1
|
Harun-Ur-Rashid M, Jahan I, Foyez T, Imran AB. Bio-Inspired Nanomaterials for Micro/Nanodevices: A New Era in Biomedical Applications. MICROMACHINES 2023; 14:1786. [PMID: 37763949 PMCID: PMC10536921 DOI: 10.3390/mi14091786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
Exploring bio-inspired nanomaterials (BINMs) and incorporating them into micro/nanodevices represent a significant development in biomedical applications. Nanomaterials, engineered to imitate biological structures and processes, exhibit distinctive attributes such as exceptional biocompatibility, multifunctionality, and unparalleled versatility. The utilization of BINMs demonstrates significant potential in diverse domains of biomedical micro/nanodevices, encompassing biosensors, targeted drug delivery systems, and advanced tissue engineering constructs. This article thoroughly examines the development and distinctive attributes of various BINMs, including those originating from proteins, DNA, and biomimetic polymers. Significant attention is directed toward incorporating these entities into micro/nanodevices and the subsequent biomedical ramifications that arise. This review explores biomimicry's structure-function correlations. Synthesis mosaics include bioprocesses, biomolecules, and natural structures. These nanomaterials' interfaces use biomimetic functionalization and geometric adaptations, transforming drug delivery, nanobiosensing, bio-inspired organ-on-chip systems, cancer-on-chip models, wound healing dressing mats, and antimicrobial surfaces. It provides an in-depth analysis of the existing challenges and proposes prospective strategies to improve the efficiency, performance, and reliability of these devices. Furthermore, this study offers a forward-thinking viewpoint highlighting potential avenues for future exploration and advancement. The objective is to effectively utilize and maximize the application of BINMs in the progression of biomedical micro/nanodevices, thereby propelling this rapidly developing field toward its promising future.
Collapse
Affiliation(s)
- Mohammad Harun-Ur-Rashid
- Department of Chemistry, International University of Business Agriculture and Technology, Dhaka 1230, Bangladesh;
| | - Israt Jahan
- Department of Cell Physiology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan;
| | - Tahmina Foyez
- Department of Pharmacy, United International University, Dhaka 1212, Bangladesh;
| | - Abu Bin Imran
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| |
Collapse
|
2
|
Ghosh I, Gutka H, Krause ME, Clemens R, Kashi RS. A systematic review of commercial high concentration antibody drug products approved in the US: formulation composition, dosage form design and primary packaging considerations. MAbs 2023; 15:2205540. [PMID: 37243580 DOI: 10.1080/19420862.2023.2205540] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/29/2023] Open
Abstract
Three critical aspects that define high concentration antibody products (HCAPs) are as follows: 1) formulation composition, 2) dosage form, and 3) primary packaging configuration. HCAPs have become successful in the therapeutic sector due to their unique advantage of allowing subcutaneous self-administration. Technical challenges, such as physical and chemical instability, viscosity, delivery volume limitations, and product immunogenicity, can hinder successful development and commercialization of HCAPs. Such challenges can be overcome by robust formulation and process development strategies, as well as rational selection of excipients and packaging components. We compiled and analyzed data from US Food and Drug Administration-approved and marketed HCAPs that are ≥100 mg/mL to identify trends in formulation composition and quality target product profile. This review presents our findings and discusses novel formulation and processing technologies that enable the development of improved HCAPs at ≥200 mg/mL. The observed trends can be used as a guide for further advancements in the development of HCAPs as more complex antibody-based modalities enter biologics product development.
Collapse
Affiliation(s)
- Indrajit Ghosh
- Sterile Product Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Hiten Gutka
- Sterile Product Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Mary E Krause
- Sterile Product Development, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Ryan Clemens
- College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Ramesh S Kashi
- Sterile Product Development, Bristol Myers Squibb, Summit, NJ, USA
| |
Collapse
|
3
|
The evolution of commercial drug delivery technologies. Nat Biomed Eng 2021; 5:951-967. [PMID: 33795852 DOI: 10.1038/s41551-021-00698-w] [Citation(s) in RCA: 647] [Impact Index Per Article: 161.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
Drug delivery technologies have enabled the development of many pharmaceutical products that improve patient health by enhancing the delivery of a therapeutic to its target site, minimizing off-target accumulation and facilitating patient compliance. As therapeutic modalities expanded beyond small molecules to include nucleic acids, peptides, proteins and antibodies, drug delivery technologies were adapted to address the challenges that emerged. In this Review Article, we discuss seminal approaches that led to the development of successful therapeutic products involving small molecules and macromolecules, identify three drug delivery paradigms that form the basis of contemporary drug delivery and discuss how they have aided the initial clinical successes of each class of therapeutic. We also outline how the paradigms will contribute to the delivery of live-cell therapies.
