1
|
Morshed A, Dutta P, Hossan MR, Dillon R. Electrodeformation of Vesicles Suspended in a Liquid Medium. PHYSICAL REVIEW FLUIDS 2018; 3:103702. [PMID: 32864538 PMCID: PMC7451073 DOI: 10.1103/physrevfluids.3.103702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Deformation of flexible vesicles suspended in a fluid medium due to an applied electric field can provide valuable insight into deformation dynamics at a very small scale. In an electric field, the response of the vesicle membrane is strongly influenced by the conductivity of surrounding fluid, vesicle size and shape, and the magnitude of applied field. We studied the electrodeformation of vesicles immersed in a fluid media under a DC electric field. An immersed interface method is used to solve the electric field over the domain with conductive or non-conductive vesicles while an immersed boundary method is employed to solve fluid flow, fluid-solid interaction, membrane mechanics and vesicle deformation. Initial force analysis on the membrane surface reveals almost linear influence of vesicle size, but the vesicle size does not affect the long-term deformation which is consistent with experimental evidence. Highly nonlinear effect of the applied field as well as the conductivity ratios inside and outside of the vesicle are observed. Results also point towards an early linear deformation regime followed by an equilibrium stage for the membranes. Modeling results suggest that electrodeforming vesicles can create unique external flows for different conductivity ratios. Moreover, significant influence of the initial aspect ratio of the vesicle on the force distribution is observed across a range of conductivity ratios.
Collapse
Affiliation(s)
- Adnan Morshed
- School of Mechanical and Materials Engineering Washington State University, Pullman, WA 99164
| | - Prashanta Dutta
- School of Mechanical and Materials Engineering Washington State University, Pullman, WA 99164
| | | | - Robert Dillon
- Department of Mathematics and Statistics Washington State University, Pullman, WA 99164
| |
Collapse
|
2
|
E. Griffith B, Luo X. Hybrid finite difference/finite element immersed boundary method. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33:e2888. [PMID: 28425587 PMCID: PMC5650596 DOI: 10.1002/cnm.2888] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/24/2017] [Accepted: 04/15/2017] [Indexed: 05/07/2023]
Abstract
The immersed boundary method is an approach to fluid-structure interaction that uses a Lagrangian description of the structural deformations, stresses, and forces along with an Eulerian description of the momentum, viscosity, and incompressibility of the fluid-structure system. The original immersed boundary methods described immersed elastic structures using systems of flexible fibers, and even now, most immersed boundary methods still require Lagrangian meshes that are finer than the Eulerian grid. This work introduces a coupling scheme for the immersed boundary method to link the Lagrangian and Eulerian variables that facilitates independent spatial discretizations for the structure and background grid. This approach uses a finite element discretization of the structure while retaining a finite difference scheme for the Eulerian variables. We apply this method to benchmark problems involving elastic, rigid, and actively contracting structures, including an idealized model of the left ventricle of the heart. Our tests include cases in which, for a fixed Eulerian grid spacing, coarser Lagrangian structural meshes yield discretization errors that are as much as several orders of magnitude smaller than errors obtained using finer structural meshes. The Lagrangian-Eulerian coupling approach developed in this work enables the effective use of these coarse structural meshes with the immersed boundary method. This work also contrasts two different weak forms of the equations, one of which is demonstrated to be more effective for the coarse structural discretizations facilitated by our coupling approach.
Collapse
Affiliation(s)
- Boyce E. Griffith
- Departments of Mathematics and Biomedical Engineering, Carolina Center for Interdisciplinary Applied Mathematics, and McAllister Heart InstituteUniversity of North CarolinaChapel HillNCUSA
| | - Xiaoyu Luo
- School of Mathematics and StatisticsUniversity of GlasgowGlasgowUK
| |
Collapse
|
3
|
Habte MA, Wu C. Particle sedimentation using hybrid Lattice Boltzmann-immersed boundary method scheme. POWDER TECHNOL 2017. [DOI: 10.1016/j.powtec.2017.04.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Ko W, Lim S, Lee W, Kim Y, Berg HC, Peskin CS. Modeling polymorphic transformation of rotating bacterial flagella in a viscous fluid. Phys Rev E 2017; 95:063106. [PMID: 28709256 PMCID: PMC5656015 DOI: 10.1103/physreve.95.063106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Indexed: 11/07/2022]
Abstract
The helical flagella that are attached to the cell body of bacteria such as Escherichia coli and Salmonella typhimurium allow the cell to swim in a fluid environment. These flagella are capable of polymorphic transformation in that they take on various helical shapes that differ in helical pitch, radius, and chirality. We present a mathematical model of a single flagellum described by Kirchhoff rod theory that is immersed in a fluid governed by Stokes equations. We perform numerical simulations to demonstrate two mechanisms by which polymorphic transformation can occur, as observed in experiments. First, we consider a flagellar filament attached to a rotary motor in which transformations are triggered by a reversal of the direction of motor rotation [L. Turner et al., J. Bacteriol. 182, 2793 (2000)10.1128/JB.182.10.2793-2801.2000]. We then consider a filament that is fixed on one end and immersed in an external fluid flow [H. Hotani, J. Mol. Biol. 156, 791 (1982)10.1016/0022-2836(82)90142-5]. The detailed dynamics of the helical flagellum interacting with a viscous fluid is discussed and comparisons with experimental and theoretical results are provided.
