1
|
Ye Q, Wang J, Wang B, Zhao M, Wu Z, Liu X. Establishment of an in Vitro Three-Dimensional Vascularized Micro-Tumor Model and Screening of Chemotherapeutic Drugs. Technol Cancer Res Treat 2024; 23:15330338241286755. [PMID: 39311637 PMCID: PMC11425739 DOI: 10.1177/15330338241286755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Breast cancer is the most common malignancy in women worldwide, and major challenges in its treatment include drug resistance and metastasis. Three-dimensional cell culture systems have received widespread attention in drug discovery studies but existing models have limitations, that warrant the development of a simple and repeatable three-dimensional culture model for high-throughput screening. In this study, we designed a simple, reproducible, and highly efficient microencapsulated device to co-culture MCF-7 cells and HUVECs in microcapsules to establish an in vitro vascularized micro-tumor model for chemotherapeutic drug screening. First, to construct a three-dimensional micro-tumor model, cell encapsulation devices were created using three different sizes of flat-mouthed needles. Immunohistochemistry and immunofluorescence assays were conducted to determine vascular lumen formation. Cell proliferation was detected using the Cell Counting Kit-8 assay. Finally, to observe the drug reactions between the models, anticancer drugs (doxorubicin or paclitaxel) were added 12 h after the two-dimensional cultured cells were plated or 7 days after cell growth in the core-shell microcapsules. Vascularized micro-tumors were obtained after 14 days of three-dimensional culture. The proliferation rate in the three-dimensional cultured cells was slower than that of two-dimensional cultured cells. Three-dimensional cultured cells were more resistant to anticancer drugs than two-dimensional cultured cells. This novel sample encapsulation device formed core-shell microcapsules and can be used to successfully construct 3D vascularized micro-tumors in vitro. The three-dimensional culture model may provide a platform for drug screening and is valuable for studying tumor development and angiogenesis.
Collapse
Affiliation(s)
- Qian Ye
- Department of Pathological Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Juanru Wang
- Department of Pathology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Boyang Wang
- Department of Pathological Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Min Zhao
- The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Zhengsheng Wu
- Department of Pathological Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Department of Pathology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaoli Liu
- Department of Pathological Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
2
|
Yu P, Wang Y, Yuan D, Sun Y, Qin S, Li T. Vascular normalization: reshaping the tumor microenvironment and augmenting antitumor immunity for ovarian cancer. Front Immunol 2023; 14:1276694. [PMID: 37936692 PMCID: PMC10626545 DOI: 10.3389/fimmu.2023.1276694] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
Ovarian cancer remains a challenging disease with limited treatment options and poor prognosis. The tumor microenvironment (TME) plays a crucial role in tumor growth, progression, and therapy response. One characteristic feature of the TME is the abnormal tumor vasculature, which is associated with inadequate blood perfusion, hypoxia, and immune evasion. Vascular normalization, a therapeutic strategy aiming to rectify the abnormal tumor vasculature, has emerged as a promising approach to reshape the TME, enhance antitumor immunity, and synergize with immunotherapy in ovarian cancer. This review paper provides a comprehensive overview of vascular normalization and its potential implications in ovarian cancer. In this review, we summarize the intricate interplay between anti-angiogenesis and immune modulation, as well as ICI combined with anti-angiogenesis therapy in ovarian cancer. The compelling evidence discussed in this review contributes to the growing body of knowledge supporting the utilization of combination therapy as a promising treatment paradigm for ovarian cancer, paving the way for further clinical development and optimization of this therapeutic approach.
Collapse
Affiliation(s)
- Ping Yu
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Yaru Wang
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Dahai Yuan
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Yunqin Sun
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Shuang Qin
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianye Li
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
TRPV3 promotes the angiogenesis through HIF-1α-VEGF signaling pathway in A549 cells. Acta Histochem 2022; 124:151955. [DOI: 10.1016/j.acthis.2022.151955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022]
|
4
|
Serum Concentration of Selected Angiogenesis-Related Molecules Differs among Molecular Subtypes, Body Mass Index and Menopausal Status in Breast Cancer Patients. J Clin Med 2022; 11:jcm11144079. [PMID: 35887839 PMCID: PMC9323050 DOI: 10.3390/jcm11144079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Angiogenesis is a hallmark of breast cancer (BC) and is mediated by the vascular endothelial growth factor (VEGF) signaling axis. It is regulated by different proangiogenic factors, including platelet-derived growth factor-CC (PDGF-CC) and heparin-binding EGF-like growth factor (HB-EGF), as well as co-receptors, such as neuropilin-1, which could have prognostic implications in BC patients. Patients and methods: We assessed the serum levels of VEGF, HB-EGF, PDGF-CC and neuropilin-1 in 205 patients with early BC (invasive, n = 187; in situ, n = 18) and in 31 healthy donors (HD) and investigated the potential associations with clinical and histopathological parameters. Results: VEGF serum levels were significantly higher in patients with invasive versus ductal carcinomas in situ. PDGF-CC serum concentrations varied among BC molecular subtypes. Furthermore, we observed a differential expression of most biomarkers between overweight/obese (body mass index (BMI) ≥ 25 kg/m2) and non-obese patients among the BC molecular subtypes. Finally, the classification of subjects according to menopausal status revealed a significant difference in specific biomarker levels between patients and HD. Conclusion: The serum concentrations of angiogenic molecules differ among breast cancer molecular subtypes and are affected by the BMI and menopausal status, which could have possible clinical or prognostic implications.
Collapse
|
5
|
Yao H, He S. Multi‑faceted role of cancer‑associated adipocytes in the tumor microenvironment (Review). Mol Med Rep 2021; 24:866. [PMID: 34676881 PMCID: PMC8554381 DOI: 10.3892/mmr.2021.12506] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/15/2021] [Indexed: 01/08/2023] Open
Abstract
Adipocytes are a type of stromal cell found in numerous different tissues that serve an active role in the tumor microenvironment. Cancer-associated adipocytes (CAAs) display a malignant phenotype and are found at the invasive tumor front, which mediates the crosstalk network between adipocytes (the precursor cells that will become cancer-associated adipocytes in the future) and cancer cells. The present review covers the mechanisms of adipocytes in the development of cancer, including metabolic reprogramming, chemotherapy resistance and adipokine regulation. Furthermore, the potential mechanisms involved in the adipocyte-cancer cell cycle in various types of cancer, including breast, ovarian, colon and rectal cancer, are discussed. Deciphering the complex network of CAA-cancer cell crosstalk will provide insights into tumor biology and optimize therapeutic strategies.