Collapse
|
4
|
Zeng Y, Tran T, Wuthrich P, Naik S, Davagnino J, Greene DG, Mahoney RP, Soane DS. Caffeine as a Viscosity Reducer for Highly Concentrated Monoclonal Antibody Solutions. J Pharm Sci 2021; 110:3594-3604. [PMID: 34181992 DOI: 10.1016/j.xphs.2021.06.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/26/2022]
Abstract
Many monoclonal antibody (mAb) solutions exhibit high viscosity at elevated concentrations, which prevents manufacturing and injecting of concentrated mAb drug products at the small volumes needed for subcutaneous (SC) administration. Addition of excipients that interrupt intermolecular interactions is a common approach to reduce viscosity of high concentration mAb formulations. However, in some cases widely used excipients can fail to lower viscosity. Here, using infliximab and ipilimumab as model proteins, we show that caffeine effectively lowers the viscosity of both mAb formulations, whereas other common viscosity-reducing excipients, sodium chloride and arginine, do not. Furthermore, stability studies under accelerated conditions show that caffeine has no impact on stability of lyophilized infliximab or liquid ipilimumab formulations. In addition, presence of caffeine in the formulations does not affect in vitro bioactivities of infliximab or ipilimumab. Results from this study suggest that caffeine could be a useful viscosity reducing agent that complements other traditional excipients and provides viscosity reduction to a wider range of mAb drug products.
Collapse
Affiliation(s)
- Yuhong Zeng
- ReForm Biologics Inc., 12 Gill Street Suite 4650, Woburn, MA 01801, United States.
| | - Timothy Tran
- ReForm Biologics Inc., 12 Gill Street Suite 4650, Woburn, MA 01801, United States
| | - Philip Wuthrich
- ReForm Biologics Inc., 12 Gill Street Suite 4650, Woburn, MA 01801, United States
| | - Subhashchandra Naik
- ReForm Biologics Inc., 12 Gill Street Suite 4650, Woburn, MA 01801, United States
| | - Juan Davagnino
- KBI Biopharma Inc., 1101 Hamlin Rd, Durham, NC 27704, United States
| | - Daniel G Greene
- ReForm Biologics Inc., 12 Gill Street Suite 4650, Woburn, MA 01801, United States
| | - Robert P Mahoney
- ReForm Biologics Inc., 12 Gill Street Suite 4650, Woburn, MA 01801, United States
| | - David S Soane
- ReForm Biologics Inc., 12 Gill Street Suite 4650, Woburn, MA 01801, United States
| |
Collapse
|
5
|
Opportunities in an Evolving Pharmaceutical Development Landscape: Product Differentiation of Biopharmaceutical Drug Products. Pharm Res 2021; 38:739-757. [PMID: 33903976 DOI: 10.1007/s11095-021-03037-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
The current perspective reviews the biopharmaceutical market until end of 2020 and highlights the transforming biopharmaceutical landscape during the recent decade. In particular, the rise of biosimilars and the development of new therapeutic modalities through recent advancement in molecular biology research sustainably change the product scenery. The present manuscript describes opportunities for pharmaceutical technical development, highlighting concepts such as product differentiation to succeed in a competitive product landscape. Product differentiation offers the opportunity for numerous life-cycle options and market exclusivity through incremental improvements in standard of care treatment. In particular, different formulation options and formulation-device combinations are described, focusing on systemic delivery of monoclonal antibody products and patient-centered development. The concept of product differentiation is exemplified in a case study about HER2+ breast cancer therapy, underlining pharmaceutical technical solutions and major improvements for the patient.
