1
|
Yang YL, Qian ZY, Zhao Y, Chen XL, Huang QY, Guo YJ, Sun LN, Wang YQ. LC-MS/MS methods for determination of venetoclax in human plasma and cerebrospinal fluid. Biomed Chromatogr 2023; 37:e5738. [PMID: 37724003 DOI: 10.1002/bmc.5738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/01/2023] [Accepted: 08/18/2023] [Indexed: 09/20/2023]
Abstract
We developed and validated sensitive MS/MS methods for the determination of venetoclax, an oral selective B-cell lymphoma-2 inhibitor, in human plasma and cerebrospinal fluid (CSF). Acetonitrile was used as protein precipitant. The mobile phase was 10 mM ammonium formate consisting of 0.1% formic acid and acetonitrile (40:60, v/v). The analytes were separated on an ACQUITY UPLC HSS T3 column (2.1 × 50 mm, 1.8 μm) in 5 min. An API 4000 mass spectrometer was selected to quantify venetoclax and internal standard using m/z 868.3 → 636.3 and 876.3 → 644.3 under multiple response monitoring mode. In plasma, the calibration curve exhibited good linearity ranging from 20.0 to 5000 ng/mL, whereas in the CSF, the linear range was 0.500-100 ng/mL. The matrix effect of venetoclax and internal standard (venetoclax-d8) was not obvious in both plasma and CSF. The inter- and intra-run accuracy was within ±11.9%, and the inter- and intra-run precision was below 13.6%. Both methods had no carryover, and the recovery was close to 100%. The validated methods were employed to quantify the concentrations of venetoclax in the plasma and CSF of patients diagnosed with chronic lymphocytic leukemia or acute myelogenous leukemia.
Collapse
Affiliation(s)
- Yan-Ling Yang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Zhou-Yi Qian
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yang Zhao
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Xiang-Long Chen
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiong-Ye Huang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yu-Jiao Guo
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lu-Ning Sun
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yong-Qing Wang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Discovery of potent and selective Bcl-2 inhibitors with acyl sulfonamide skeleton. Bioorg Med Chem 2021; 47:116350. [PMID: 34536651 DOI: 10.1016/j.bmc.2021.116350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 12/23/2022]
Abstract
The antiapoptotic protein B-cell lymphoma 2 (Bcl-2), overexpressed in many tumor cells, is an attractive target for potential small molecule anticancer drug discovery. Herein, a series of novel derivatives with acyl sulfonamide skeleton was designed, synthesized, and evaluated as Bcl-2 inhibitors by means of bioisosteric replacement. Among them, compound 24g demonstrated equal efficient inhibition activity against RS4;11 cell line compared to positive control ABT-199. Moreover, it showed improved selectivity for Bcl-2/Bcl-xL inhibitory effects, the result of which was consistent with platelet toxicity studies. In vitro and in vivo pharmacokinetic properties of compound 24g had a significantly improved profiles. Taken together, those results suggested it as a promising candidate for development of novel therapeutics targeting Bcl-2 in cancer.
