1
|
Jarrige D, Tardy V, Loux V, Rué O, Chabbi A, Terrat S, Maron PA. Metagenomics reveals contrasted responses of microbial communities to wheat straw amendment in cropland and grassland soils. Sci Rep 2025; 15:14723. [PMID: 40289152 PMCID: PMC12034817 DOI: 10.1038/s41598-025-98903-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/15/2025] [Indexed: 04/30/2025] Open
Abstract
Soil microbial communities respond quickly to natural and/or anthropic-induced changes in environmental conditions. Metagenomics allows studying taxa that are often overlooked in microbiota studies, such as protists or viruses. Here, we employed metagenomics to characterise microbial successions after wheat straw input in a 4-month in-situ field study. We compared microbial successions patterns with those obtained by high throughput amplicon sequencing on the same soil samples to validate metagenomics as a tool for the fine analysis of microbial population dynamics in situ. Taxonomic patterns were concordant between the two methodologies but metagenomics allowed studying all the microbial groups simultaneously. Notably, our results evidenced that each domain displayed a specific dynamic pattern after wheat straw amendment. For instance, viral sequences multiplied in the early phase of straw decomposition, in parallel to copiotrophic bacteria, suggesting a "kill-the-winner" pattern that, to our knowledge, had not been observed before in soil. Altogether, our results highlighted that both inter and intra-domain trophic interactions were impacted by wheat amendment and these patterns depended on the land use history. Our study highlights that top-down regulation by microbial predators or viruses might play a key role in soil microbiota dynamics and structure.
Collapse
Affiliation(s)
- Domitille Jarrige
- Agroécologie, INRAE, Université de Bourgogne, Institut Agro, Université de Bourgogne Franche-Comté, Dijon, F-21000, France
| | - Vincent Tardy
- Agroécologie, INRAE, Université de Bourgogne, Institut Agro, Université de Bourgogne Franche-Comté, Dijon, F-21000, France
| | - Valentin Loux
- Université Paris Saclay, INRAE, Jouy-en-Josas, MaIAGE, France
- INRAE, BioinfOmics, MIGALE bioinformatics facility, Université Paris-Saclay, Jouy-en- Josas, France
| | - Olivier Rué
- Université Paris Saclay, INRAE, Jouy-en-Josas, MaIAGE, France
- INRAE, BioinfOmics, MIGALE bioinformatics facility, Université Paris-Saclay, Jouy-en- Josas, France
| | - Abad Chabbi
- INRAE, Poitou-Charentes, URP3F, Lusignan, 86600, France
- UMR-ECOSYS Joint research unit INRAE, Université Paris-Saclay, AgroParisTech, Paris, France
| | - Sébastien Terrat
- Agroécologie, INRAE, Université de Bourgogne, Institut Agro, Université de Bourgogne Franche-Comté, Dijon, F-21000, France.
| | - Pierre-Alain Maron
- Agroécologie, INRAE, Université de Bourgogne, Institut Agro, Université de Bourgogne Franche-Comté, Dijon, F-21000, France
| |
Collapse
|
2
|
Zhang M, Zhou Y, Cui X, Zhu L. The Potential of Co-Evolution and Interactions of Gut Bacteria-Phages in Bamboo-Eating Pandas: Insights from Dietary Preference-Based Metagenomic Analysis. Microorganisms 2024; 12:713. [PMID: 38674657 PMCID: PMC11051890 DOI: 10.3390/microorganisms12040713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Bacteria and phages are two of the most abundant biological entities in the gut microbiome, and diet and host phylogeny are two of the most critical factors influencing the gut microbiome. A stable gut bacterial community plays a pivotal role in the host's physiological development and immune health. A phage is a virus that directly infects bacteria, and phages' close associations and interactions with bacteria are essential for maintaining the stability of the gut bacterial community and the entire microbial ecosystem. Here, we utilized 99 published metagenomic datasets from 38 mammalian species to investigate the relationship (diversity and composition) and potential interactions between gut bacterial and phage communities and the impact of diet and phylogeny on these communities. Our results highlight the co-evolutionary potential of bacterial-phage interactions within the mammalian gut. We observed a higher alpha diversity in gut bacteria than in phages and identified positive correlations between bacterial and phage compositions. Furthermore, our study revealed the significant influence of diet and phylogeny on mammalian gut bacterial and phage communities. We discovered that the impact of dietary factors on these communities was more pronounced than that of phylogenetic factors at the order level. In contrast, phylogenetic characteristics had a more substantial influence at the family level. The similar omnivorous dietary preference and closer phylogenetic relationship (family Ursidae) may contribute to the similarity of gut bacterial and phage communities between captive giant panda populations (GPCD and GPYA) and omnivorous animals (OC; including Sun bear, brown bear, and Asian black bear). This study employed co-occurrence microbial network analysis to reveal the potential interaction patterns between bacteria and phages. Compared to other mammalian groups (carnivores, herbivores, and omnivores), the gut bacterial and phage communities of bamboo-eating species (giant pandas and red pandas) exhibited a higher level of interaction. Additionally, keystone species and modular analysis showed the potential role of phages in driving and maintaining the interaction patterns between bacteria and phages in captive giant pandas. In sum, gaining a comprehensive understanding of the interaction between the gut microbiota and phages in mammals is of great significance, which is of great value in promoting healthy and sustainable mammals and may provide valuable insights into the conservation of wildlife populations, especially endangered animal species.