Collapse
|
6
|
Cost-minimization analysis of subcutaneous versus intravenous trastuzumab administration in Chilean patients with HER2-positive early breast cancer. PLoS One 2020; 15:e0227961. [PMID: 32023267 PMCID: PMC7001963 DOI: 10.1371/journal.pone.0227961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 01/03/2020] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Trastuzumab (TZM) improves survival and the risk of recurrence among patients with early-stage HER2+ breast cancer (BC). TZM treatment can be given intravenously (IV-TZM) or subcutaneously (SC-TZM). Although both methods have similar efficacy and safety, they differ in dosage and administration. Previous studies of cost minimization determined that SC-TZM is associated with lower costs than IV-TZM; however, those studies did not include the costs associated with body weight-based dosage and the treatment of adverse drug reactions (ADRs). METHODS/PATIENTS We performed a model-based cost-minimization analysis. The analysis included direct and indirect medical costs associated with TZM preparation (adjusted by body weight) and administration and also costs due to severe ADRs and non-medical costs that occurred during the total treatment course (18 cycles). We performed a sensitivity analysis to test the robustness of the results across various TZM costs and patient body weights. RESULTS The overall cost (in USD) of IV-TZM treatment was $83,309.1 per patient compared with $77,067.7 per patient for SC-TZM. Thus, one year of SC-TZM treatment cost $6,241.4 less per patient than one year of IV-TZM treatment. The sensitivity analysis revealed that the results were mainly driven by the price of each TZM vial and body weight. CONCLUSION SC-TZM is a cost-saving therapy for Chilean patients with early-stage HER2+ BC. Given their similar efficacy and safety, we suggest the use of SC formulations rather than IV formulations. The use of SC-TZM instead of IV-TZM may have a significant economic impact on public/private healthcare systems.
Collapse
|
7
|
|
8
|
Zhao Z, Li Y, Shukla R, Liu H, Jain A, Barve A, Cheng K. Development of a Biocompatible Copolymer Nanocomplex to Deliver VEGF siRNA for Triple Negative Breast Cancer. Theranostics 2019; 9:4508-4524. [PMID: 31285776 PMCID: PMC6599648 DOI: 10.7150/thno.34314] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022] Open
Abstract
Triple negative breast cancer (TNBC) is the most difficult breast cancer subtype to treat. TNBC patients have significantly higher expression of vascular endothelial growth factor (VEGF) in tumors compared to non-TNBC patients. VEGF not only exerts its pro-angiogenic effects on endothelial cells but also acts as a survival and autocrine growth factor for VEGF receptor (VEGFR) expressing cancer cells. Silencing the expression of VEGF is therefore a potential therapy for TNBC. Methods: A novel biocompatible linear copolymer poly[bis(ε-Lys-PEI)Glut-PEG] (PLEGP) was developed to deliver VEGF siRNA for TNBC therapy. The copolymer is composed of lysine and glutaric acid, a natural metabolite of amino acids in the body. Low-molecular weight polyethyleneimine (PEI) was grafted to the copolymer to efficiently condense siRNA into nanocomplex without inducing cytotoxicity. Various in vitro studies were performed to evaluate the stability, cellular uptake, tumor penetration, and biological activities of the VEGF siRNA nanocomplex. The anti-tumor activities of the nanocomplex was also evaluated in an orthotopic TNBC mouse model. Results: PEIs with different molecular weights were evaluated, and the copolymer PLEGP1800 was able to easily form a stable nanocomplex with siRNAs and protect them from serum degradation. The siRNA/PLEGP1800 nanocomplex exhibited negligible cytotoxicity but showed high cellular uptake, high transfection efficiency, and high tumor penetration. In vitro activity studies showed that the siRNA nanocomplex significantly inhibited migration and invasion of TNBC cells. Moreover, the VEGF siRNA nanocomplex efficiently inhibited tumor growth in an orthotopic TNBC mouse model and down-regulated VEGF expression in the tumor. Conclusion: PLEGP1800 is a safe and efficient copolymer to deliver siRNAs for TNBC therapy. It could potentially be applied to other cancers by changing the cargo and incorporating tumor-specific ligands.
