1
|
Wang L, Meng FJ, Jin YH, Wu LQ, Tang RY, Xu KH, Guo Y, Mao JJ, Ding JP, Li J. Effects of probiotic supplementation on 12 min run performance, mood management, body composition and gut microbiota in amateur marathon runners: A double-blind controlled trial. J Exerc Sci Fit 2024; 22:297-304. [PMID: 38706951 PMCID: PMC11066675 DOI: 10.1016/j.jesf.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
Background Probiotic supplementation has a positive effect on endurance exercise performance and body composition in athletes, but the underlying mechanisms remain unclear. Gut microbiota can provide measurable markers of immune function in athletes, and microbial composition analysis may be sensitive enough to detect stress and metabolic disorders caused by exercise. Methods Nineteen healthy active amateur marathon runners (15 male and 4 female) with a mean age of 29.11 years volunteered to participate in this double-blind controlled study. Based on the performance of the Cooper 12-min running test (CRT), the participants were allocated into two groups to receive either a probiotic formulation comprising lactobacillus acidophilus and bifidobacterium longum (n = 10) or placebo containing maltodextrin (n = 9) for five weeks. Consistency of diet and exercise was ensured throughout the experimental period. Before and after the intervention, all participants were assessed for CRT, emotional stability and gastrointestinal symptoms, gut microbiota composition, body composition and magnetic resonance imaging (MRI) indicators of skeletal muscle microcirculation. Results Compared to before the intervention, the probiotics group showed an increase in CRT score (2.88 ± 0.57 vs 3.01 ± 0.60 km, P<0.05), significant improvement in GSRS and GIQLI (9.20 ± 4.64 vs 7.40 ± 3.24, 118.90 ± 12.30 vs 127.50 ± 9.85, P<0.05), while these indicators remained unchanged in the control group, with a significant time-group interaction effect on gastrointestinal symptoms. Additionally, some MRI metabolic cycling indicators of the thigh skeletal muscle also changed in the probiotics group (P<0.05). Regarding microbiota abundance, the probiotics group exhibited a significant increase in the abundance of beneficial bacteria and a significant decrease in the abundance of harmful bacteria post-intervention (P<0.05). Conclusion As a sports nutritional supplement, probiotics have the potential to improve athletic performance by optimizing the balance of gut microbiota, alleviating gastrointestinal symptoms.
Collapse
Affiliation(s)
- Le Wang
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- Women's Hospital School of Medicine Zhejiang University, China
| | - Fan-Jing Meng
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, China
| | - Yi-Han Jin
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, China
| | - Li-Qiang Wu
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, China
| | - Ruo-Yu Tang
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, China
| | - Kuang-Hui Xu
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, China
| | - Yun Guo
- Department of Gastroenterology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jun-Jie Mao
- School of Physical Education, Hangzhou Normal University, China
| | - Jian-Ping Ding
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, China
- Hangzhou Institute of Sports Medicine for Marathon, China
| | - Jie Li
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, China
- Hangzhou Institute of Sports Medicine for Marathon, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, China
| |
Collapse
|
2
|
Borgheresi A, De Muzio F, Agostini A, Ottaviani L, Bruno A, Granata V, Fusco R, Danti G, Flammia F, Grassi R, Grassi F, Bruno F, Palumbo P, Barile A, Miele V, Giovagnoni A. Lymph Nodes Evaluation in Rectal Cancer: Where Do We Stand and Future Perspective. J Clin Med 2022; 11:2599. [PMID: 35566723 PMCID: PMC9104021 DOI: 10.3390/jcm11092599] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022] Open
Abstract
The assessment of nodal involvement in patients with rectal cancer (RC) is fundamental in disease management. Magnetic Resonance Imaging (MRI) is routinely used for local and nodal staging of RC by using morphological criteria. The actual dimensional and morphological criteria for nodal assessment present several limitations in terms of sensitivity and specificity. For these reasons, several different techniques, such as Diffusion Weighted Imaging (DWI), Intravoxel Incoherent Motion (IVIM), Diffusion Kurtosis Imaging (DKI), and Dynamic Contrast Enhancement (DCE) in MRI have been introduced but still not fully validated. Positron Emission Tomography (PET)/CT plays a pivotal role in the assessment of LNs; more recently PET/MRI has been introduced. The advantages and limitations of these imaging modalities will be provided in this narrative review. The second part of the review includes experimental techniques, such as iron-oxide particles (SPIO), and dual-energy CT (DECT). Radiomics analysis is an active field of research, and the evidence about LNs in RC will be discussed. The review also discusses the different recommendations between the European and North American guidelines for the evaluation of LNs in RC, from anatomical considerations to structured reporting.
