at this ratio for up to 90min. Imatinib was found to be rapidly transported into the brain via the olfactory region, by shutting down the nose-to-blood-to-brain transport with epinephrine. The increased brain concentration of imatinib (0.33μg/g tissue) achieved by intranasal administration, compared with an IV injection, is likely to provide a model for developing a wide range of CNS active molecules that were previously removed from consideration as drug candidates due to their lack of CNS access. Furthermore, brain imatinib levels were increased by co-administration of the p-gp substrates, elacridar and pantoprazole, showing that both compounds were able to inhibit the elimination of imatinib from the brain.
Collapse
Affiliation(s)
- Nobuko Hada
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, 107 Reykjavík, Iceland
| | - William Joseph Netzer
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Fanny Belhassan
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, 107 Reykjavík, Iceland
| | | | - Sveinbjörn Gizurarson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, 107 Reykjavík, Iceland.
| |
Collapse
|
3
|
Wang H, Xu T, Jiang Y, Xu H, Yan Y, Fu D, Chen J. The challenges and the promise of molecular targeted therapy in malignant gliomas. Neoplasia 2015; 17:239-55. [PMID: 25810009 PMCID: PMC4372648 DOI: 10.1016/j.neo.2015.02.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/06/2015] [Indexed: 11/18/2022] Open
Abstract
Malignant gliomas are the most common malignant primary brain tumors and one of the most challenging forms of cancers to treat. Despite advances in conventional treatment, the outcome for patients remains almost universally fatal. This poor prognosis is due to therapeutic resistance and tumor recurrence after surgical removal. However, over the past decade, molecular targeted therapy has held the promise of transforming the care of malignant glioma patients. Significant progress in understanding the molecular pathology of gliomagenesis and maintenance of the malignant phenotypes will open opportunities to rationally develop new molecular targeted therapy options. Recently, therapeutic strategies have focused on targeting pro-growth signaling mediated by receptor tyrosine kinase/RAS/phosphatidylinositol 3-kinase pathway, proangiogenic pathways, and several other vital intracellular signaling networks, such as proteasome and histone deacetylase. However, several factors such as cross-talk between the altered pathways, intratumoral molecular heterogeneity, and therapeutic resistance of glioma stem cells (GSCs) have limited the activity of single agents. Efforts are ongoing to study in depth the complex molecular biology of glioma, develop novel regimens targeting GSCs, and identify biomarkers to stratify patients with the individualized molecular targeted therapy. Here, we review the molecular alterations relevant to the pathology of malignant glioma, review current advances in clinical targeted trials, and discuss the challenges, controversies, and future directions of molecular targeted therapy.
Collapse
Affiliation(s)
- Hongxiang Wang
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tao Xu
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ying Jiang
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hanchong Xu
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yong Yan
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Da Fu
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Juxiang Chen
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
4
|
Ilkhanizadeh S, Lau J, Huang M, Foster DJ, Wong R, Frantz A, Wang S, Weiss WA, Persson AI. Glial progenitors as targets for transformation in glioma. Adv Cancer Res 2015; 121:1-65. [PMID: 24889528 DOI: 10.1016/b978-0-12-800249-0.00001-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glioma is the most common primary malignant brain tumor and arises throughout the central nervous system. Recent focus on stem-like glioma cells has implicated neural stem cells (NSCs), a minor precursor population restricted to germinal zones, as a potential source of gliomas. In this review, we focus on the relationship between oligodendrocyte progenitor cells (OPCs), the largest population of cycling glial progenitors in the postnatal brain, and gliomagenesis. OPCs can give rise to gliomas, with signaling pathways associated with NSCs also playing key roles during OPC lineage development. Gliomas can also undergo a switch from progenitor- to stem-like phenotype after therapy, consistent with an OPC-origin even for stem-like gliomas. Future in-depth studies of OPC biology may shed light on the etiology of OPC-derived gliomas and reveal new therapeutic avenues.