Collapse
|
9
|
Sifniotis V, Cruz E, Eroglu B, Kayser V. Current Advancements in Addressing Key Challenges of Therapeutic Antibody Design, Manufacture, and Formulation. Antibodies (Basel) 2019; 8:E36. [PMID: 31544842 PMCID: PMC6640721 DOI: 10.3390/antib8020036] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
Therapeutic antibody technology heavily dominates the biologics market and continues to present as a significant industrial interest in developing novel and improved antibody treatment strategies. Many noteworthy advancements in the last decades have propelled the success of antibody development; however, there are still opportunities for improvement. In considering such interest to develop antibody therapies, this review summarizes the array of challenges and considerations faced in the design, manufacture, and formulation of therapeutic antibodies, such as stability, bioavailability and immunological engagement. We discuss the advancement of technologies that address these challenges, highlighting key antibody engineered formats that have been adapted. Furthermore, we examine the implication of novel formulation technologies such as nanocarrier delivery systems for the potential to formulate for pulmonary delivery. Finally, we comprehensively discuss developments in computational approaches for the strategic design of antibodies with modulated functions.
Collapse
Affiliation(s)
- Vicki Sifniotis
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia.
| | - Esteban Cruz
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia.
| | - Barbaros Eroglu
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia.
| | - Veysel Kayser
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia.
| |
Collapse
|
10
|
Feng W, Zhu X. Efficacy prediction of targeted therapy for gastric cancer: The current status (Review). Mol Med Rep 2018; 18:1238-1246. [PMID: 29901092 DOI: 10.3892/mmr.2018.9145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 05/03/2018] [Indexed: 11/05/2022] Open
Abstract
Despite significant progress in the treatment of gastric cancer (GC), the prognosis remains poor and the mortality is high. Targeted drugs have been incorporated into routine treatment to improve treatment efficacy. However, the therapy response is still below 50%. Therefore, there is a need to identify predictive factors for patient response to a specific drug in order to improve the efficacy of drug therapy. The present article reviewed the predictive factors for target therapy in GC, including epidermal growth factor receptor, human epidermal receptor 2, vascular endothelial growth factor family, molecules in the mesenchymal‑epithelial transition pathway and the mammalian target of rapamycin. Additionally, the present review described the interactions between these molecules and signaling pathways.
Collapse
Affiliation(s)
- Wanjing Feng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Xiaodong Zhu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| |
Collapse
|
11
|
Turner MR, Balu-Iyer SV. Challenges and Opportunities for the Subcutaneous Delivery of Therapeutic Proteins. J Pharm Sci 2018; 107:1247-1260. [PMID: 29336981 PMCID: PMC5915922 DOI: 10.1016/j.xphs.2018.01.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/21/2017] [Accepted: 01/03/2018] [Indexed: 12/22/2022]
Abstract
Biotherapeutics is a rapidly growing drug class, and over 200 biotherapeutics have already obtained approval, with about 50 of these being approved in 2015 and 2016 alone. Several hundred protein therapeutic products are still in the pipeline, including interesting new approaches to treatment. Owing to patients' convenience of at home administration and reduced number of hospital visits as well as the reduction in treatment costs, subcutaneous (SC) administration of biologics is of increasing interest. Although several avenues for treatment using biotherapeutics are being explored, there is still a sufficient gap in knowledge regarding the interplay of formulation conditions, immunogenicity, and pharmacokinetics (PK) of the absorption of these compounds when they are given SC. This review seeks to highlight the major concerns and important factors governing this route of administration and suggest a holistic approach for effective SC delivery.
Collapse
Affiliation(s)
- Michael R Turner
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214.