Collapse
Affiliation(s)
- Huihui Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Songbing He
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
6
|
Lamkin DM, Garland T. Translating Preclinical Research for Exercise Oncology: Take It to the VO 2max. Front Oncol 2020; 10:575657. [PMID: 33123481 PMCID: PMC7573565 DOI: 10.3389/fonc.2020.575657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/21/2020] [Indexed: 11/27/2022] Open
Abstract
Several observational studies have found that the risk for breast cancer is significantly reduced in persons who engage in greater amounts of physical activity. Additional observational studies of breast cancer survivors indicate that greater physical activity before or after diagnosis associates with reduced disease-specific mortality. However, no large randomized controlled trials have examined the effect of structured exercise training on disease outcomes in breast cancer. Among the many hurdles in designing such trials lies the challenge of determining how a given regimen of exercise from efficacious preclinical studies can be extrapolated to an equivalent “dose” in humans to guide decisions around treatment regimen in early-phase studies. We argue that preclinical researchers in exercise oncology could better facilitate this endeavor by routinely measuring changes in exercise capacity in the subjects of their breast cancer models. VO2max, the maximal rate of whole-organism oxygen consumption during a progressive exercise test, is emphasized here because it has become a standard measure of cardiorespiratory fitness, is well-integrated in clinical settings, and scales allometrically among nonhuman animals in preclinical research and breast cancer patients/survivors in the clinic. We also conduct secondary analyses of existing whole-transcriptome datasets to highlight how greater uptake and delivery of oxygen during exercise may reverse the typically hypoxic microenvironment of breast tumors, which often associates with more aggressive disease and worse prognosis.
Collapse
Affiliation(s)
- Donald M Lamkin
- Norman Cousins Center for PNI, Semel Institute for Neuroscience & Human Behavior, University of California, Los Angeles, CA, United States.,Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, United States
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, United States
| |
Collapse
|
7
|
Cui N, Lin DD, Shen Y, Shi JG, Wang B, Zhao MZ, Zheng L, Chen H, Shi JH. Triphenylethylene-Coumarin Hybrid TCH-5c Suppresses Tumorigenic Progression in Breast Cancer Mainly Through the Inhibition of Angiogenesis. Anticancer Agents Med Chem 2020; 19:1253-1261. [PMID: 30947677 DOI: 10.2174/1871520619666190404155230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/10/2019] [Accepted: 03/15/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND Coumarins are a wide group of naturally occurring compounds which exhibit a wide range of biological properties such as anti-cancer activities. Here, we characterized the biological functions of three Triphenylethylene-Coumarin Hybrids (TCHs) both in cell culture and nude mouse model. METHODS Cell proliferation assay was performed in the cell cultures of both EA.hy926 endothelial cell and breast cancer cell lines treated with different concentrations of compound TCH-10b, TCH-5a and TCH-5c. Flowcytometry assay and Western blotting were used to further investigate the effect and mechanism of TCH-5c on EA.hy926 cell proliferation and cell cycle. The effects of TCH-5c on endothelial cell migration and angiogenesis were determined using cytoskeleton staining, migration assay and tube formation assay. Inhibition of breast cancer cell line derived VEGF by TCH-5c was shown through ELISA and the use of conditioned media. SK-BR-3 xenograft mouse model was established to further study the anti-tumorigenic role of compound TCH-5c in vivo. RESULTS We found that compound TCH-5c has inhibitory effects on both vascular endothelial cells and breast cancer cell lines. Compound TCH-5c inhibited proliferation, resulted in cell death, increased p21 protein expression to induce G0/G1 arrest and changed endothelial cell cytoskeleton organization and migration in EA.hy926 endothelial cells. Compound TCH-5c also inhibited breast cancer cell line derived VEGF secretion, decreased breast cancer cell-induced endothelial cell tube formation in vitro and suppressed SK-BR-3 breast cancer cell-initiated tumor formation in vivo. CONCLUSION Our study demonstrates that the coumarin derivative TCH-5c exerts its anti-cancer effects by 1. inhibiting endothelial cell proliferation, migration. 2. suppressing tube formation and angiogenesis induced by breast cancer cells in vitro and in vivo. Our results have potential implications in developing new approaches against breast cancer.
Collapse
Affiliation(s)
- Naipeng Cui
- Department of Breast Surgery, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Dan-Dan Lin
- Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University and Medical College of Hebei University, Baoding 071000, China
| | - Yang Shen
- Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University and Medical College of Hebei University, Baoding 071000, China
| | - Jian-Guo Shi
- Department of Urinary Surgery, Chinese People's Liberation Army No.252 Hospital, Baoding 071000, China
| | - Bing Wang
- Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University and Medical College of Hebei University, Baoding 071000, China
| | - Ming-Zhi Zhao
- Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University and Medical College of Hebei University, Baoding 071000, China
| | - Lishuang Zheng
- Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University and Medical College of Hebei University, Baoding 071000, China
| | - Hua Chen
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071000, China
| | - Jian-Hong Shi
- Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University and Medical College of Hebei University, Baoding 071000, China
| |
Collapse
|
8
|
Han H, Ji Z, Ding H, Zhang W, Zhang R, Wang W. Assessment of blood flow in the hepatic tumors using non-contrast micro flow imaging: Initial experience. Clin Hemorheol Microcirc 2019; 73:307-316. [PMID: 31156143 DOI: 10.3233/ch-180532] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Hong Han
- Department of Ultrasound, Zhongshan Hospital of Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China
| | - Zhengbiao Ji
- Department of Ultrasound, Zhongshan Hospital of Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China
| | - Hong Ding
- Department of Ultrasound, Zhongshan Hospital of Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China
| | - Weibin Zhang
- Department of Ultrasound, Zhongshan Hospital of Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China
| | - Ronghui Zhang
- Department of Ultrasound, Zhongshan Hospital of Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China
| | - Wenping Wang
- Department of Ultrasound, Zhongshan Hospital of Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China
| |
Collapse
|
9
|
Luo LH, Rao L, Luo LF, Chen K, Ran RZ, Liu XL. Long non-coding RNA NKILA inhibited angiogenesis of breast cancer through NF-κB/IL-6 signaling pathway. Microvasc Res 2019; 129:103968. [PMID: 31862380 DOI: 10.1016/j.mvr.2019.103968] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/14/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The relationship between NF-κB Interacting lncRNA (NKILA) and angiogenesis in breast cancer has never been studied. Our study aimed to investigate effect of NKILA on proliferation, migration, apoptosis, as well as angiogenesis in breast cancer. METHODS NKILA was over-expressed in MDA-MB-231 cells by transfection of pcDNA3.1-NKILA vector. Cell viability, apoptosis and migration were measured by MTT, flow cytometry and wound healing assays, respectively. Angiogenesis of human umbilical vein endothelial cells (HUVEC) was measured using tube formation assay. The expression levels of NKILA, IL-6, VEGFA, VEGFR, apoptosis and epithelial-mesenchymal transition (EMT) and NF-κB/IL-6 signaling-related markers were determined using qRT-PCR or Western blotting. RESULTS Cell viability and migration of MDA-MB-231 cells were significantly inhibited, while cell apoptosis was obviously promoted by overexpression of NKILA. Overexpression of NKILA could also inhibit the phosphorylation of IκBα and the nuclear transposition of p65, as well as induce cell apoptosis-related proteins and inhibit epithelial-mesenchymal transition-related proteins. Cell viability and migration of HUVEC were also significantly inhibited when treated with supernatant of cells overexpressed NKILA or treated with BAY11-7028. Exogenous IL-6 significantly increased the cell viability and migration of HUVEC, and overexpression of NKILA could reverse these effects induced by IL-6. Overexpression of NKILA significantly inhibited the protein levels of IL-6 and VEGFA in supernatant, as well as VEGFR in HUVEC, thus inhibited the angiogenesis of HUVEC. NKILA also reversed the above effects on protein levels of IL-6 and VEGFA in supernatant and angiogenesis induced by exogenous IL-6. CONCLUSION Overexpression of NKILA could inhibit cell proliferation, migration and promote apoptosis of breast cancer cells. It could also inhibit cell proliferation, migration and angiogenesis of HUVEC through inhibiting IL-6 secretion via NF-κB signaling pathway.
