1
|
Mills M, Miller J, Liveringhouse C, Bryant JM, Kawahara Y, Feygelman V, Latifi K, Yang G, Johnstone PA, Naghavi AO. Novel Postoperative Hypofractionated Accelerated Radiation Dose-Painting Approach for Soft Tissue Sarcoma. Adv Radiat Oncol 2024; 9:101391. [PMID: 38495036 PMCID: PMC10943519 DOI: 10.1016/j.adro.2023.101391] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/21/2023] [Indexed: 03/19/2024] Open
Abstract
Purpose Hypofractionated radiation therapy (RT) offers benefits in the treatment of soft tissue sarcomas (STS), including exploitation of the lower α/β, patient convenience, and cost. This study evaluates the acute toxicity of a hypofractionated accelerated RT dose-painting (HARD) approach for postoperative treatment of STS. Methods and Materials This is a retrospective review of 53 consecutive patients with STS who underwent resection followed by postoperative RT. Standard postoperative RT dosing for R0/R1/gross disease with sequential boost (50 Gy + 14/16/20 Gy in 32-35 fractions) were replaced with dose-painting, which adapts dose based on risk of disease burden, to 50.4 and 63, 64.4, 70 Gy in 28 fractions, respectively. The first 10 patients were replanned with a sequential boost RT approach and dosimetric indices were compared. Time-to-event outcomes, including local control, regional control, distant control, and overall survival, were estimated with Kaplan-Meier analysis. Results Median follow-up was 25.2 months. Most patients had high-grade (59%) STS of the extremity (63%) who underwent resection with either R1 (40%) or close (36%) margins. Four patients experienced grade 3 acute dermatitis which resolved by the 3-month follow-up visit. The 2-year local control, regional control, distant control, and overall survival were 100%, 92%, 68%, and 86%, respectively. Compared with the sequential boost plan, HARD had a significantly lower field size (total V50 Gy; P = .002), bone V50 (P = .031), and maximum skin dose (P = .008). Overall treatment time was decreased by 4 to 7 fractions, which translated to a decrease in estimated average treatment cost of $3056 (range, $2651-$4335; P < .001). Conclusions In addition to benefits in cost, convenience, and improved biologic effect in STS, HARD regimen offers a safe treatment approach with dosimetric advantages compared with conventional sequential boost, which may translate to improved long-term toxicity.
Collapse
Affiliation(s)
- Matthew Mills
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Justin Miller
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Casey Liveringhouse
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - John M. Bryant
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Yuki Kawahara
- University of South Florida, Morsani College of Medicine, Tampa, Florida
| | - Vladimir Feygelman
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kujtim Latifi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - George Yang
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Peter A. Johnstone
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Arash O. Naghavi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
2
|
Guertin MP, Lee Y, Stewart SJ, Ramirez J, Nguyen A, Paraliticci G, Pretell-Mazzini JA. Soft Tissue Sarcomas in Octogenarian Patients: Are Treatment Options and Oncological Outcomes Different? A SEER Retrospective Study. Clin Oncol (R Coll Radiol) 2023; 35:269-277. [PMID: 36710153 DOI: 10.1016/j.clon.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
AIMS As the US population continues to age, oncological strategies and outcomes for soft tissue sarcomas (STSs) should continue to be examined for varying age groups. The aim of this study was analyse and compare treatment strategies and oncological outcomes for octogenarian patients with STSs. MATERIALS AND METHODS Data from the Surveillance, Epidemiology and End Results (SEER) national database were used. Varying treatment modalities were studied when utilised for specific tumour staging with respect to the eighth edition of the American Joint Committee on Cancer. RESULTS In total, 24 666 patients were included for analysis, where 3341 (14%) were 80 years old or older. The octogenarian group was diagnosed with more advanced disease (stages II-IV), relative to their younger counterparts (85% versus 75%, P < 0.001). However, a smaller proportion of the older patients underwent surgical resection (74% versus 86%, P < 0.001). Likewise, the octogenarians received less chemotherapy (4% versus 21%, P < 0.001) and radiotherapy (29% versus 42%, P = 0.010). Surgical resection and chemotherapy significantly improved overall survival for those older patients with stage II STS, whereas surgical resection and radiotherapy improved mortality in this cohort with both stage III and IV STS. Overall survival at 1 and 5 years of follow-up was lower within the octogenarian group compared with the younger group (1 year: 68% versus 88%, P < 0.001 and 5 years: 7% versus 58%, P < 0.001). CONCLUSIONS Octogenarian patients, in most cases, are diagnosed with stage III or metastatic disease. Surgical resection of the primary tumour was beneficial in both age cohorts, with radiotherapy correlating to better overall survival when used in those patients with higher stage STS. Chemotherapy was associated with better mortality in the younger cohort with respect to tumour stage. The octogenarian overall survival at 1 and 5 years was lower than for younger patients.