| |
Collapse
|
12
|
Chiang CS, Shen YS, Liu JJ, Shyu WC, Chen SY. Synergistic Combination of Multistage Magnetic Guidance and Optimized Ligand Density in Targeting a Nanoplatform for Enhanced Cancer Therapy. Adv Healthc Mater 2016; 5:2131-41. [PMID: 27337051 DOI: 10.1002/adhm.201600479] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Indexed: 12/19/2022]
Abstract
A new therapeutic strategy of combining multistage short-term magnetic guidance with optimized ligand-mediated targeting in a newly developed nanodelivery system is investigated to promote accumulation and modulate intratumoral distribution behavior of the nanocarriers for enhanced tumor therapy. The multifunctional magnetic nanocarriers (MNCs) composed of single-component thiol-functionalized PVA/PMASH copolymer and superparamagnetic nanoparticles are developed for providing tunable dual-targeting ability and simultaneously modulating pH-responsive on/off drug release. Results show that plasma doxorubicin (Dox) concentration of the mice treated with Trastuzumab (Tra)-targeted Dox-MNCs can be rapidly decreased by applying dual-targeting treatment. More importantly, cooperative modulation of magnetic targeting and Tra density on the nanocarrier significantly optimize intratumoral distribution and enhance the utilization rate of nanomedicines within tumor to inhibit tumor growth. The mice treated with 2T-Dox-MNCs + multistage magnetic targeting (MT) (2 h d(-1) ) show 7.63-fold, 3.25-fold, and 2.7-fold reduction in HER2-positive tumor volume compared to Dox-MNCs, 2T-Dox-MNCs, and 2T-Dox-MNCs + single MT (12 h). The synergistic dual-targeting approach represents a major paradigm advance in tumor treatment and nanocarrier design in preclinical application.
Collapse
Affiliation(s)
- Chih-Sheng Chiang
- Department of Materials Science and Engineering; National Chiao Tung University; Hsinchu City 30010 Taiwan Republic of China
| | - Yi-Shang Shen
- Division of Orthopaedics; Department of Surgery; Far Eastern Memorial Hospital; New Taipei City 220 Taiwan Republic of China
- Institute of Biomedical Engineering; National Taiwan University; Taipei Taiwan Republic of China
| | - Jun-Jen Liu
- School of Medical Laboratory Science and Biotechnology; Taipei Medical University; Taipei City 110 Taiwan Republic of China
| | - Woei-Cherng Shyu
- Graduate Institute of Immunology; China Medical University; Taichung City 40402 Taiwan Republic of China
| | - San-Yuan Chen
- Department of Materials Science and Engineering; National Chiao Tung University; Hsinchu City 30010 Taiwan Republic of China
| |
Collapse
|
13
|
Wang S, Zhang N, Hu T, Dai W, Feng X, Zhang X, Qian F. Viscosity-Lowering Effect of Amino Acids and Salts on Highly Concentrated Solutions of Two IgG1 Monoclonal Antibodies. Mol Pharm 2015; 12:4478-87. [DOI: 10.1021/acs.molpharmaceut.5b00643] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Shujing Wang
- School
of Pharmaceutical Sciences
and Collaborative Innovation Center for Diagnosis and Treatment of
Infectious Diseases, Tsinghua University, Beijing 100084, China
| | - Ning Zhang
- China R&D and Scientific Affair, Shanghai Discovery Center, Janssen Research & Development, Johnson & Johnson, Shanghai 200030, China
| | - Tao Hu
- China R&D and Scientific Affair, Shanghai Discovery Center, Janssen Research & Development, Johnson & Johnson, Shanghai 200030, China
| | - Weiguo Dai
- Janssen Research & Development, Johnson & Johnson, Malvern, Pennsylvania 19355, United States
| | - Xiuying Feng
- China R&D and Scientific Affair, Shanghai Discovery Center, Janssen Research & Development, Johnson & Johnson, Shanghai 200030, China
| | - Xinyi Zhang
- School
of Pharmaceutical Sciences
and Collaborative Innovation Center for Diagnosis and Treatment of
Infectious Diseases, Tsinghua University, Beijing 100084, China
| | - Feng Qian
- School
of Pharmaceutical Sciences
and Collaborative Innovation Center for Diagnosis and Treatment of
Infectious Diseases, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Jin JF, Zhu LL, Chen M, Xu HM, Wang HF, Feng XQ, Zhu XP, Zhou Q. The optimal choice of medication administration route regarding intravenous, intramuscular, and subcutaneous injection. Patient Prefer Adherence 2015; 9:923-42. [PMID: 26170642 PMCID: PMC4494621 DOI: 10.2147/ppa.s87271] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Intravenous (IV), intramuscular (IM), and subcutaneous (SC) are the three most frequently used injection routes in medication administration. Comparative studies of SC versus IV, IM versus IV, or IM versus SC have been sporadically conducted, and some new findings are completely different from the dosage recommendation as described in prescribing information. However, clinicians may still be ignorant of such new evidence-based findings when choosing treatment methods. METHODS A literature search was performed using