Collapse
Affiliation(s)
- Li-Hua Luo
- Department of Oncology, Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, PR China
| | - Le Rao
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - Liu-Fang Luo
- Department of Pediatrics, Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, PR China
| | - Kun Chen
- Department of Oncology, Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, PR China
| | - Rui-Zhi Ran
- Department of Oncology, Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi 445000, Hubei Province, PR China
| | - Xian-Ling Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China.
| |
Collapse
|
10
|
Gullo G, J Eustace A, Canonici A, M Collins D, Kennedy MJ, Grogan L, Breathhnach O, McCaffrey J, Keane M, Martin MJ, Gupta R, Leonard G, O'Connor M, Calvert PM, Donnellan P, Walshe J, McDermott E, Scott K, Hernando A, Parker I, W Murray D, C O'Farrell A, Maratha A, Dicker P, Rafferty M, Murphy V, O'Donovan N, M Gallagher W, Ky B, Tryfonopoulos D, Moulton B, T Byrne A, Crown J. Pilot study of bevacizumab in combination with docetaxel and cyclophosphamide as adjuvant treatment for patients with early stage HER-2 negative breast cancer, including analysis of candidate circulating markers of cardiac toxicity: ICORG 08-10 trial. Ther Adv Med Oncol 2019; 11:1758835919864236. [PMID: 31384312 PMCID: PMC6657121 DOI: 10.1177/1758835919864236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 05/29/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Combining bevacizumab and chemotherapy produced superior response rates
compared with chemotherapy alone in metastatic breast cancer. As bevacizumab
may cause hypertension (HTN) and increase the risk of cardiac failure, we
performed a pilot study to evaluate the feasibility and toxicity of a
non-anthracycline-containing combination of docetaxel with cyclophosphamide
and bevacizumab in early stage breast cancer patients. Methods: Treatment consisted of four 3-weekly cycles of docetaxel and cyclophosphamide
(75/600 mg/m2). Bevacizumab was administered 15 mg/kg
intravenously on day 1, and then every 3 weeks to a total of 18 cycles of
treatment. Serum biomarker concentrations of vascular endothelial growth
factor (VEGF), cardiac troponin-I (cTnI), myeloperoxidase (MPO), and
placental growth factor (PlGF) were quantified using enzyme-linked
immunosorbent assay (ELISA) in 62 patients at baseline and whilst on
treatment to determine their utility as biomarkers of cardiotoxicity,
indicated by left ventricular ejection fraction (LVEF). Results: A total of 106 patients were accrued in nine sites. Median follow up was 65
months (1–72 months). Seventeen protocol-defined relapse events were
observed, accounting for an overall disease-free survival (DFS) rate of 84%.
The DFS rates for hormone receptor positive (HR+) and triple-negative (TN)
patients were 95% versus 43%, respectively. The median time
to relapse was 25 (12–54) months in TN patients versus 38
(22–71) months in HR+ patients. There have been 13 deaths related to breast
cancer . The overall survival (OS) rate was 88%. The 5-year OS rate in HR+
versus TN was 95% versus 57%. None of
the measured biomarkers predicted the development of cardiotoxicity. Conclusions: We observed a low relapse rate in node-positive, HR+ patients; however,
results in TN breast cancer were less encouraging. Given the negative
results of three large phase III trials, it is unlikely that this approach
will be investigated further. Trial Registration ClinicalTrials.gov Identifier: NCT00911716.
Collapse
Affiliation(s)
- Giuseppe Gullo
- Cancer Trials Ireland (formerly All-Ireland Clinical Oncology Research Group), Dublin Ireland
| | - Alex J Eustace
- Molecular Therapeutics for Cancer in Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Alexandra Canonici
- Molecular Therapeutics for Cancer in Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Denis M Collins
- Molecular Therapeutics for Cancer in Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | | | - Liam Grogan
- Department of Medical Oncology, Beaumont Hospital, Dublin, Ireland
| | | | - John McCaffrey
- Department of Medical Oncology, Mater Hospital, Dublin, Ireland
| | - Maccon Keane
- Department of Medical Oncology, University Hospital Galway, Galway, Ireland
| | - Michael J Martin
- Department of Medical Oncology, Sligo University Hospital, Sligo, Ireland
| | - Rajnish Gupta
- Department of Medical Oncology, University Hospital Limerick, Limerick, Ireland
| | - Gregory Leonard
- Department of Medical Oncology, University Hospital Galway, Galway, Ireland
| | - Miriam O'Connor
- Department of Medical Oncology, University Hospital Waterford, Waterford, Ireland
| | - Paula M Calvert
- Department of Medical Oncology, University Hospital Waterford, Waterford, Ireland
| | - Paul Donnellan
- Department of Medical Oncology, University Hospital Galway, Galway, Ireland
| | - Janice Walshe
- Department of Medical Oncology, St Vincent's University Hospital, Dublin, Ireland
| | - Enda McDermott
- Department of Medical Oncology, St Vincent's University Hospital, Dublin, Ireland
| | - Kathleen Scott
- Cancer Trials Ireland (formerly All Ireland Co-operative Oncology Research Group), DCU Alpha, Dublin, Ireland
| | - Andres Hernando
- Cancer Trials Ireland (formerly All Ireland Co-operative Oncology Research Group), DCU Alpha, Dublin, Ireland
| | - Imelda Parker
- Cancer Trials Ireland (formerly All Ireland Co-operative Oncology Research Group), DCU Alpha, Dublin, Ireland
| | - David W Murray
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alice C O'Farrell
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Patrick Dicker
- Department of Epidemiology and Public Health Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Verena Murphy
- Cancer Trials Ireland (formerly All Ireland Co-operative Oncology Research Group), DCU Alpha, Dublin, Ireland
| | - Norma O'Donovan
- Molecular Therapeutics for Cancer in Ireland, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | | | - Bonnie Ky
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Brian Moulton
- Clinical Oncology Development Europe, Dublin, Ireland
| | - Annette T Byrne
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - John Crown
- Department of Medical Oncology, St Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
11
|
Abstract
Development of novel and effective therapeutics for treating various cancers is probably the most congested and challenging enterprise of pharmaceutical companies. Diverse drugs targeting malignant and nonmalignant cells receive clinical approval each year from the FDA. Targeting cancer cells and nonmalignant cells unavoidably changes the tumor microenvironment, and cellular and molecular components relentlessly alter in response to drugs. Cancer cells often reprogram their metabolic pathways to adapt to environmental challenges and facilitate survival, proliferation, and metastasis. While cancer cells' dependence on glycolysis for energy production is well studied, the roles of adipocytes and lipid metabolic reprogramming in supporting cancer growth, metastasis, and drug responses are less understood. This Review focuses on emerging mechanisms involving adipocytes and lipid metabolism in altering the response to cancer treatment. In particular, we discuss mechanisms underlying cancer-associated adipocytes and lipid metabolic reprogramming in cancer drug resistance.