Collapse
Affiliation(s)
- M P Guertin
- Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA.
| | - Y Lee
- Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - S J Stewart
- Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - J Ramirez
- Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - A Nguyen
- University of Illinois College of Medicine, Chicago, Illinois, USA
| | - G Paraliticci
- Musculoskeletal Oncology Division, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - J A Pretell-Mazzini
- Musculoskeletal Oncology Division, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| |
Collapse
|
3
|
Palm RF, Liveringhouse CL, Gonzalez RJ, Bui MM, Binitie O, Yang GQ, Naghavi AO. Effect of Favorable Pathologic Response After Neoadjuvant Radiation Therapy Alone in Soft-tissue Sarcoma. Adv Radiat Oncol 2023; 8:101086. [PMID: 36483058 PMCID: PMC9723307 DOI: 10.1016/j.adro.2022.101086] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Whether the therapeutic response of soft-tissue sarcoma to neoadjuvant treatment is predictive for clinical outcomes is unclear. Given the rarity of this disease and the confounding effects of chemotherapy, this study analyzes whether a favorable pathologic response (fPR) after neoadjuvant radiation therapy (RT) alone is associated with clinical benefits. Methods and Materials An institutional review board-approved retrospective review was conducted on a database of patients with primary soft-tissue sarcoma treated at our institution between 1987 and 2015 with neoadjuvant RT alone followed by surgical resection. Time-to-event outcomes estimated with a Kaplan-Meier analysis included overall survival, progression-free survival (PFS), locoregional control, and distant control (DC). Cox regression analyses were performed to determine prognostic variables associated with clinical outcomes. Results Of the overall cohort of 315 patients, 181 patients (57%) were included in the primary analysis with documented pathologic necrosis (PN) rates (mean: 59%) and a median follow up from diagnosis of 48 months (range, 4-170 months). The median neoadjuvant RT dose was 50 Gy (range, 40-60 Gy), and the majority of patients had negative surgical margins (79%). Only 35 patients (19%) achieved a fPR (PN ≥95%), which was associated with a higher R0 resection rate (94% vs. 75%; P = .013), a significant 5-year PFS benefit (74% vs. 43%; P = .014), and a nonsignificant 5-year DC benefit (76% vs. 62%; P = .12) compared with PN <95%. On multivariable analysis, fPR was an independent predictor for PFS (hazard ratio: 0.47; 95% confidence interval, 0.25-0.90; P = .022). Conclusions Achieving fPR with neoadjuvant RT alone is associated with a higher R0 resection rate and possible DC benefit, translating into a significant improvement in PFS. Further studies to improve pathologic response rates and prospectively validate this endpoint are warranted.