Collapse
|
5
|
Mukherjee N, Amato CM, Skees J, Todd KJ, Lambert KA, Robinson WA, Van Gulick R, Weight RM, Dart CR, Tobin RP, McCarter MD, Fujita M, Norris DA, Shellman YG. Simultaneously Inhibiting BCL2 and MCL1 Is a Therapeutic Option for Patients with Advanced Melanoma. Cancers (Basel) 2020; 12:E2182. [PMID: 32764384 PMCID: PMC7464298 DOI: 10.3390/cancers12082182] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/21/2020] [Accepted: 07/31/2020] [Indexed: 01/06/2023] Open
Abstract
There is an urgent need to develop treatments for patients with melanoma who are refractory to or ineligible for immune checkpoint blockade, including patients who lack BRAF-V600E/K mutations. This is often the case in patients diagnosed with rare melanoma subtypes such as mucosal and acral melanoma. Here, we analyzed data from the cutaneous melanoma The Cancer Genome Atlas Network (TCGA) transcriptomic and proteomic databases for differential expression of apoptosis molecules between melanomas with or without BRAF hotspot mutations. Our data indicated higher B-cell CLL/lymphoma 2 (BCL2) expression in melanoma without BRAF hotspot mutations, suggesting that BH3 mimetics, such as ABT-199 (venetoclax, a small molecule against BCL2), may be a potential therapeutic option for these patients. We explored the efficacy of combining two BH3 mimetics, ABT-199 and a myeloid cell leukemia sequence 1 (MCL1) inhibitor (S63845 or S64315/MIK665) in cutaneous, mucosal and acral melanomas, in vitro and in vivo. Our data indicate this combination induced cell death in a broad range of melanoma cell lines, including melanoma initiating cell populations, and was more potent in melanoma cells without BRAF-V600E/K mutations. Our knockdown/knockout experiments suggest that several pro-apoptotic BCL2 family members, BCL2-like 11 (apoptosis facilitator) (BIM), phorbol-12-myristate-13-acetate-induced protein 1 (NOXA) or BID, play a role in the combination-induced effects. Overall, our study supports the rationale for combining an MCL1 inhibitor with a BCL2 inhibitor as a therapeutic option in patients with advanced melanoma.
Collapse
Affiliation(s)
- Nabanita Mukherjee
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop 8127, Aurora, CO 80045, USA; (N.M.); (J.S.); (K.J.T.); (K.A.L.); (M.F.); (D.A.N.)
| | - Carol M. Amato
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop 8117, Aurora, CO 80045, USA; (C.M.A.); (W.A.R.); (R.V.G.); (R.M.W.); (C.R.D.)
| | - Jenette Skees
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop 8127, Aurora, CO 80045, USA; (N.M.); (J.S.); (K.J.T.); (K.A.L.); (M.F.); (D.A.N.)
| | - Kaleb J. Todd
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop 8127, Aurora, CO 80045, USA; (N.M.); (J.S.); (K.J.T.); (K.A.L.); (M.F.); (D.A.N.)
| | - Karoline A. Lambert
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop 8127, Aurora, CO 80045, USA; (N.M.); (J.S.); (K.J.T.); (K.A.L.); (M.F.); (D.A.N.)
| | - William A. Robinson
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop 8117, Aurora, CO 80045, USA; (C.M.A.); (W.A.R.); (R.V.G.); (R.M.W.); (C.R.D.)
| | - Robert Van Gulick
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop 8117, Aurora, CO 80045, USA; (C.M.A.); (W.A.R.); (R.V.G.); (R.M.W.); (C.R.D.)
| | - Ryan M. Weight
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop 8117, Aurora, CO 80045, USA; (C.M.A.); (W.A.R.); (R.V.G.); (R.M.W.); (C.R.D.)
| | - Chiara R. Dart
- Division of Medical Oncology, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop 8117, Aurora, CO 80045, USA; (C.M.A.); (W.A.R.); (R.V.G.); (R.M.W.); (C.R.D.)
| | - Richard P. Tobin
- Division of Surgical Oncology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (R.P.T.); (M.D.M.)
| | - Martin D. McCarter
- Division of Surgical Oncology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (R.P.T.); (M.D.M.)
| | - Mayumi Fujita
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop 8127, Aurora, CO 80045, USA; (N.M.); (J.S.); (K.J.T.); (K.A.L.); (M.F.); (D.A.N.)
- Dermatology Section, Department of Veterans Affairs Medical Center, Denver, CO 80220, USA
- Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David A. Norris
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop 8127, Aurora, CO 80045, USA; (N.M.); (J.S.); (K.J.T.); (K.A.L.); (M.F.); (D.A.N.)
- Dermatology Section, Department of Veterans Affairs Medical Center, Denver, CO 80220, USA
| | - Yiqun G. Shellman
- Department of Dermatology, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop 8127, Aurora, CO 80045, USA; (N.M.); (J.S.); (K.J.T.); (K.A.L.); (M.F.); (D.A.N.)
- Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|