Collapse
|
12
|
Xie W, Zhang Y, He Y, Zhang K, Wan G, Huang Y, Zhou Z, Huang G, Wang J. A novel recombinant human Frizzled-7 protein exhibits anti-tumor activity against triple negative breast cancer via abating Wnt/β-catenin pathway. Int J Biochem Cell Biol 2018; 103:45-55. [DOI: 10.1016/j.biocel.2018.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/12/2018] [Accepted: 08/06/2018] [Indexed: 12/29/2022]
|
13
|
Okazaki M, Fushida S, Tsukada T, Kinoshita J, Oyama K, Miyashita T, Ninomiya I, Harada S, Ohta T. The effect of HIF-1α and PKM1 expression on acquisition of chemoresistance. Cancer Manag Res 2018; 10:1865-1874. [PMID: 30013393 PMCID: PMC6037278 DOI: 10.2147/cmar.s166136] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background In patients with gastric cancer, one of the greatest obstacles to effective chemotherapy is the development of chemoresistance. It has been previously reported that hypoxia-inducible factor-1 alpha (HIF-1α) is associated with acquisition of chemoresistance, and more recent studies have also noted an association of pyruvate kinase muscle 1 (PKM1) and chemoresistance. The purpose of this study was to identify the effect of HIF-1α and PKM1 expression on the development of acquired chemoresistance using a paclitaxel (PTX)-resistant gastric cancer cell line. Materials and methods A cancer cell line resistant to PTX was established from MKN45 cells by stepwise exposure to drug (rMKN45-PTX). The expressions of HIF-1α, apoptosis, vascular endothelial growth factor (VEGF), multidrug transporters and glycolytic enzyme were examined by Western blotting, enzyme-linked immunosorbent assay and immunohistochemistry. We also assessed the tumor proliferation by subcutaneous tumor and peritoneal dissemination of mouse xenograft model. Results The resistance index was 6.1 by determining as the ratio of the 50% growth inhibition (IC50) of rMKN45-PTX/IC50 of MKN45. Expression of nuclear factor kappa B and HIF-1α was increased in rMKN45-PTX cells compared with the parent cells. Expression of Bax and caspase-3 was significantly downregulated, whereas expression of Bcl-xL, P-glycoprotein, multidrug resistance-associated protein and VEGF was increased in rMKN45-PTX. The expression level of PKM1 was upregulated in rMKN45-PTX, leading to an increase in the PKM1/PKM2 ratio. Using xenograft models, we demonstrated that mouse subcutaneous tumors derived from rMKN45-PTX were significantly larger than those derived from MKN45 cells. Conclusion Under the stress of chemotherapeutic agent exposure, high expression of HIF-1α affects various downstream genes. Although the underlying mechanism is unknown, our data suggest that PKM1 is also a molecular target for gastric cancer treatment.
Collapse
Affiliation(s)
- Mitsuyoshi Okazaki
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan,
| | - Sachio Fushida
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan,
| | - Tomoya Tsukada
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan,
| | - Jun Kinoshita
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan,
| | - Katsunobu Oyama
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan,
| | - Tomoharu Miyashita
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan,
| | - Itasu Ninomiya
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan,
| | - Shinichi Harada
- Center for Biomedical Research and Education, School of Medicine, Kanazawa University, Ishikawa, Japan
| | - Tetsuo Ohta
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan,
| |
Collapse
|
14
|
Anlotinib inhibits angiogenesis via suppressing the activation of VEGFR2, PDGFRβ and FGFR1. Gene 2018; 654:77-86. [PMID: 29454091 DOI: 10.1016/j.gene.2018.02.026] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 02/08/2018] [Indexed: 11/23/2022]
Abstract
Tumor cells recruit vascular endothelial cells and circulating endothelial progenitor cells to form new vessels to support their own growth and metastasis. VEGF, PDGF-BB and FGF-2 are three major pro-angiogenic factors and applied to promote angiogenesis. In this research, we demonstrated that anlotinib, a potent multi-tyrosine kinases inhibitor (TKI), showed a significant inhibitory effect on VEGF/PDGF-BB/FGF-2-induced angiogenesis in vitro and in vivo. Wound healing assay, chamber directional migration assay and tube formation assay indicated that anlotinib inhibited VEGF/PDGF-BB/FGF-2-induced cell migration and formation of capillary-like tubes in endothelial cells. Furthermore, anlotinib suppressed blood vessels sprout and microvessel density in rat aortic ring assay and chicken chorioallantoic membrane (CAM) assay. Importantly, according to our study, the anti-angiogenic effect of anlotinib is superior to sunitinib, sorafenib and nintedanib, which are three main anti-angiogenesis drugs in clinic. Mechanistically, anlotinib inhibits the activation of VEGFR2, PDGFRβ and FGFR1 as well their common downstream ERK signaling. Therefore, anlotinib is a potential agent to inhibit angiogenesis and be applied to tumor therapy.
Collapse
|
15
|
Mollard S, Ciccolini J, Imbs DC, El Cheikh R, Barbolosi D, Benzekry S. Model driven optimization of antiangiogenics + cytotoxics combination: application to breast cancer mice treated with bevacizumab + paclitaxel doublet leads to reduced tumor growth and fewer metastasis. Oncotarget 2018; 8:23087-23098. [PMID: 28416742 PMCID: PMC5410287 DOI: 10.18632/oncotarget.15484] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/07/2017] [Indexed: 11/25/2022] Open
Abstract
Bevacizumab is the first-in-class antiangiogenic drug and is almost always administrated in combination with cytotoxics. Reports have shown that bevacizumab could induce a transient phase of vascular normalization, thus ensuring a better drug delivery when cytotoxics administration is adjuvant. However, determining the best sequence remains challenging. We have developed a mathematical model describing the impact of antiangiogenics on tumor vasculature. A 3.4 days gap between bevacizumab and paclitaxel was first proposed by our model. To test its relevance, 84 mice were orthotopically xenografted with human MDA-231Luc+ refractory breast cancer cells. Two sets of experiments were performed, based upon different bevacizumab dosing (10 or 20 mg/kg) and inter-cycle intervals (7 or 10 days), comprising several combinations with paclitaxel. Results showed that scheduling bevacizumab 3 days before paclitaxel improved antitumor efficacy (48% reduction in tumor size compared with concomitant dosing, p < 0.05) and reduced metastatic spreading. Additionally, bevacizumab alone could lead to more aggressive metastatic disease with shorter survival in animals. Our model was able to fit the experimental data and provided insights on the underlying dynamics of the vasculature's ability to deliver the cytotoxic agent. Final simulations suggested a new, data-informed optimal gap of 2.2 days. Our experimental data suggest that current concomitant dosing between bevacizumab and paclitaxel could be a sub-optimal strategy at bedside. In addition, this proof of concept study suggests that mathematical modelling could help to identify the optimal interval among a variety of possible alternate treatment modalities, thus refining the way experimental or clinical studies are conducted.