Collapse
Affiliation(s)
| | | | | | - Lifeng Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing 210098, China; (M.Z.); (Y.Z.); (X.C.)
| |
Collapse
|
3
|
Álvarez-Espejo DM, Rivera D, Moreno-Switt AI. Bacteriophage-Host Interactions and Coevolution. Methods Mol Biol 2024; 2738:231-243. [PMID: 37966603 DOI: 10.1007/978-1-0716-3549-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Bacteriophages are the most abundant entity on the planet and play very relevant roles in the diversity and abundance of their bacterial hosts. These interactions are subject to several factors, such as the first encounter of the phage with its host bacterium, in which molecular interactions are fundamental. Along with this, these interactions depend on the environment and other communities present. This chapter focuses on these phage-bacteria interactions, reviewing the knowledge of the early stage (receptor-binding proteins), host responses (resistance and counter-resistance), and ecological and evolutionary models described to date. In general, knowledge has focused on a few phage-bacteria models and has been deepened by sequencing and metagenomics. The study of phage-bacteria interactions is an essential step for the development of therapies and other applications of phages in the clinical and productive environment.
Collapse
Affiliation(s)
- Diana M Álvarez-Espejo
- Escuela de Medicina Veterinaria, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Dácil Rivera
- Escuela de Medicina Veterinaria, Universidad Andres Bello, Santiago, Chile
| | - Andrea I Moreno-Switt
- Escuela de Medicina Veterinaria, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
4
|
Jiang H, Li C, Huang X, Ahmed T, Ogunyemi SO, Yu S, Wang X, Ali HM, Khan F, Yan C, Chen J, Li B. Phage combination alleviates bacterial leaf blight of rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1147351. [PMID: 37152174 PMCID: PMC10155274 DOI: 10.3389/fpls.2023.1147351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023]
Abstract
Rice bacterial leaf blight (BLB) is the most destructive bacterial diseases caused by Xanthomonas oryzae pv. oryzae (Xoo). Phages have been proposed as a green and efficient strategy to kill bacterial pathogens in crops, however, the mechanism of action of phages in the control of phyllosphere bacterial diseases remain unclear. Here, the glasshouse pot experiment results showed that phage combination could reduce the disease index by up to 64.3%. High-throughput sequencing technology was used to analyze the characteristics of phyllosphere microbiome changes and the results showed that phage combinations restored the impact of pathogen invasion on phyllosphere communities to a certain extent, and increased the diversity of bacterial communities. In addition, the phage combination reduced the relative abundance of epiphytic and endophytic Xoo by 58.9% and 33.9%, respectively. In particular, Sphingomonas and Stenotrophomonas were more abundant. According to structural equation modeling, phage combination directly and indirectly affected the disease index by affecting pathogen Xoo biomass and phage resistance. In summary, phage combination could better decrease the disease index. These findings provide new insights into phage biological control of phyllosphere bacterial diseases, theoretical data support, and new ideas for agricultural green prevention and control of phyllosphere diseases.
Collapse
Affiliation(s)
- Hubiao Jiang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Changxin Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| | - Xuefang Huang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Shanhong Yu
- Taizhou Academy of Agricultural Sciences, Taizhou, China
| | - Xiao Wang
- Ningbo Jiangbei District Agricultural Technology Extension Service Station, Ningbo, China
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fahad Khan
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS, Australia
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Roberts AJ, Suttle CA. Pathogens and Passengers: Roles for Crustacean Zooplankton Viruses in the Global Ocean. Microorganisms 2023; 11:microorganisms11041054. [PMID: 37110477 PMCID: PMC10142142 DOI: 10.3390/microorganisms11041054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Viruses infect all living organisms, but the viruses of most marine animals are largely unknown. Crustacean zooplankton are a functional lynchpin in marine food webs, but very few have been interrogated for their associated viruses despite the profound potential effects of viral infection. Nonetheless, it is clear that the diversity of viruses in crustacean zooplankton is enormous, including members of all realms of RNA viruses, as well as single- and double-stranded DNA viruses, in many cases representing deep branches of viral evolution. As there is clear evidence that many of these viruses infect and replicate in zooplankton species, we posit that viral infection is likely responsible for a significant portion of unexplained non-consumptive mortality in this group. In turn, this infection affects food webs and alters biogeochemical cycling. In addition to the direct impacts of infection, zooplankton can vector economically devastating viruses of finfish and other crustaceans. The dissemination of these viruses is facilitated by the movement of zooplankton vertically between epi- and mesopelagic communities through seasonal and diel vertical migration (DVM) and across long distances in ship ballast water. The large potential impact of viruses on crustacean zooplankton emphasises the need to clearly establish the relationships between specific viruses and the zooplankton they infect and investigate disease and mortality for these host-virus pairs. Such data will enable investigations into a link between viral infection and seasonal dynamics of host populations. We are only beginning to uncover the diversity and function of viruses associated with crustacean zooplankton.