Collapse
Affiliation(s)
- Shirin Ilkhanizadeh
- Department of Neurology, University of California, San Francisco, California, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Jasmine Lau
- Department of Neurology, University of California, San Francisco, California, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Miller Huang
- Department of Neurology, University of California, San Francisco, California, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Daniel J Foster
- Department of Neurology, University of California, San Francisco, California, USA; Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, California, USA; Sandler Neurosciences Center, University of California, San Francisco, California, USA
| | - Robyn Wong
- Department of Neurology, University of California, San Francisco, California, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Aaron Frantz
- Department of Neurology, University of California, San Francisco, California, USA; Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, California, USA; Sandler Neurosciences Center, University of California, San Francisco, California, USA
| | - Susan Wang
- Department of Neurology, University of California, San Francisco, California, USA; Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, California, USA; Sandler Neurosciences Center, University of California, San Francisco, California, USA
| | - William A Weiss
- Department of Neurology, University of California, San Francisco, California, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA; Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, California, USA; Department of Neurology, University of California, San Francisco, California, USA
| | - Anders I Persson
- Department of Neurology, University of California, San Francisco, California, USA; Department of Neurological Surgery and Brain Tumor Research Center, University of California, San Francisco, California, USA; Sandler Neurosciences Center, University of California, San Francisco, California, USA.
| |
Collapse
|
5
|
Kim SN, Jeibmann A, Halama K, Witte HT, Wälte M, Matzat T, Schillers H, Faber C, Senner V, Paulus W, Klämbt C. ECM stiffness regulates glial migration in Drosophila and mammalian glioma models. Development 2014; 141:3233-42. [DOI: 10.1242/dev.106039] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cell migration is an important feature of glial cells. Here, we used the Drosophila eye disc to decipher the molecular network controlling glial migration. We stimulated glial motility by pan-glial PDGF receptor (PVR) activation and identified several genes acting downstream of PVR. Drosophila lox is a non-essential gene encoding a secreted protein that stiffens the extracellular matrix (ECM). Glial-specific knockdown of Integrin results in ECM softening. Moreover, we show that lox expression is regulated by Integrin signaling and vice versa, suggesting that a positive-feedback loop ensures a rigid ECM in the vicinity of migrating cells. The general implication of this model was tested in a mammalian glioma model, where a Lox-specific inhibitor unraveled a clear impact of ECM rigidity in glioma cell migration.
Collapse
Affiliation(s)
- Su Na Kim
- Institute of Neurobiology, University of Münster, Münster 48149, Germany
| | - Astrid Jeibmann
- Institute of Neuropathology, University Hospital Münster, Münster 48149, Germany
| | - Kathrin Halama
- Institute of Neuropathology, University Hospital Münster, Münster 48149, Germany
| | - Hanna Teresa Witte
- Institute of Neurobiology, University of Münster, Münster 48149, Germany
- Institute of Neuropathology, University Hospital Münster, Münster 48149, Germany
| | - Mike Wälte
- Institute of Physiology II, University Hospital Münster, Münster 48149, Germany
| | - Till Matzat
- Institute of Neurobiology, University of Münster, Münster 48149, Germany
| | - Hermann Schillers
- Institute of Physiology II, University Hospital Münster, Münster 48149, Germany
| | - Cornelius Faber
- Department of Clinical Radiology, University Hospital Münster, Münster 48149, Germany
| | - Volker Senner
- Institute of Neuropathology, University Hospital Münster, Münster 48149, Germany
| | - Werner Paulus
- Institute of Neuropathology, University Hospital Münster, Münster 48149, Germany
| | - Christian Klämbt
- Institute of Neurobiology, University of Münster, Münster 48149, Germany
| |
Collapse
|
6
|
Chakravarty R, Hong H, Cai W. Positron emission tomography image-guided drug delivery: current status and future perspectives. Mol Pharm 2014; 11:3777-97. [PMID: 24865108 PMCID: PMC4218872 DOI: 10.1021/mp500173s] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Positron
emission tomography (PET) is an important modality in
the field of molecular imaging, which is gradually impacting patient
care by providing safe, fast, and reliable techniques that help to
alter the course of patient care by revealing invasive, de facto procedures
to be unnecessary or rendering them obsolete. Also, PET provides a
key connection between the molecular mechanisms involved in the pathophysiology
of disease and the according targeted therapies. Recently, PET imaging
is also gaining ground in the field of drug delivery. Current drug
delivery research is focused on developing novel drug delivery systems
with emphasis on precise targeting, accurate dose delivery, and minimal
toxicity in order to achieve maximum therapeutic efficacy. At the
intersection between PET imaging and controlled drug delivery, interest
has grown in combining both these paradigms into clinically effective
formulations. PET image-guided drug delivery has great potential to
revolutionize patient care by in vivo assessment
of drug biodistribution and accumulation at the target site and real-time
monitoring of the therapeutic outcome. The expected end point of this
approach is to provide fundamental support for the optimization of
innovative diagnostic and therapeutic strategies that could contribute
to emerging concepts in the field of “personalized medicine”.