Collapse
Affiliation(s)
- Severine Mollard
- SMARTc Unit, Inserm S_911 CRO2, Aix Marseille University, Marseille, France.,Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Joseph Ciccolini
- SMARTc Unit, Inserm S_911 CRO2, Aix Marseille University, Marseille, France
| | | | - Raouf El Cheikh
- SMARTc Unit, Inserm S_911 CRO2, Aix Marseille University, Marseille, France
| | | | | |
Collapse
|
16
|
Peng C, Liu J, Yang G, Li Y. Lysyl oxidase activates cancer stromal cells and promotes gastric cancer progression: quantum dot-based identification of biomarkers in cancer stromal cells. Int J Nanomedicine 2017; 13:161-174. [PMID: 29343955 PMCID: PMC5747962 DOI: 10.2147/ijn.s143871] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose Semiconductor quantum dots (QDs) are a promising alternative to organic fluorescent dyes for multiplexed molecular imaging of cancer stroma, which have great advantages in holistically analyzing the complex interactions among cancer stromal components in situ. Patients and methods A QD probe-based multiplexed spectral molecular imaging method was established for simultaneous imaging. Three tissue microarrays (TMAs) including 184 gastric cancer (GC) tissues were constructed for the study. Multispectral analyses were performed for quantifying stromal biomarkers, such as lysyl oxidase (LOX). The stromal status including infiltrating of immune cells (high density of macrophages), angiogenesis (high density of microvessel density [MVD], low neovessel maturation) and extracellular matrix (ECM) remodeling (low density of type IV collagen, intense expression of matrix metalloproteinase 9 [MMP-9]) was evaluated. Results This study compared the imaging features of the QD probe-based single molecular imaging method, immunohistochemistry, and organic dye-based immunofluorescent methods, and showed the advantages of the QD probe-based multiple molecular imaging method for simultaneously visualizing complex components of cancer stroma. The risk of macrophages in high density, high MVD, low neomicrovessel maturation, MMP-9 expression and low type IV collagen was significantly increased for the expression of LOX. With the advantages of the established QD probe-based multiplexed molecular imaging method, the spatial relationship between LOX and stromal essential events could be simultaneously evaluated histologically. Stromal activation was defined and then evaluated. Survival analysis showed that the stromal activation was correlated with overall survival and disease-free survival (P<0.001 for all). The expression of LOX was significantly increased in the intense activation subgroup (P<0.001). Conclusion Quantifying assessment of the stroma indicates that the LOX may be a stromal marker for GC and stromal activation, which is not only responsible for the ECM remodeling morphologically, but also for the formation of invasive properties and recurrence. These results support the possibility to integrate morphological and molecular biomarker information for cancer research by the biomedical application of QDs.
Collapse
Affiliation(s)
- Chunwei Peng
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center
| | - Jiuyang Liu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center
| | - Guifang Yang
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan
| | - Yan Li
- Department of Peritoneal Cancer Surgery, Cancer Center of Beijing Shijitan Hospital Affiliated to the Capital Medical University, Yangfangdian, Beijing, People's Republic of China
| |
Collapse
|
17
|
VEGFR2 targeted antibody fused with MICA stimulates NKG2D mediated immunosurveillance and exhibits potent anti-tumor activity against breast cancer. Oncotarget 2017; 7:16445-61. [PMID: 26909862 PMCID: PMC4941327 DOI: 10.18632/oncotarget.7501] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/29/2016] [Indexed: 12/27/2022] Open
Abstract
Binding of MHC class I-related chain molecules A and B (MICA/B) to the natural killer (NK) cell receptor NK group 2, member D (NKG2D) is thought critical for activating NK-mediated immunosurveillance. Angiogenesis is important for tumor growth and interfering with angiogenesis using the fully human IgG1 anti-VEGFR2 (vascular endothelial growth factor receptor 2) antibody (mAb04) can be effective in treating malignancy. In an effort to make mAb04 more effective we have generated a novel antibody fusion protein (mAb04-MICA) consisting of mAb04 and MICA. We found that mAb04-MICA maintained the anti-angiogenic and antineoplastic activities of mAb04, and also enhanced immunosurveillance activated by the NKG2D pathway. Moreover, in human breast tumor-bearing nude mice, mAb04-MICA demonstrated superior anti-tumor efficacy compared to combination therapy of mAb04 + Docetaxel or Avastin + Docetaxel, highlighting the immunostimulatory effect of MICA. In conclusion, mAb04-MICA provided new inspiration for anti-tumor treatment and had prospects for clinical application.
Collapse
|
18
|
Cross-talk mechanism between endothelial cells and hepatocellular carcinoma cells via growth factors and integrin pathway promotes tumor angiogenesis and cell migration. Oncotarget 2017; 8:69577-69593. [PMID: 29050226 PMCID: PMC5642501 DOI: 10.18632/oncotarget.18632] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/22/2017] [Indexed: 11/25/2022] Open
Abstract
Tumor angiogenesis plays a central role in the development and metastasis of hepatocellular carcinoma. Cancer cells secrete angiogenic factors to recruit vascular endothelial cells and sustain tumor vascular networks, which facilitate the migration and invasion of cancer cells. Therefore, the cross-talk between vascular endothelial cells and cancer cells is vitally necessary, however, little is known about the cross-talk mechanism of these cells interaction. In the present study, the proliferation, migration, invasion and tube formation of vascular endothelial EA.hy926 cells and hepatocellular carcinoma HepG2 cells were studied by exchanging their culture medium. The time-dependent differences of integrins induced signaling pathway associated with cell migration were investigated. Our results showed that HepG2 cells markedly enhanced the proliferation and migration ability as well as the tube formation of EA.hy926 cells by releasing growth factors. Also, the EA.hy926 cells promoted the proliferation, migration and invasion ability of HepG2 cells. The further analysis demonstrated that the integrins-FAK-Rho GTPases signaling events in both of two cells was activated under conditioned medium, and the signaling molecules in two cell lines showed a different time-dependent expression within 1h. These findings reveal the cross-talk mechanism between the endothelial cells and hepatocellular carcinoma cells, which were expected to find out new ideas for the prevention and treatment of hepatocellular carcinoma.