Collapse
Affiliation(s)
- Alessandra Borgheresi
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60121 Ancona, Italy; (A.B.); (A.A.); (A.B.); (A.G.)
| | - Federica De Muzio
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Andrea Agostini
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60121 Ancona, Italy; (A.B.); (A.A.); (A.B.); (A.G.)
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, 60126 Ancona, Italy;
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
| | - Letizia Ottaviani
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, 60126 Ancona, Italy;
| | - Alessandra Bruno
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60121 Ancona, Italy; (A.B.); (A.A.); (A.B.); (A.G.)
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale IRCCS di Napoli, 80131 Naples, Italy;
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Napoli, Italy
| | - Ginevra Danti
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy;
| | - Federica Flammia
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy;
| | - Roberta Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80128 Naples, Italy
| | - Francesca Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80128 Naples, Italy
| | - Federico Bruno
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Pierpaolo Palumbo
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Abruzzo Health Unit 1, Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, 67100 L’Aquila, Italy
| | - Antonio Barile
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Vittorio Miele
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy; (G.D.); (R.G.); (F.G.); (F.B.); (P.P.); (V.M.)
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy;
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, 60121 Ancona, Italy; (A.B.); (A.A.); (A.B.); (A.G.)
- Department of Radiological Sciences, University Hospital Ospedali Riuniti, 60126 Ancona, Italy;
| |
Collapse
|
3
|
Englund EK, Reiter DA, Shahidi B, Sigmund EE. Intravoxel Incoherent Motion Magnetic Resonance Imaging in Skeletal Muscle: Review and Future Directions. J Magn Reson Imaging 2022; 55:988-1012. [PMID: 34390617 PMCID: PMC8841570 DOI: 10.1002/jmri.27875] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022] Open
Abstract
Throughout the body, muscle structure and function can be interrogated using a variety of noninvasive magnetic resonance imaging (MRI) methods. Recently, intravoxel incoherent motion (IVIM) MRI has gained momentum as a method to evaluate components of blood flow and tissue diffusion simultaneously. Much of the prior research has focused on highly vascularized organs, including the brain, kidney, and liver. Unique aspects of skeletal muscle, including the relatively low perfusion at rest and large dynamic range of perfusion between resting and maximal hyperemic states, may influence the acquisition, postprocessing, and interpretation of IVIM data. Here, we introduce several of those unique features of skeletal muscle; review existing studies of IVIM in skeletal muscle at rest, in response to exercise, and in disease states; and consider possible confounds that should be addressed for muscle-specific evaluations. Most studies used segmented nonlinear least squares fitting with a b-value threshold of 200 sec/mm2 to obtain IVIM parameters of perfusion fraction (f), pseudo-diffusion coefficient (D*), and diffusion coefficient (D). In healthy individuals, across all muscles, the average ± standard deviation of D was 1.46 ± 0.30 × 10-3 mm2 /sec, D* was 29.7 ± 38.1 × 10-3 mm2 /sec, and f was 11.1 ± 6.7%. Comparisons of reported IVIM parameters in muscles of the back, thigh, and leg of healthy individuals showed no significant difference between anatomic locations. Throughout the body, exercise elicited a positive change of all IVIM parameters. Future directions including advanced postprocessing models and potential sequence modifications are discussed. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Erin K. Englund
- Department of Radiology, University of Colorado Anschutz Medical Campus
| | | | | | - Eric E. Sigmund
- Department of Radiology, New York University Grossman School of Medicine, NYU Langone Health
- Center for Advanced Imaging and Innovation (CAIR), Bernard and Irene Schwarz Center for Biomedical Imaging (CBI), NYU Langone Health
| |
Collapse
|
4
|
Granata V, Fusco R, Belli A, Borzillo V, Palumbo P, Bruno F, Grassi R, Ottaiano A, Nasti G, Pilone V, Petrillo A, Izzo F. Conventional, functional and radiomics assessment for intrahepatic cholangiocarcinoma. Infect Agent Cancer 2022; 17:13. [PMID: 35346300 PMCID: PMC8961950 DOI: 10.1186/s13027-022-00429-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/18/2022] [Indexed: 02/08/2023] Open
Abstract
Background This paper offers an assessment of diagnostic tools in the evaluation of Intrahepatic Cholangiocarcinoma (ICC). Methods Several electronic datasets were analysed to search papers on morphological and functional evaluation in ICC patients. Papers published in English language has been scheduled from January 2010 to December 2021.