This review focuses on the recent developments in PET image-guided
drug delivery and discusses intriguing opportunities for future development.
The preclinical data reported to date are quite promising, and it
is evident that such strategies in cancer management hold promise
for clinically translatable advances that can positively impact the
overall diagnostic and therapeutic processes and result in enhanced
quality of life for cancer patients.
Collapse
Affiliation(s)
- Rubel Chakravarty
- Department of Radiology, University of Wisconsin-Madison , Madison, Wisconsin 53705-2275, United States
| | | | | |
Collapse
|
7
|
Response to imatinib as a function of target kinase expression in recurrent glioblastoma. SPRINGERPLUS 2014; 3:111. [PMID: 25674429 PMCID: PMC4320134 DOI: 10.1186/2193-1801-3-111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 02/03/2014] [Indexed: 12/30/2022]
Abstract
BACKGROUND Despite some progress in the treatment of glioblastoma, most patients experience tumor recurrence. Imatinib mesylate, a tyrosine kinase inhibitor of platelet derived growth factor receptor-alpha and -beta, c-fms, c-kit, abl and arg kinase (imatinib targets), has been shown to prevent tumor progression in early studies of recurrent gliomas, but has shown weak activity in randomized controlled trials. We studied the response to oral imatinib in 24 patients with recurrent glioblastoma who showed immunohistochemical expression of these imatinib targets in the initially resected tumor tissue. METHODS We offered oral imatinib, 400 mg once daily treatment to 24 recurrent glioblastoma patients whose initial biopsy showed presence of at least one imatinib inhibitable tyrosine kinase. RESULTS Six imatinib treated patients survived over one year. Twelve patients achieved at least tumor stabilisations from 2.6 months to 13.4 months. Median progression free survival was 3 months and median overall survival was 6 months. Imatinib was well tolerated. We found evidence, though not statistically significant, that arg kinase [Abl-2] immunopositivity had shorter survival [5 months] than the arg kinase immunonegative group [9 months]. CONCLUSIONS Responses to imatinib observed in this patient series where imatinib inhibitable tyrosine kinases were documented on the original biopsy are marginally better than that previously reported in imatinib treatment of unselected recurrent glioblastoma patients. We thus present a suggestion for defining a patient sub-population who might potentially benefit from imatinib.
Collapse
|
8
|
Fluorine-labeled dasatinib nanoformulations as targeted molecular imaging probes in a PDGFB-driven murine glioblastoma model. Neoplasia 2013; 14:1132-43. [PMID: 23308046 DOI: 10.1593/neo.121750] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 10/17/2012] [Accepted: 10/18/2012] [Indexed: 01/15/2023] Open
Abstract
Dasatinib, a new-generation Src and platelet-derived growth factor receptor (PDGFR) inhibitor, is currently under evaluation in high-grade glioma clinical trials. To achieve optimum physicochemical and/or biologic properties, alternative drug delivery vehicles may be needed. We used a novel fluorinated dasatinib derivative (F-SKI249380), in combination with nanocarrier vehicles and metabolic imaging tools (microPET) to evaluate drug delivery and uptake in a platelet-derived growth factor B (PDGFB)-driven genetically engineered mouse model (GEMM) of high-grade glioma. We assessed dasatinib survival benefit on the basis of measured tumor volumes. Using brain tumor cells derived from PDGFB-driven gliomas, dose-dependent uptake and time-dependent inhibitory effects of F-SKI249380 on biologic activity were investigated and compared with the parent drug. PDGFR receptor status and tumor-specific targeting were non-invasively evaluated in vivo using (18)F-SKI249380 and (18)F-SKI249380-containing micellar and liposomal nanoformulations. A statistically significant survival benefit was found using dasatinib (95 mg/kg) versus saline vehicle (P < .001) in tumor volume-matched GEMM pairs. Competitive binding and treatment assays revealed comparable biologic properties for F-SKI249380 and the parent drug. In vivo, Significantly higher tumor uptake was observed for (18)F-SKI249380-containing micelle formulations [4.9 percentage of the injected dose per gram tissue (%ID/g); P = .002] compared to control values (1.6%ID/g). Saturation studies using excess cold dasatinib showed marked reduction of tumor uptake values to levels in normal brain (1.5%ID/g), consistent with in vivo binding specificity. Using (18)F-SKI249380-containing micelles as radiotracers to estimate therapeutic dosing requirements, we calculated intratumoral drug concentrations (24-60 nM) that were comparable to in vitro 50% inhibitory concentration values. (18)F-SKI249380 is a PDGFR-selective tracer, which demonstrates improved delivery to PDGFB-driven high-grade gliomas and facilitates treatment planning when coupled with nanoformulations and quantitative PET imaging approaches.