Collapse
Affiliation(s)
- William Ko
- Department of Mathematical Sciences, University of Cincinnati, 4199 French Hall West, Cincinnati, Ohio 45221, USA
| | - Sookkyung Lim
- Department of Mathematical Sciences, University of Cincinnati, 4199 French Hall West, Cincinnati, Ohio 45221, USA
| | - Wanho Lee
- National Institute for Mathematical Sciences, KT Daeduk 2 Research Center, 70, Yuseong-daero 1689-gil, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Yongsam Kim
- Department of Mathematics, Chung-Ang University, Dongjakgu, Heukseokdong, Seoul 156-756, Republic of Korea
| | - Howard C Berg
- Rowland Institute at Harvard, 100 Edwin H. Land Boulevard, Cambridge, Massachusetts 02142, USA
| | - Charles S Peskin
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012, USA
| |
Collapse
|
5
|
Vater SM, Weiße S, Maleschlijski S, Lotz C, Koschitzki F, Schwartz T, Obst U, Rosenhahn A. Swimming behavior of Pseudomonas aeruginosa studied by holographic 3D tracking. PLoS One 2014; 9:e87765. [PMID: 24498187 PMCID: PMC3909247 DOI: 10.1371/journal.pone.0087765] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/30/2013] [Indexed: 11/25/2022] Open
Abstract
Holographic 3D tracking was applied to record and analyze the swimming behavior of Pseudomonas aeruginosa. The obtained trajectories allow to qualitatively and quantitatively analyze the free swimming behavior of the bacterium. This can be classified into five distinct swimming patterns. In addition to the previously reported smooth and oscillatory swimming motions, three additional patterns are distinguished. We show that Pseudomonas aeruginosa performs helical movements which were so far only described for larger microorganisms. Occurrence of the swimming patterns was determined and transitions between the patterns were analyzed.
Collapse
Affiliation(s)
- Svenja M. Vater
- Applied Physical Chemistry, Ruprecht-Karls-University Heidelberg, Germany
- Institute for Functional Interfaces, IFG, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Sebastian Weiße
- Applied Physical Chemistry, Ruprecht-Karls-University Heidelberg, Germany
- Institute for Functional Interfaces, IFG, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Stojan Maleschlijski
- Applied Physical Chemistry, Ruprecht-Karls-University Heidelberg, Germany
- Institute for Functional Interfaces, IFG, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Analytical Chemistry-Biointerfaces, Ruhr-University Bochum, Germany
| | - Carmen Lotz
- Institute for Functional Interfaces, IFG, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Florian Koschitzki
- Applied Physical Chemistry, Ruprecht-Karls-University Heidelberg, Germany
| | - Thomas Schwartz
- Institute for Functional Interfaces, IFG, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ursula Obst
- Institute for Functional Interfaces, IFG, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Axel Rosenhahn
- Institute for Functional Interfaces, IFG, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Analytical Chemistry-Biointerfaces, Ruhr-University Bochum, Germany
- * E-mail:
| |
Collapse
|
6
|
Quek R, Lim KM, Chiam KH. Three-Dimensional Simulations of Ciliary Flow. VISUALIZATION AND SIMULATION OF COMPLEX FLOWS IN BIOMEDICAL ENGINEERING 2014. [DOI: 10.1007/978-94-007-7769-9_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Modeling and simulation of dielectrophoretic particle-particle interactions and assembly. J Colloid Interface Sci 2012; 394:619-29. [PMID: 23348000 DOI: 10.1016/j.jcis.2012.12.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/19/2012] [Accepted: 12/12/2012] [Indexed: 11/23/2022]
Abstract
Electric field induced particle-particle interactions and assembly are of great interest due to their useful applications in micro devices. The behavior of particles becomes more complex if multiple particles interact with each other at the same time. In this paper, we present a numerical study of two dimensional DC dielectrophoresis based particle-particle interactions and assembly for multiple particles using a hybrid immersed interface-immersed boundary method. The immersed interface method is employed to capture the physics of electrostatics in a fluid media with suspended particles. Particle interaction based dielectrophoretic forces are obtained using Maxwell's stress tensor without any boundary or volume integration. This electrostatic force distribution mimics the actual physics of the immersed particles in a fluid media. The corresponding particle response and hydrodynamic interactions are captured through the immersed boundary method by solving the transient Navier-Stokes equations. The interaction and assembly of multiple electrically similar and dissimilar particles are studied for various initial positions and orientations. Numerical results show that in a fluid media, similar particles form a chain parallel to the applied electric field, whereas dissimilar particles form a chain perpendicular to the applied electric field. Irrespective of initial position and orientation, particles first align themselves parallel or perpendicular to the electric field depending on the similarity or dissimilarity of particles. The acceleration and deceleration of particles are also observed and analyzed at different phases of the assembly process. This comprehensive study can be used to explain the multiple particle interaction and assembly phenomena observed in experiments.
Collapse
|
8
|
Tindall MJ, Gaffney EA, Maini PK, Armitage JP. Theoretical insights into bacterial chemotaxis. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2012; 4:247-59. [PMID: 22411503 DOI: 10.1002/wsbm.1168] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Research into understanding bacterial chemotactic systems has become a paradigm for Systems Biology. Experimental and theoretical researchers have worked hand-in-hand for over 40 years to understand the intricate behavior driving bacterial species, in particular how such small creatures, usually not more than 5 µm in length, detect and respond to small changes in their extracellular environment. In this review we highlight the importance that theoretical modeling has played in providing new insight and understanding into bacterial chemotaxis. We begin with an overview of the bacterial chemotaxis sensory response, before reviewing the role of theoretical modeling in understanding elements of the system on the single cell scale and features underpinning multiscale extensions to population models.
Collapse
Affiliation(s)
- Marcus J Tindall
- School of Biological Sciences, University of Reading, Whiteknights, Reading, UK.
| | | | | | | |
Collapse
|