Results We found that 88 clinical studies satisfied our research criteria. Several functional parameters and morphological elements allow a truthful ICC diagnosis. The contrast medium evaluation, during the different phases of contrast studies, support the recognition of several distinctive features of ICC. The imaging tool to employed and the type of contrast medium in magnetic resonance imaging, extracellular or hepatobiliary, should change considering patient, departement, and regional features. Also, Radiomics is an emerging area in the evaluation of ICCs. Post treatment studies are required to evaluate the efficacy and the safety of therapies so as the patient surveillance. Conclusions Several morphological and functional data obtained during Imaging studies allow a truthful ICC diagnosis.
Collapse
|
5
|
Shu D, Zhang C, Dai S, Wang S, Liu J, Ding J. Acute Effects of Foam Rolling on Hamstrings After Half-Marathon: A Muscle Functional Magnetic Resonance Imaging Study. Front Physiol 2021; 12:723092. [PMID: 34690798 PMCID: PMC8526727 DOI: 10.3389/fphys.2021.723092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/15/2021] [Indexed: 11/20/2022] Open
Abstract
Purpose: Foam rolling (FR) is widely used for post-exercise muscle recovery; yet, the effects of FR on skeletal muscle inflammation and microvascular perfusion following prolonged exercise are poorly understood. We aim to address the gap in knowledge by using magnetic resonance imaging (MRI) T2 mapping and intravoxel incoherent motion (IVIM) sequences to study the acute effects of FR on hamstrings following half-marathon running in recreational runners. Methods: Sixteen healthy recreational marathon runners were recruited. After half-marathon running, FR was performed on the hamstrings on the dominant side, while the other limb served as a control. MRI T2 and IVIM scans were performed bilaterally at baseline (pre-run), 2–3 h after running (post-run), immediately after FR (post-FR0), 30 min after FR (post-FR30) and 60 min after FR (post-FR60). T2, a marker for inflammatory edema, as well as IVIM microvascular perfusion fraction index f for biceps femoris long head (BFL), semitendinosus (ST) and semimembranosus (SM) were determined. Total Quality Recovery (TQR) scale score was also collected. Results: Both T2 and f were higher at post-run compared to pre-run in all hamstrings on both sides (all p < 0.05; all d > 1.0). For the FR side, T2 decreased, and f increased significantly at post-FR0 and post-FR30 compared to post-run in all muscles (p < 0.05; all d > 0.4) except for f at BFL and SM at post-FR30 (both p > 0.05), though f at BFL was still marginally elevated at post-FR30 (p = 0.074, d = 0.91). Both parameters for all muscles returned to post-run level at post-FR60 (all p > 0.05; all d < 0.4) except for T2 at SM (p = 0.037). In contrast, most MRI parameters were not changed at post-FR0, post-FR30 and post-FR60 compared to post-run for the control side (p < 0.05; d < 0.2). TQR scores were elevated at post-FR0 and post-FR30 compared to post-run (both p < 0.05; both d > 1.0), and returned to the post-run level at post-FR60 (p > 0.99; d = 0.09). Changes in TQR scores compared to post-run at any time points after FR were correlated to T2 for ST at post-FR30 (r = 0.50, p = 0.047) but not T2 for other muscles and any changes in f values. Conclusions: Hamstrings inflammatory edema and microvascular perfusion were elevated following half-marathon running, which were detectable with MRI T2 mapping and IVIM sequences. FR resulted in acute alleviation in inflammation and greater microvascular perfusion; however, the effects seemed to last only for a short period of time (30–60 min). FR can provide short-term benefits to skeletal muscle after prolonged running.