Collapse
|
9
|
Heinke T, Espiríto Santo KSD, Longatto Filho A, Stavale JN. Vascular endothelial growth factor and KIT expression in relation with microvascular density and tumor grade in supratentorial astrocytic tumors. Acta Cir Bras 2013; 28:48-54. [PMID: 23338113 DOI: 10.1590/s0102-86502013000100008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 11/22/2012] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To evaluate the relationship between microvascular density and the expression of vascular endothelial growth factor (VEGF) and KIT as possible markers of angiogenic stimulus in astrocytic tumors and correlate it with histopathological grading. METHODS We enrolled 99 surgical specimens of supratentorial astrocytic tumors for analysis of VEGF and KIT and subsequent correlation with MVD and grading. RESULTS KIT and VEGF expression correlated with microvascular density (p<0.005) and both VEGF and microvascular density correlated with grading (p<0.005). KIT had no significant relationship with grading (p=0.657). CONCLUSION KIT and VEGF constitute important pathways in the angiogenesis of astrocytomas and therefore are promising prognostic tools and options for therapeutic intervention.
Collapse
Affiliation(s)
- Thaís Heinke
- Department of Pathology, Investigative Pathology Division, EPM, UNIFESP, Sao Paulo, Brazil.
| | | | | | | |
Collapse
|
10
|
Costa PM, Cardoso AL, Nóbrega C, Pereira de Almeida LF, Bruce JN, Canoll P, Pedroso de Lima MC. MicroRNA-21 silencing enhances the cytotoxic effect of the antiangiogenic drug sunitinib in glioblastoma. Hum Mol Genet 2012. [PMID: 23201752 DOI: 10.1093/hmg/dds496] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Highly malignant glioblastoma (GBM) is characterized by high genetic heterogeneity and infiltrative brain invasion patterns, and aberrant miRNA expression has been associated with hallmark malignant properties of GBM. The lack of effective GBM treatment options prompted us to investigate whether miRNAs would constitute promising therapeutic targets toward the generation of a gene therapy approach with clinical significance for this disease. Here, we show that microRNA-21 (miR-21) is upregulated and microRNA-128 (miR-128) is downregulated in mouse and human GBM samples, a finding that is corroborated by analysis of a large set of human GBM data from The Cancer Genome Atlas. Moreover, we demonstrate that oligonucleotide-mediated miR-21 silencing in U87 human GBM cells resulted in increased levels of the tumor suppressors PTEN and PDCD4, caspase 3/7 activation and decreased tumor cell proliferation. Cell exposure to pifithrin, an inhibitor of p53 transcriptional activity, reduced the caspase activity associated with decreased miR-21 expression. Finally, we demonstrate for the first time that miR-21 silencing enhances the antitumoral effect of the tyrosine kinase inhibitor sunitinib, whereas no therapeutic benefit is observed when coupling miR-21 silencing with the first-line drug temozolomide. Overall, our results provide evidence that miR-21 is uniformly overexpressed in GBM and constitutes a highly promising target for multimodal therapeutic approaches toward GBM.