Collapse
|
19
|
Soluble VE-cadherin in metastatic breast cancer: an independent prognostic factor for both progression-free survival and overall survival. Br J Cancer 2017; 116:356-361. [PMID: 28056463 PMCID: PMC5294483 DOI: 10.1038/bjc.2016.427] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/18/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022] Open
Abstract
Background: Patients with metastatic breast cancer (MBC) represent a heterogeneous group, with large differences in outcomes from individual patients. VE-cadherin, an endothelial-specific cadherin, was shown to promote tumour proliferation and angiogenesis. Soluble VE-cadherin has been recently associated to breast cancer progression. This study was designed to investigate the prognosis significance of soluble VE-cadherin in hormone-refractory MBC. Methods: Between 2004 and 2007, 150 patients with a fully documented history of hormone-refractory MBC were included in the prospective SEMTOF study. Serum concentrations of VE-cadherin were measured at inclusion for 141 patients and 6 weeks after the beginning of chemotherapy, using a sandwich enzyme immunoassay. Results: The presence of high levels of serum VE-cadherin was significantly correlated to a shorter progression-free (PFS) and overall survival (OS). In a multivariate analysis along with clinical and biologic prognostic parameters, high serum VE-cadherin level was an independent adverse prognostic variable for PFS (median PFS 9.7 (IC95: 8; 11.9) vs 5.8 (IC95: 4.1; 8) months P=0.0008) and OS (median OS 34 (IC95: 26.6; 47.1) vs 14.8 (IC95: 9.3; 21.4) months P=0.0007). Moreover, VE-cadherin decrease during chemotherapy was also associated with good prognosis. Conclusions: Serum VE-cadherin levels correlate to poorer survival in patients with hormone-refractory MBC. As sVE-cadherin reflects tumour angiogenesis, this could have therapeutic implications for antiangiogenic treatment.
Collapse
|
20
|
Sonnenblick A, Pondé N, Piccart M. Metastatic breast cancer: The Odyssey of personalization. Mol Oncol 2016; 10:1147-59. [PMID: 27430154 PMCID: PMC5423195 DOI: 10.1016/j.molonc.2016.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/27/2016] [Accepted: 07/05/2016] [Indexed: 12/31/2022] Open
Abstract
Metastatic breast cancer is the most frequent cause of cancer death for women worldwide. In the last 15 years, a large number of new agents have entered clinical use, a result of the dramatic increase in our understanding of the molecular underpinnings of metastatic breast cancer. However, while these agents have led to better outcomes, they are also at the root cause of increasing financial pressure on healthcare systems. Moreover, decision making in an era where every year new agents are added to the therapeutic armamentarium has also become a significant challenge for medical oncologists. In the present article, we will provide an ample review on the most recent developments in the field of treatment of the different subtypes of metastatic breast cancer with a critical discussion on the slow progress made in identifying response biomarkers. New hopes in the form of ctDNA monitoring and functional imaging will be presented.
Collapse
Affiliation(s)
- A Sonnenblick
- Department of Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Boulevard de Waterloo 125, B 1000 Brussels, Belgium; Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - N Pondé
- Department of Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Boulevard de Waterloo 125, B 1000 Brussels, Belgium
| | - M Piccart
- Department of Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Boulevard de Waterloo 125, B 1000 Brussels, Belgium.
| |
Collapse
|
21
|
Wang X, Shen Y, Li S, Lv M, Zhang X, Yang J, Wang F, Yang J. Importance of the interaction between immune cells and tumor vasculature mediated by thalidomide in cancer treatment (Review). Int J Mol Med 2016; 38:1021-9. [PMID: 27599781 DOI: 10.3892/ijmm.2016.2724] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 08/25/2016] [Indexed: 11/05/2022] Open
Abstract
Over the past 60 years, thalidomide has metamorphosized from a drug prescribed to treat morning sickness in pregnant women, which was subsequently found to induce birth defects, into a highly effective therapy for treating leprosy and multiple myeloma. Several mechanisms have been proposed to explain the anticancer effects of thalidomide, including antiangiogenic and immunomodulatory activities. At present, evidence suggests that thalidomide may induce vessel maturation. Vascular normalization may be an effective strategy to enhance cancer immunotherapy. Numerous studies have shown that the tumor infiltrating immune cell subsets are important in regulating the process of tumor angiogenesis. The mechanisms associated with antiangiogenesis and the potent immunomodulatory effects of thalidomide obtained the most support. The studies of the antiangiogenic activity of thalidomide were guided in a novel direction by a hypothesis regarding the vascular normalization of tumors. Hence, thalidomide is effective in cancer treatment due to the interaction between immune cells and tumor vasculature. This mechanism provides new avenues to explore for the treatment of cancer.
Collapse
Affiliation(s)
- Xin Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yanwei Shen
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shuting Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Meng Lv
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaoman Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jiao Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Fan Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jin Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
22
|
Nahleh ZA, Barlow WE, Hayes DF, Schott AF, Gralow JR, Sikov WM, Perez EA, Chennuru S, Mirshahidi HR, Corso SW, Lew DL, Pusztai L, Livingston RB, Hortobagyi GN. SWOG S0800 (NCI CDR0000636131): addition of bevacizumab to neoadjuvant nab-paclitaxel with dose-dense doxorubicin and cyclophosphamide improves pathologic complete response (pCR) rates in inflammatory or locally advanced breast cancer. Breast Cancer Res Treat 2016; 158:485-95. [PMID: 27393622 PMCID: PMC4963434 DOI: 10.1007/s10549-016-3889-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 06/25/2016] [Indexed: 01/09/2023]
Abstract
SWOG S0800, a randomized open-label Phase II clinical trial, compared the combination of weekly nab-paclitaxel and bevacizumab followed by dose-dense doxorubicin and cyclophosphamide (AC) with nab-paclitaxel followed or preceded by AC as neoadjuvant treatment for HER2-negative locally advanced breast cancer (LABC) or inflammatory breast cancer (IBC). Patients were randomly allocated (2:1:1) to three neoadjuvant chemotherapy arms: (1) nab-paclitaxel with concurrent bevacizumab followed by AC; (2) nab-paclitaxel followed by AC; or (3) AC followed by nab-paclitaxel. The primary endpoint was pathologic complete response (pCR) with stratification by disease type (non-IBC LABC vs. IBC) and hormone receptor status (positive vs. negative). Overall survival (OS), event-free survival (EFS), and toxicity were secondary endpoints. Analyses were intent-to-treat comparing bevacizumab to the combined control arms. A total of 215 patients were accrued including 11 % with IBC and 32 % with triple-negative breast cancer (TNBC). The addition of bevacizumab significantly increased the pCR rate overall (36 vs. 21 %; p = 0.019) and in TNBC (59 vs. 29 %; p = 0.014), but not in hormone receptor-positive disease (24 vs. 18 %; p = 0.41). Sequence of administration of nab-paclitaxel and AC did not affect the pCR rate. While no significant differences in OS or EFS were seen, a trend favored the addition of bevacizumab for EFS (p = 0.06) in TNBC. Overall, Grade 3-4 adverse events did not differ substantially by treatment arm. The addition of bevacizumab to nab-paclitaxel prior to dose-dense AC neoadjuvant chemotherapy significantly improved the pCR rate compared to chemotherapy alone in patients with triple-negative LABC/IBC and was accompanied by a trend for improved EFS. This suggests reconsideration of the role of bevacizumab in high-risk triple-negative locally advanced breast cancer.