Collapse
Affiliation(s)
- Dingbo Shu
- Department of Radiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,School of Clinical Medicine, Hangzhou Normal University, Hangzhou, China.,Institute of Sport Medicine, Hangzhou Normal University, Hangzhou, China
| | - Chuan Zhang
- School of Physical Education and Sports, Central China Normal University, Wuhan, China
| | - Siyu Dai
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, China.,Institute of Sport Medicine, Hangzhou Normal University, Hangzhou, China
| | - Shubo Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE, United States
| | - Jie Liu
- Department of Radiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Sport Medicine, Hangzhou Normal University, Hangzhou, China
| | - Jianping Ding
- Department of Radiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Sport Medicine, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
6
|
Caroca S, Villagran D, Chabert S. Four functional magnetic resonance imaging techniques for skeletal muscle exploration, a systematic review. Eur J Radiol 2021; 144:109995. [PMID: 34628310 DOI: 10.1016/j.ejrad.2021.109995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The study of muscle health has become more relevant lately, due to global aging and a higher incidence of musculoskeletal pathologies. Current exploration techniques, such as electromyography, do not provide accurate spatial information. OBJECTIVE The objective of this work is to perform a systematic review of the literature to synthesize the contributions that can offer functional MRI techniques commonly used in neuroimaging, applied to skeletal muscle: Blood Oxygen Level Dependent (BOLD), IntraVoxel Incoherent Motion (IVIM), Arterial Spin Labeling (ASL) and Dynamic Contrast Enhanced (DCE). EVIDENCE ACQUISITION Web of Science and Medline databases were searched, over the last 10 years, focused on the use of BOLD, ASL, IVIM or DCE in skeletal muscle. EVIDENCE SYNTHESIS 59 articles were included after applying the selection criteria. 37 studies were performed in healthy subjects, and 22 in patients with different pathologies: in peripheral arterial disease, systemic sclerosis, diabetes, osteoporosis, adolescent idiopathic scoliosis, and dermatomyositis. Reference values in healthy subjects still vary in some cases. CONCLUSION The studies show the feasibility of implementing functional MRI through BOLD, ASL, IVIM or DCE imaging in several muscles and their possible utility in different pathologies. A synthesis of how to implement such exploration is given here. CLINICAL IMPACT These four techniques are based on sequences already present in clinical MRI scanners, therefore, their use for functional muscle exploration does not require additional investment. These techniques allow visualization and quantification of parameters associated with the vascular health of the muscles and represent interesting support for musculoskeletal exploration.
Collapse
Affiliation(s)
- Sergio Caroca
- Biomedical Engineering Department, Universidad de Valparaiso, Valparaíso, Chile
| | - Diego Villagran
- Servicio de Imagenología, Hospital Carlos van Buren, Valparaíso, Chile
| | - Steren Chabert
- Biomedical Engineering Department, Universidad de Valparaiso, Valparaíso, Chile; CINGS, Centro de Investigación y Desarrollo en INGeniería en Salud, Universidad de Valparaiso, Valparaíso, Chile; Millennium Nucleus for Cardiovascular Magnetic Resonance, Chile.
| |
Collapse
|
7
|
Cobianchi Bellisari F, De Marino L, Arrigoni F, Mariani S, Bruno F, Palumbo P, De Cataldo C, Sgalambro F, Catallo N, Zugaro L, Di Cesare E, Splendiani A, Masciocchi C, Giovagnoni A, Barile A. T2-mapping MRI evaluation of patellofemoral cartilage in patients submitted to intra-articular platelet-rich plasma (PRP) injections. LA RADIOLOGIA MEDICA 2021; 126:1085-1094. [PMID: 34008045 PMCID: PMC8292236 DOI: 10.1007/s11547-021-01372-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022]
Abstract
This study evaluated the ability of T2 mapping magnetic resonance imaging at 3 T, in addition to morphological sequences, to assess efficacy of platelet-rich plasma (PRP) injections, characterizing qualitatively and quantitatively the grade of knee cartilage repair in patients with patellofemoral chondropathy. We retrospectively studied 34 patients (22 men, 12 women, mean age 41.8 years, including 22 men) with patellofemoral knee chondropathy, who underwent intra-articular PRP injections and completed a clinical and instrumental follow-up. As control group, we evaluated 34 patients who underwent non-operative therapy. All patients were submitted to clinical (using VAS and WOMAC index) and imaging studies with 3 T magnetic resonance with cartilage analysis with T2 mapping sequences for cartilage analysis before and after treatment. In the study group, mean pre-treatment T2 relaxation time values were 44.2 ± 2.5 ms, considering all articular cartilage compartments, with significant reduction at the follow-up (p < 0.001). At the index compartment, mean pre-treatment T2 relaxation times values were 47.8 ± 3.6 ms, with statistically significant reduction at the follow-up (p < 0.001). Evaluation of focal cartilage lesions reported pre-treatment mean T2 value of 70.1 ± 13.0 ms and post-treatment mean value of 59.9 ± 4.6 ms (p < 0.001). From a clinical point of view, the pre-treatment WOMAC and VAS scores were 18.3 ± 4.5 and 7 (IQR:6-7.2), respectively; the post-treatment values were 7.3 ± 3.2 and 2 (IQR: 1.7-3.0), respectively (p < 0.001). In the control group, despite clinical improvement, we didn't find significant T2 values change during the follow-up period. In conclusion, T2 mapping is a valuable indicator for chondropathy and treatment-related changes over time.