Collapse
Affiliation(s)
- Russell F. Palm
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa Florida
| | | | | | - Marilyn M. Bui
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa Florida
| | - Odion Binitie
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa Florida
| | | | | |
Collapse
|
4
|
Identification of Differentially Expressed Circular RNAs as miRNA Sponges in Lung Adenocarcinoma. JOURNAL OF ONCOLOGY 2021; 2021:5193913. [PMID: 34539783 PMCID: PMC8448594 DOI: 10.1155/2021/5193913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 01/17/2023]
Abstract
Background Circular RNAs (circRNAs) may function as the decoys for microRNAs (miRNAs) or proteins, the templates for translation, and the sources of pseudogene generation. The purpose of this study is to determine the diagnostic circRNAs, which are related to lung adenocarcinoma (LUAD), that adsorb miRNAs on the basis of the competing endogenous RNA (ceRNA) hypothesis. Methods The differentially expressed circRNAs (DEcircRNAs) in LUAD were revealed by the microarray data (GSE101586 and GSE101684) that were obtained from the Gene Expression Omnibus (GEO) database. The miRNAs that were targeted by the DEcircRNAs were predicted with the CircInteractome, and the target mRNAs of the miRNAs were found by the miRDB and the TargetScan. The ceRNA network was built by the Cytoscape. The potential biological roles and the regulatory mechanisms of the circRNAs were investigated by the Gene Ontology (GO) enrichment analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The expression of the host genes of circRNAs was examined by the Ualcan. The survival analysis was performed by the Kaplan-Meier plotter. Results In comparison with normal lung tissues, LUAD tissues contained 7 overlapping cancer-specific DEcircRNAs with 294 miRNA response elements (MREs). Among the 7 DEcircRNAs, 3 circRNAs (hsa_circ_0072088, hsa_circ_0003528, and hsa_circ_0008274) were upregulated and 4 circRNAs (hsa_circ_0003162, hsa_circ_0029426, hsa_circ_0049271, and hsa_circ_0043256) were downregulated. A circRNA-miRNA-mRNA regulatory network, which included 33 differentially expressed miRNAs (DEmiRNAs) and 2007 differentially expressed mRNAs (DEmRNAs), was constructed. These mRNAs were enriched in the biological function of cell-cell adhesion, response to hypoxia, and stem cell differentiation and were involved in the PI3K-Akt signaling, HIF-1 signaling, and cAMP signaling pathways. Conclusion Our results indicated that 7 DEcircRNAs could have diagnostic value for LUAD. Additionally, the circRNAs-mediated ceRNA network might provide a novel perspective into unraveling the pathogenesis and progression of LUAD.
Collapse
|
5
|
Nardone V, Boldrini L, Grassi R, Franceschini D, Morelli I, Becherini C, Loi M, Greto D, Desideri I. Radiomics in the Setting of Neoadjuvant Radiotherapy: A New Approach for Tailored Treatment. Cancers (Basel) 2021; 13:3590. [PMID: 34298803 PMCID: PMC8303203 DOI: 10.3390/cancers13143590] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Neoadjuvant radiotherapy is currently used mainly in locally advanced rectal cancer and sarcoma and in a subset of non-small cell lung cancer and esophageal cancer, whereas in other diseases it is under investigation. The evaluation of the efficacy of the induction strategy is made possible by performing imaging investigations before and after the neoadjuvant therapy and is usually challenging. In the last decade, texture analysis (TA) has been developed to help the radiologist to quantify and identify the parameters related to tumor heterogeneity, which cannot be appreciated by the naked eye. The aim of this narrative is to review the impact of TA on the prediction of response to neoadjuvant radiotherapy and or chemoradiotherapy. MATERIALS AND METHODS Key references were derived from a PubMed query. Hand searching and ClinicalTrials.gov were also used. RESULTS This paper contains a narrative report and a critical discussion of radiomics approaches in different fields of neoadjuvant radiotherapy, including esophageal cancer, lung cancer, sarcoma, and rectal cancer. CONCLUSIONS Radiomics can shed a light on the setting of neoadjuvant therapies that can be used to tailor subsequent approaches or even to avoid surgery in the future. At the same, these results need to be validated in prospective and multicenter trials.
Collapse
Affiliation(s)
- Valerio Nardone
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (R.G.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
| | - Luca Boldrini
- Radiation Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Roberta Grassi
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (R.G.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
| | - Davide Franceschini
- Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Milan, Italy;
| | - Ilaria Morelli
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy;
| | - Carlotta Becherini
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy;
| | - Mauro Loi
- Radiation Oncology Unit, Azienda Ospedaliero Universitaria Careggi, 50139 Florence, Italy; (M.L.); (D.G.); (I.D.)
| | - Daniela Greto
- Radiation Oncology Unit, Azienda Ospedaliero Universitaria Careggi, 50139 Florence, Italy; (M.L.); (D.G.); (I.D.)
| | - Isacco Desideri
- Radiation Oncology Unit, Azienda Ospedaliero Universitaria Careggi, 50139 Florence, Italy; (M.L.); (D.G.); (I.D.)