Collapse
Affiliation(s)
- Z A Nahleh
- Division of Hematology-Oncology, Department of Internal Medicine, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, TX, USA.
| | - W E Barlow
- SWOG Statistical Center, Seattle, WA, USA
| | - D F Hayes
- University of Michigan, Ann Arbor, MI, USA
| | - A F Schott
- University of Michigan, Ann Arbor, MI, USA
| | - J R Gralow
- Seattle Cancer Care Alliance, University of Washington, Seattle, WA, USA
| | - W M Sikov
- Women and Infants Hospital of Rhode Island and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - E A Perez
- Genentech, Inc., San Francisco, CA, USA.,Mayo Clinic, Jacksonville, FL, USA
| | - S Chennuru
- Hematology Oncology Consultants, Inc., Westerville, OH, USA.,Columbus NCI Community Oncology Research Program, Columbus, OH, USA
| | - H R Mirshahidi
- Loma Linda University Cancer Center, Loma Linda, CA, USA
| | - S W Corso
- Gibbs Cancer Center and Research Institute/Southeast Clinical Oncology Research (SCOR) Consortium NCORP/Upstate Carolina CCOP (previous), Spartanburg, SC, USA
| | - D L Lew
- SWOG Statistical Center, Seattle, WA, USA
| | | | | | - G N Hortobagyi
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
23
|
Pham E, Yin M, Peters CG, Lee CR, Brown D, Xu P, Man S, Jayaraman L, Rohde E, Chow A, Lazarus D, Eliasof S, Foster FS, Kerbel RS. Preclinical Efficacy of Bevacizumab with CRLX101, an Investigational Nanoparticle-Drug Conjugate, in Treatment of Metastatic Triple-Negative Breast Cancer. Cancer Res 2016; 76:4493-503. [PMID: 27325647 DOI: 10.1158/0008-5472.can-15-3435] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/23/2016] [Indexed: 11/16/2022]
Abstract
VEGF pathway-targeting antiangiogenic drugs, such as bevacizumab, when combined with chemotherapy have changed clinical practice for the treatment of a broad spectrum of human cancers. However, adaptive resistance often develops, and one major mechanism is elevated tumor hypoxia and upregulated hypoxia-inducible factor-1α (HIF1α) caused by antiangiogenic treatment. Reduced tumor vessel numbers and function following antiangiogenic therapy may also affect intratumoral delivery of concurrently administered chemotherapy. Nonetheless, combining chemotherapy and bevacizumab can lead to improved response rates, progression-free survival, and sometimes, overall survival, the extent of which can partly depend on the chemotherapy backbone. A rational, complementing chemotherapy partner for combination with bevacizumab would not only reduce HIF1α to overcome hypoxia-induced resistance, but also improve tumor perfusion to maintain intratumoral drug delivery. Here, we evaluated bevacizumab and CRLX101, an investigational nanoparticle-drug conjugate containing camptothecin, in preclinical mouse models of orthotopic primary triple-negative breast tumor xenografts, including a patient-derived xenograft. We also evaluated long-term efficacy of CRLX101 and bevacizumab to treat postsurgical, advanced metastatic breast cancer in mice. CRLX101 alone and combined with bevacizumab was highly efficacious, leading to complete tumor regressions, reduced metastasis, and greatly extended survival of mice with metastatic disease. Moreover, CRLX101 led to improved tumor perfusion and reduced hypoxia, as measured by contrast-enhanced ultrasound and photoacoustic imaging. CRLX101 durably suppressed HIF1α, thus potentially counteracting undesirable effects of elevated tumor hypoxia caused by bevacizumab. Our preclinical results show pairing a potent cytotoxic nanoparticle chemotherapeutic that complements and improves concurrent antiangiogenic therapy may be a promising treatment strategy for metastatic breast cancer. Cancer Res; 76(15); 4493-503. ©2016 AACR.
Collapse
Affiliation(s)
- Elizabeth Pham
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Melissa Yin
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | - Christina R Lee
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Donna Brown
- Cerulean Pharma Inc., Waltham, Massachusetts
| | - Ping Xu
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Shan Man
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | - Ellen Rohde
- Cerulean Pharma Inc., Waltham, Massachusetts
| | - Annabelle Chow
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | | | - F Stuart Foster
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Robert S Kerbel
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
24
|
Shaaban S, Alsulami M, Arbab SA, Ara R, Shankar A, Iskander A, Angara K, Jain M, Bagher-Ebadian H, Achyut BR, Arbab AS. Targeting Bone Marrow to Potentiate the Anti-Tumor Effect of Tyrosine Kinase Inhibitor in Preclinical Rat Model of Human Glioblastoma. ACTA ACUST UNITED AC 2016; 12:69-81. [PMID: 27429653 DOI: 10.3923/ijcr.2016.69.81] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antiangiogenic agents caused paradoxical increase in pro-growth and pro-angiogenic factors and caused tumor growth in glioblastoma (GBM). It is hypothesized that paradoxical increase in pro-angiogenic factors would mobilize Bone Marrow Derived Cells (BMDCs) to the treated tumor and cause refractory tumor growth. The purposes of the studies were to determine whether whole body irradiation (WBIR) or a CXCR4 antagonist (AMD3100) will potentiate the effect of vatalanib (a VEGFR2 tyrosine kinase inhibitor) and prevent the refractory growth of GBM. Human GBM were grown orthotopically in three groups of rats (control, pretreated with WBIR and AMD3100) and randomly selected for vehicle or vatalanib treatments for 2 weeks. Then all animals underwent Magnetic Resonance Imaging (MRI) followed by euthanasia and histochemical analysis. Tumor volume and different vascular parameters (plasma volume (vp), forward transfer constant (Ktrans), back flow constant (kep), extravascular extracellular space volume (ve) were determined from MRI. In control group, vatalanib treatment increased the tumor growth significantly compared to that of vehicle treatment but by preventing the mobilization of BMDCs and interaction of CXCR4-SDF-1 using WBIR and ADM3100, respectively, paradoxical growth of tumor was controlled. Pretreatment with WBIR or AMD3100 also decreased tumor cell migration, despite the fact that ADM3100 increased the accumulation of M1 and M2 macrophages in the tumors. Vatalanib also increased Ktrans and ve in control animals but both of the vascular parameters were decreased when the animals were pretreated with WBIR and AMD3100. In conclusion, depleting bone marrow cells or CXCR4 interaction can potentiate the effect of vatalanib.