Collapse
Affiliation(s)
- Alastair J Roberts
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Curtis A Suttle
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
6
|
Nair S, Li C, Mou S, Zhang Z, Zhang Y. A Novel Phage Indirectly Regulates Diatom Growth by Infecting a Diatom-Associated Biofilm-Forming Bacterium. Appl Environ Microbiol 2022; 88:e0213821. [PMID: 35020448 PMCID: PMC8904054 DOI: 10.1128/aem.02138-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/05/2022] [Indexed: 11/20/2022] Open
Abstract
Algae and heterotrophic bacteria have close and intricate interactions, which are regulated by multiple factors in the natural environment. Phages are the major factor determining bacterial mortality rates. However, their impacts on the alga-associated bacteria and thus on the alga-bacterium interactions are poorly understood. Here, we obtained a diatom-associated bacterium, Stappia indica SNL01, that could form a biofilm and had an inhibitory effect on the growth of the diatom Thalassiosira pseudonana. Meanwhile, phage SI01, with a double-stranded circular DNA genome (44,247 bp), infecting S. indica SNL01 was isolated. Phylogenetic analysis revealed that phage SI01 represents a novel member of the Podoviridae family. The phage contained multiple lysis genes encoding cell wall-lysing muramidase and spore cortex-lysing SleB, as well as depolymerase-like tail spike protein. By lysing the host bacterium and inhibiting the formation of biofilm, this phage could indirectly promote the growth of the diatom. Our results provide new insights into how phages indirectly regulate algal growth by infecting bacteria that are closely associated with algae or in the phycosphere. IMPORTANCE The impact of phage infection on the alga-bacterium relationship in the ocean is poorly understood. Here, a novel phage infecting the diatom-associated bacterium Stappia indica SNL01 was isolated. This bacterium could form a biofilm and had a negative effect on diatom growth. We revealed that this phage contained multiple lysis genes and could inhibit the formation of the bacterial biofilm, thus indirectly promoting diatom growth. This study suggests that phages not only are important regulators of bacteria but also have substantial indirect effects on algae and the alga-bacterium relationship.
Collapse
Affiliation(s)
- Shailesh Nair
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chengcheng Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shanli Mou
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zenghu Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yongyu Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Li Y, Sun H, Yang W, Chen G, Xu H. Dynamics of Bacterial and Viral Communities in Paddy Soil with Irrigation and Urea Application. Viruses 2019; 11:E347. [PMID: 31014039 PMCID: PMC6520780 DOI: 10.3390/v11040347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 01/21/2023] Open
Abstract
Viruses are ubiquitous in natural systems. By influencing bacterial abundance (BA) and community structure through lysis-lysogenic conversion, viruses are involved in various ecological processes. In agricultural management, nitrogen addition and irrigation should be considered as important factors that can modify soil viral dynamics but have been ignored. In our study, short-term dynamics of autochthonous soil viral and bacterial abundance and diversity after irrigation and urea application were examined in a long-term experimental paddy field. Urea addition delayed the emergence of peak viral abundance for three days, suggesting that viruses are sensitive to N addition. Under short-term eutrophic conditions through urea application, viruses undertake a lysogenic-biased strategy. Moreover, nitrogen-fixing bacteria were most likely specifically lysed in urea-treated soil, which suggests that soil viruses block N accumulation by killing nitrogen-fixing bacteria. To the best of our knowledge, this study is the first to investigate dynamic changes in autochthonous viruses in paddy fields.
Collapse
Affiliation(s)
- Yuting Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- National Field Observation and Research Station of Shenyang Agro-Ecosystems, Shenyang 110016, China.
| | - Hao Sun
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Weichao Yang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Guanxiong Chen
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Hui Xu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
8
|
Morella NM, Gomez AL, Wang G, Leung MS, Koskella B. The impact of bacteriophages on phyllosphere bacterial abundance and composition. Mol Ecol 2018; 27:2025-2038. [DOI: 10.1111/mec.14542] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/07/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Norma M. Morella
- Department of Plant and Microbial Biology; University of California, Berkeley; Berkeley CA USA
| | | | - Grant Wang
- Department of Integrative Biology; University of California, Berkeley; Berkeley CA USA
| | - Michelle S. Leung
- Department of Integrative Biology; University of California, Berkeley; Berkeley CA USA
| | - Britt Koskella
- Department of Integrative Biology; University of California, Berkeley; Berkeley CA USA
| |
Collapse
|
9
|
Round JL, Palm NW. Causal effects of the microbiota on immune-mediated diseases. Sci Immunol 2018; 3:3/20/eaao1603. [DOI: 10.1126/sciimmunol.aao1603] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/23/2017] [Indexed: 12/24/2022]
|