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| |
Collapse
|
6
|
Silencing KIF18B enhances radiosensitivity: identification of a promising therapeutic target in sarcoma. EBioMedicine 2020; 61:103056. [PMID: 33038765 PMCID: PMC7648128 DOI: 10.1016/j.ebiom.2020.103056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022] Open
Abstract
Background Sarcomas are rare heterogeneous tumours, derived from primitive mesenchymal stem cells, with more than 100 distinct subtypes. Radioresistance remains a major clinical challenge for sarcomas, demanding urgent for effective biomarkers of radiosensitivity. Methods The radiosensitive gene Kinesin family member 18B (KIF18B) was mined through bioinformatics with integrating of 15 Gene Expression Omnibus (GEO) datasets and The Cancer Genome Atlas (TCGA) database. We used radiotherapy-sh-KIF18B combination to observe the anti-tumour effect in sarcoma cells and subcutaneous or orthotopic xenograft models. The KIF18B-sensitive drug T0901317 (T09) was further mined to act as radiosensitizer using the Genomics of Drug Sensitivity in Cancer (GDSC) database. Findings KIF18B mRNA was significantly up-regulated in most of the subtypes of bone and soft tissue sarcoma. Multivariate Cox regression analysis showed that KIF18B high expression was an independent risk factor for prognosis in sarcoma patients with radiotherapy. Silencing KIF18B or using T09 significantly improved the radiosensitivity of sarcoma cells, delayed tumour growth in subcutaneous and orthotopic xenograft model, and elongated mice survival time. Furthermore, we predicted that T09 might bind to the structural region of KIF18B to exert radiosensitization. Interpretation These results indicated that sarcomas with low expression of KIF18B may benefit from radiotherapy. Moreover, the radiosensitivity of sarcomas with overexpressed KIF18B could be effectively improved by silencing KIF18B or using T09, which may provide promising strategies for radiotherapy treatment of sarcoma. Fundings A full list of funding can be found in the Funding Sources section.
Collapse
|
7
|
Tagliaferri L, Vavassori A, Lancellotta V, Sanctis VD, Vidali C, Casà C, Aristei C, Genovesi D, Jereczek-Fossa BA, Morganti AG, Kovács G, Guinot JL, Rembielak A, Greto D, Gambacorta MA, Valentini V, Donato V, Corvò R, Magrini SM, Livi L, Consensus Conference Board. INTERACTS (INTErventional Radiotherapy ACtive Teaching School) consensus conference on sarcoma interventional radiotherapy (brachytherapy) endorsed by AIRO (Italian Association of Radiotherapy and Clinical Oncology). J Contemp Brachytherapy 2020; 12:397-404. [PMID: 33293980 PMCID: PMC7690224 DOI: 10.5114/jcb.2020.98120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To report the results of INTERACTS (INTErventional Radiotherapy ACtive Teaching School) consensus conference on sarcoma interventional radiotherapy (brachytherapy). MATERIAL AND METHODS An international board of multidisciplinary experts was invited to a consensus conference on the state-of-the-art of sarcoma interventional oncology during the 9th Rome INTER-MEETING (INTERventional Radiotherapy Multidisciplinary Meeting), proposing 3 statements for each one speech. At the end of each lecture, the entire group of experts was invited to vote with an electronic device. The preliminary results were presented and discussed at the end of the meeting, during a dedicated session. After the meeting, a survey was distributed within the consensus conference board to share and definitively vote the statements. RESULTS All the invited authors of the consensus conference board completed the final survey. All the 38 statements received more than 70% of agreement, 31 statements (82%) obtained an agreement of level higher or equal to 90%, 6 statements (15.8%) received an agreement level between 80% and 90%, and 1 statement (2.6%) had less than 80% of agreement. CONCLUSIONS The consensus conference demonstrated that interventional radiotherapy must be considered by a multidisciplinary management of patients affected by sarcoma.