Collapse
Affiliation(s)
- S Shaaban
- Laboratory of Tumor Angiogenesis, Department of Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, 30912, USA
| | - M Alsulami
- Laboratory of Tumor Angiogenesis, Department of Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, 30912, USA
| | - S A Arbab
- Laboratory of Tumor Angiogenesis, Department of Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, 30912, USA
| | - R Ara
- Laboratory of Tumor Angiogenesis, Department of Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, 30912, USA
| | - A Shankar
- Laboratory of Tumor Angiogenesis, Department of Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, 30912, USA
| | - A Iskander
- Laboratory of Tumor Angiogenesis, Department of Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, 30912, USA
| | - K Angara
- Laboratory of Tumor Angiogenesis, Department of Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, 30912, USA
| | - M Jain
- Laboratory of Tumor Angiogenesis, Department of Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, 30912, USA
| | - H Bagher-Ebadian
- Department of Radiology, Henry Ford Health System, Detroit, MI, USA
| | - B R Achyut
- Laboratory of Tumor Angiogenesis, Department of Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, 30912, USA
| | - A S Arbab
- Laboratory of Tumor Angiogenesis, Department of Biochemistry and Molecular Biology, Cancer Center, Georgia Regents University, Augusta, GA, 30912, USA
| |
Collapse
|
25
|
Gu Y, Xiao L, Ming Y, Zheng Z, Li W. Corilagin suppresses cholangiocarcinoma progression through Notch signaling pathway in vitro and in vivo. Int J Oncol 2016; 48:1868-76. [PMID: 26935808 PMCID: PMC4809656 DOI: 10.3892/ijo.2016.3413] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/04/2016] [Indexed: 12/16/2022] Open
Abstract
Corilagin is a natural plant polyphenol tannic acid with antitumor, anti-inflammatory, and anti-oxidative properties. However, the mechanisms of its actions are largely unknown. Our group reported that corilagin could induce cell inhibition in human breast cancer cell line MCF-7 and human liver hepatocellular carcinoma cell lines HepG2. We report here that corilagin inhibits cholangiocarcinoma (CCA) development through regulating Notch signaling pathway. We found that, in vitro, corilagin inhibited CCA cell proliferation, migration and invasion, promoted CCA cell apoptosis, and inhibited Notch1 and Notch signaling pathway protein expression. Co-immunoprecipitation was used to establish Notch intracellular domain (NICD) interaction with MAML1 and P300 in CCA. Importantly, corilagin reduced Hes1 mRNA level through inhibiting Hes1 promoter activity. In nude mice, corilagin inhibited CCA growth and repressed the expression of Notch1 and mTOR. These results indicate that corilagin may control CCA cell growth by downregulating the expression of Notch1. Therefore, our findings suggest that corilagin may have the potential to become a new therapeutic drug for human CCA.
Collapse
Affiliation(s)
- Yue Gu
- Medical College of Xiamen University, Xiamen, Fujian, P.R. China
| | - Linfeng Xiao
- Medical College of Xiamen University, Xiamen, Fujian, P.R. China
| | - Yanlin Ming
- The Research and Development Center for Medicine Plants and Plant Drugs, Xiamen Overseas Chinese Subtropical Plant Introduction Garden, Xiamen, Fujian, P.R. China
| | - Zhizhong Zheng
- The Research and Development Center for Medicine Plants and Plant Drugs, Xiamen Overseas Chinese Subtropical Plant Introduction Garden, Xiamen, Fujian, P.R. China
| | - Wengang Li
- Medical College of Xiamen University, Xiamen, Fujian, P.R. China
| |
Collapse
|
26
|
Li M, Xing S, Zhang H, Shang S, Li X, Ren B, Li G, Chang X, Li Y, Li W. A matrix metalloproteinase inhibitor enhances anti-cytotoxic T lymphocyte antigen-4 antibody immunotherapy in breast cancer by reprogramming the tumor microenvironment. Oncol Rep 2016; 35:1329-39. [PMID: 26752000 PMCID: PMC4750755 DOI: 10.3892/or.2016.4547] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/23/2015] [Indexed: 02/06/2023] Open
Abstract
Anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) treatment is effective for the treatment of primary tumors, but not sufficient for the treatment of metastatic tumors, likely owing to the effects of the tumor microenvironment. In this study, we aimed to determine the therapeutic effects of combined treatment with a matrix metalloproteinase (MMP) inhibitor (MMPI) and anti-CTLA-4 antibody in a breast cancer model in mice. Interestingly, combined treatment with MMPI and anti-CTLA-4 antibody delayed tumor growth and reduced lung and liver metastases compared with anti-CTLA-4 alone or vehicle treatment. The functions of the liver and kidney in mice in the different groups did not differ significantly compared with that in normal mice. The CD8+/CD4+ ratio in T cells in the spleen and tumor were increased after monotherapy or combined anti-CTLA-4 antibody plus MMPI therapy compared with that in vehicle-treated mice. Anti-CTLA-4 antibody plus MMPI therapy reduced the percentage of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) and decreased the Treg/Th17 cell ratio in the spleen compared with those in the vehicle-treated group. Additionally, anti-CTLA-4 antibody plus MMPI therapy reduced the percentages of regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and Th17 cells in tumors compared with that in the vehicle-treated group. Moreover, combined treatment with MMPI and anti-CTLA-4 antibody reduced the microvessel density (MVD) in tumors compared with that in vehicle or MMPI-treated mice. There was a negative correlation between MVD and the CD8+ T cell percentage, CD4+ T cell percentage, and CD8+/CD4+ T cell ratio, but a positive correlation with Tregs, Th17 cells, Treg/Th17 cell ratio, and MDSCs. Thus, these data demonstrated that addition of MMPI enhanced the effects of anti-CTLA-4 antibody treatment in a mouse model of breast cancer by delaying tumor growth and reducing metastases.
Collapse
Affiliation(s)
- Mingyue Li
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shugang Xing
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Haiying Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Siqi Shang
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiangxiang Li
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bo Ren
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Gaiyun Li
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaona Chang
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yilei Li
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wei Li
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
27
|
Ames JJ, Henderson T, Liaw L, Brooks PC. Methods for Analyzing Tumor Angiogenesis in the Chick Chorioallantoic Membrane Model. Methods Mol Biol 2016; 1406:255-269. [PMID: 26820962 DOI: 10.1007/978-1-4939-3444-7_22] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Models of tumor angiogenesis have played a critical role in understanding the mechanisms involved in the recruitment of vasculature to the tumor mass, and have also provided a platform for testing antiangiogenic potential of new therapeutics that combat the development of malignant growth. In this regard, the chorioallantoic membrane (CAM) of the developing chick embryo has proven to be an elegant model for investigation of angiogenic processes. Here, we describe methods for effectively utilizing the preestablished vascular network of the chick CAM to investigate and quantify tumor-associated angiogenesis in a breast tumor model.
Collapse
Affiliation(s)
- Jacquelyn J Ames
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, 04469, USA
| | - Terry Henderson
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA
| | - Lucy Liaw
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA
| | - Peter C Brooks
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA.
| |
Collapse
|
28
|
Nakagawa M, Inokuchi M, Takagi Y, Kato K, Sugita H, Otsuki S, Kojima K, Uetake H, Sugihara K. Erythropoietin-Producing Hepatocellular A1 is an Independent Prognostic Factor for Gastric Cancer. Ann Surg Oncol 2014; 22:2329-35. [DOI: 10.1245/s10434-014-4231-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Indexed: 12/25/2022]
|