PubMed, MEDLINE, and Web of Sciences™ Core Collection to analyze the advantages and disadvantages of SC, IV, and IM administration in head-to-head comparative studies. RESULTS "SC better than IV" involves trastuzumab, rituximab, antitumor necrosis factor medications, bortezomib, amifostine, recombinant human granulocyte-macrophage colony-stimulating factor, granulocyte colony-stimulating factor, recombinant interleukin-2, immunoglobulin, epoetin alfa, heparin, and opioids. "IV better than SC" involves ketamine, vitamin K1, and abatacept. With respect to insulin and ketamine, whether IV has advantages over SC is determined by specific clinical circumstances. "IM better than IV" involves epinephrine, hepatitis B immu-noglobulin, pegaspargase, and some antibiotics. "IV better than IM" involves ketamine, morphine, and antivenom. "IM better than SC" involves epinephrine. "SC better than IM" involves interferon-beta-1a, methotrexate, human chorionic gonadotropin, hepatitis B immunoglobulin, hydrocortisone, and morphine. Safety, efficacy, patient preference, and pharmacoeconomics are four principles governing the choice of injection route. Safety and efficacy must be the preferred principles to be considered (eg, epinephrine should be given intramuscularly during an episode of systemic anaphylaxis). If the safety and efficacy of two injection routes are equivalent, clinicians should consider more about patient preference and pharmacoeconomics because patient preference will ensure optimal treatment adherence and ultimately improve patient experience or satisfaction, while pharmacoeconomic concern will help alleviate nurse shortages and reduce overall health care costs. Besides the principles, the following detailed factors might affect the decision: patient characteristics-related factors (body mass index, age, sex, medical status [eg, renal impairment, comorbidities], personal attitudes toward safety and convenience, past experience, perception of current disease status, health literacy, and socioeconomic status), medication administration-related factors (anatomical site of injection, dose, frequency, formulation characteristics, administration time, indication, flexibility in the route of administration), and health care staff/institution-related factors (knowledge, human resources). CONCLUSION This updated review of findings of comparative studies of different injection routes will enrich the knowledge of safe, efficacious, economic, and patient preference-oriented medication administration as well as catching research opportunities in clinical nursing practice.
Collapse
Affiliation(s)
- Jing-fen Jin
- Division of Nursing, Division of Nursing, Zhejiang University, Hangzhou, People’s Republic of China
| | - Ling-ling Zhu
- VIP Care Ward, Division of Nursing, Zhejiang University, Hangzhou, People’s Republic of China
| | - Meng Chen
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Hui-min Xu
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Hua-fen Wang
- Division of Nursing, Division of Nursing, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xiu-qin Feng
- Division of Nursing, Division of Nursing, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xiu-ping Zhu
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| | - Quan Zhou
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
- Correspondence: Quan Zhou, Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road No 88, Shangcheng District, Hangzhou 310009, Zhejiang Province, People’s Republic of China, Tel +86 571 8778 4615, Fax +86 571 8702 2776, Email
| |
Collapse
|
15
|
Dokmanovic M, Wu WJ. Monitoring Trastuzumab Resistance and Cardiotoxicity: A Tale of Personalized Medicine. Adv Clin Chem 2015; 70:95-130. [PMID: 26231486 DOI: 10.1016/bs.acc.2015.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
While approval of trastuzumab, a recombinant monoclonal antibody directed against HER2, along with a diagnostic kit to detect breast cancers which are positive for HER2 overexpression, has advanced a new era of stratified and personalized medicine, it also created several challenges to our scientific and clinical practice. These problems include trastuzumab resistance and trastuzumab-induced cardiotoxicity. In this review, we will summarize data from the literature regarding mechanisms of trastuzumab resistance and trastuzumab-induced cardiotoxicity and present some promising model systems that may advance our understanding of these mechanisms. Our discussion will include development of circulating tumor cells and circulating tumor DNA for monitoring tumor burden, of patient-derived xenograft models for preclinical testing of novel therapies, and of novel therapeutic strategies for trastuzumab-resistance and possible integration of these strategies in the design of co-clinical studies for testing in relevant patient subpopulations.
Collapse
|