Collapse
Affiliation(s)
- Luca Tagliaferri
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Andrea Vavassori
- Department of Radiotherapy, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Valentina Lancellotta
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Vitaliana De Sanctis
- Department of Radiation Oncology, Faculty of Medicina e Psicologia, Sant’Andrea Hospital, University of Rome “La Sapienza”, Rome, Italy
| | - Cristiana Vidali
- Former Deputy Chair of Interventional Radiotherapy AIRO working Group – IntraOperative RadioTherapy, Trieste, Italy
| | | | - Cynthia Aristei
- Radiation Oncology Section, Department of Surgery and Biomedical Science, University of Perugia and Perugia General Hospital, Perugia, Italy
| | - Domenico Genovesi
- Department of Radiation Oncology, Santissima Annunziata Hospital, Gabriele D’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Barbara Alicja Jereczek-Fossa
- Department of Radiotherapy, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Alessio Giuseppe Morganti
- Department of Experimental, Diagnostic and Specialty Medicine – DIMES, University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy
| | | | - Jose Luis Guinot
- Foundation Instituto Valenciano de Oncologia (I.V.O.), Valencia, Spain
| | - Agata Rembielak
- Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester and Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Daniela Greto
- Radiotherapy Department, University of Florence, Florence, Italy
| | - Maria Antonietta Gambacorta
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vincenzo Valentini
- UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vittorio Donato
- Radiation Oncology Department, Azienda Ospedaliera San Camillo-Forlanini, Roma, Italy
| | - Renzo Corvò
- Radiation Oncology, IRCCS Ospedale Policlinico San Martino and Department of Health Science, University of Genoa, Italy
| | - Stefano Maria Magrini
- Radiation Oncology Department, Ospedali Civili Hospital and Brescia University, Brescia, Italy
| | - Lorenzo Livi
- Radiotherapy Department, University of Florence, Florence, Italy
| | - Consensus Conference Board
- Consensus Conference Board: Rosa Autorino (radiation oncologist, Rome), Carmelo Caldarella (nuclear medicine physician, Rome), Annamaria Cerrotta (radiation oncologist, Milan), Antonino De Paoli (radiation oncologist, Aviano), Vitaliana De Sanctis (radiation oncologist, Rome), Nicola Dinapoli (radiation oncologist, Rome), Vittorio Donato (radiation oncologist, Rome), Martina Ferioli (radiation oncologist, Bologna), Vincenzo Fusco (radiation oncologist, Rionero in Vulture), Maria Antonietta Gambacorta (radiation oncologist, Rome), Domenico Genovesi (radiation oncologist, Chieti), Daniela Greto (radiation oncologist, Florence), Jose Luis Guinot (radiation oncologist, València), Roberto Iezzi (interventional radiologist, Rome), Barbara Alicja Jereczek-Fossa (radiation oncologist, Milan), György Kovács (radiation oncologist, Rome and Lübeck), Valentina Lancellotta (radiation oncologist, Rome), Antonio Leone (radiologist, Rome), Giulio Maccauro (orthopedic surgeon, Rome), Stefano Maria Magrini (radiation oncologist, Brescia), Alessio Giuseppe Morganti (radiation oncologist, Bologna), Michela Quirino (medical oncologist, Rome), Agata Rembielak (clinical and radiation oncologist, Manchester), Umberto Ricardi (radiation oncologist, Turin), Vittoria Rufini (nuclear medicine physician, Rome), Giuseppe Sanguineti (radiation oncologist, Rome), Luca Tagliaferri (radiation oncologist, Rome), Andrea Vavassori (radiation oncologist, Milan), Cristiana Vidali (radiation oncologist, Trieste)
| |
Collapse
|
8
|
Spałek MJ, Kozak K, Czarnecka AM, Bartnik E, Borkowska A, Rutkowski P. Neoadjuvant Treatment Options in Soft Tissue Sarcomas. Cancers (Basel) 2020; 12:cancers12082061. [PMID: 32722580 PMCID: PMC7464514 DOI: 10.3390/cancers12082061] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/24/2022] Open
Abstract
Due to the heterogeneity of soft tissue sarcomas (STS), the choice of the proper perioperative treatment regimen is challenging. Neoadjuvant therapy has attracted increasing attention due to several advantages, particularly in patients with locally advanced disease. The number of available neoadjuvant modalities is growing continuously. We may consider radiotherapy, chemotherapy, targeted therapy, radiosensitizers, hyperthermia, and their combinations. This review discusses possible neoadjuvant treatment options in STS with an emphasis on available evidence, indications for each treatment type, and related risks. Finally, we summarize current recommendations of the STS neoadjuvant therapy response assessment.
Collapse
Affiliation(s)
- Mateusz Jacek Spałek
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.K.); (A.M.C.); (A.B.); (P.R.)
- Correspondence: ; Tel.: +48-22-546-24-55
| | - Katarzyna Kozak
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.K.); (A.M.C.); (A.B.); (P.R.)
| | - Anna Małgorzata Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.K.); (A.M.C.); (A.B.); (P.R.)
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland;
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Aneta Borkowska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.K.); (A.M.C.); (A.B.); (P.R.)
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.K.); (A.M.C.); (A.B.); (P.R.)
| |
Collapse
|