Collapse
Affiliation(s)
- Pedro M Costa
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | | | | | | | |
Collapse
|
11
|
Schmidt F, van den Eijnden M, Pescini Gobert R, Saborio GP, Carboni S, Alliod C, Pouly S, Staugaitis SM, Dutta R, Trapp B, Hooft van Huijsduijnen R. Identification of VHY/Dusp15 as a regulator of oligodendrocyte differentiation through a systematic genomics approach. PLoS One 2012; 7:e40457. [PMID: 22792334 PMCID: PMC3394735 DOI: 10.1371/journal.pone.0040457] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/07/2012] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disease characterized by a progressive loss of myelin and a failure of oligodendrocyte (OL)-mediated remyelination, particularly in the progressive phases of the disease. An improved understanding of the signaling mechanisms that control differentiation of OL precursors may lead to the identification of new therapeutic targets for remyelination in MS. About 100 mammalian Protein Tyrosine Phosphatases (PTPs) are known, many of which are involved in signaling both in health and disease. We have undertaken a systematic genomic approach to evaluate PTP gene activity in multiple sclerosis autopsies and in related in vivo and in vitro models of the disease. This effort led to the identification of Dusp15/VHY, a PTP previously believed to be expressed only in testis, as being transcriptionally regulated during OL differentiation and in MS lesions. Subsequent RNA interference studies revealed that Dusp15/VHY is a key regulator of OL differentiation. Finally, we identified PDGFR-beta and SNX6 as novel and specific Dusp15 substrates, providing an indication as to how this PTP might exert control over OL differentiation.
Collapse
|
12
|
Comparative genomic and proteomic analysis of high grade glioma primary cultures and matched tumor in situ. Exp Cell Res 2012; 318:2245-56. [PMID: 22705586 DOI: 10.1016/j.yexcr.2012.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/05/2012] [Accepted: 06/06/2012] [Indexed: 01/18/2023]
Abstract
Developing targeted therapies for high grade gliomas (HGG), the most common primary brain tumor in adults, relies largely on glioma cultures. However, it is unclear if HGG tumorigenic signaling pathways are retained under in-vitro conditions. Using array comparative genomic hybridization and immunohistochemical profiling, we contrasted the epidermal and platelet-derived growth factor receptor (EGFR/PDGFR) in-vitro pathway status of twenty-six primary HGG cultures with the pathway status of their original HGG biopsies. Genomic gains or amplifications were lost during culturing while genomic losses were more likely to be retained. Loss of EGFR amplification was further verified immunohistochemically when EGFR over expression was decreased in the majority of cultures. Conversely, PDGFRα and PDGFRβ were more abundantly expressed in primary cultures than in the original tumor (p<0.05). Despite these genomic and proteomic differences, primary HGG cultures retained key aspects of dysregulated tumorigenic signaling. Both in-vivo and in-vitro the presence of EGFR resulted in downstream activation of P70s6K while reduced downstream activation was associated with the presence of PDGFR and the tumor suppressor, PTEN. The preserved pathway dysregulation make this glioma model suitable for further studies of glioma tumorigenesis, however individual culture related differences must be taken into consideration when testing responsiveness to chemotherapeutic agents.
Collapse
|
13
|
Stroma-directed molecular targeted therapy in gastric cancer. Cancers (Basel) 2011; 3:4245-57. [PMID: 24213136 PMCID: PMC3763421 DOI: 10.3390/cancers3044245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/22/2011] [Accepted: 11/30/2011] [Indexed: 12/24/2022] Open
Abstract
Recent studies in molecular and cellular biology have shown that tumor growth and metastasis are not determined by cancer cells alone, but also by a variety of stromal cells. Tumor stroma contains abundant extracellular matrix and several types of cells, including carcinoma-associated fibroblasts (CAFs), endothelial cells, pericytes and inflammatory cells including macrophages. In gastric cancer tissues, tumor cells express platelet-derived growth factor (PDGF)-B. Stromal cells, including CAFs, pericytes and lymphatic endothelial cells, express PDGF receptor (PDGFR)-β. Administration of PDGFR tyrosine kinase inhibitor significantly decreases stromal reaction, lymphatic vessel area and pericyte coverage of tumor microvessels. Administration of PDGFR tyrosine kinase inhibitor in combination with cytotoxic chemotherapeutic drug(s) impairs the progressive growth and metastasis of gastric cancer. Activated stroma might serve as a novel therapeutic target in cases of gastric cancer.
Collapse
|
14
|
Jankovsky JM, Newkirk KM, Ilha MR, Newman SJ. COX-2 and c-kit expression in canine gliomas. Vet Comp Oncol 2011; 11:63-9. [DOI: 10.1111/j.1476-5829.2011.00302.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|