Collapse
Affiliation(s)
- Flavia Cobianchi Bellisari
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 1, 67100, L'Aquila, Italy.
| | - Luigi De Marino
- Department of Radiologic Sciences, Azienda Ospedaliero Universitaria Ospedali Riuniti, Università Politecnica Delle Marche, Ancona, Italy
| | - Francesco Arrigoni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 1, 67100, L'Aquila, Italy
| | - Silvia Mariani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 1, 67100, L'Aquila, Italy
| | - Federico Bruno
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 1, 67100, L'Aquila, Italy
| | - Pierpaolo Palumbo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 1, 67100, L'Aquila, Italy
| | - Camilla De Cataldo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 1, 67100, L'Aquila, Italy
| | - Ferruccio Sgalambro
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 1, 67100, L'Aquila, Italy
| | - Nadia Catallo
- Department of Health Sciences, University of L'Aquila, L'Aquila, Italy
| | - Luigi Zugaro
- Radiology Department, S. Salvatore Hospital, L'Aquila, Italy
| | - Ernesto Di Cesare
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 1, 67100, L'Aquila, Italy
| | - Alessandra Splendiani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 1, 67100, L'Aquila, Italy
| | - Carlo Masciocchi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 1, 67100, L'Aquila, Italy
| | - Andrea Giovagnoni
- Department of Radiologic Sciences, Azienda Ospedaliero Universitaria Ospedali Riuniti, Università Politecnica Delle Marche, Ancona, Italy
| | - Antonio Barile
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 1, 67100, L'Aquila, Italy
| |
Collapse
|
8
|
Granata V, Grassi R, Fusco R, Belli A, Cutolo C, Pradella S, Grazzini G, La Porta M, Brunese MC, De Muzio F, Ottaiano A, Avallone A, Izzo F, Petrillo A. Diagnostic evaluation and ablation treatments assessment in hepatocellular carcinoma. Infect Agent Cancer 2021; 16:53. [PMID: 34281580 PMCID: PMC8287696 DOI: 10.1186/s13027-021-00393-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023] Open
Abstract
This article provides an overview of diagnostic evaluation and ablation treatment assessment in Hepatocellular Carcinoma (HCC). Only studies, in the English language from January 2010 to January 202, evaluating the diagnostic tools and assessment of ablative therapies in HCC patients were included. We found 173 clinical studies that satisfied the inclusion criteria.HCC may be noninvasively diagnosed by imaging findings. Multiphase contrast-enhanced imaging is necessary to assess HCC. Intravenous extracellular contrast agents are used for CT, while the agents used for MRI may be extracellular or hepatobiliary. Both gadoxetate disodium and gadobenate dimeglumine may be used in hepatobiliary phase imaging. For treatment-naive patients undergoing CT, unenhanced imaging is optional; however, it is required in the post treatment setting for CT and all MRI studies. Late arterial phase is strongly preferred over early arterial phase. The choice of modality (CT, US/CEUS or MRI) and MRI contrast agent (extracelllar or hepatobiliary) depends on patient, institutional, and regional factors. MRI allows to link morfological and functional data in the HCC evaluation. Also, Radiomics is an emerging field in the assessment of HCC patients.Postablation imaging is necessary to assess the treatment results, to monitor evolution of the ablated tissue over time, and to evaluate for complications. Post- thermal treatments, imaging should be performed at regularly scheduled intervals to assess treatment response and to evaluate for new lesions and potential complications.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Roberta Grassi
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
- Italian Society of Medical and Interventional Radiology SIRM, SIRM Foundation, Milan, Italy
| | | | - Andrea Belli
- Division of Hepatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Silvia Pradella
- Radiology Division, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Giulia Grazzini
- Radiology Division, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | | | - Maria Chiara Brunese
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Federica De Muzio
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Alessandro Ottaiano
- Abdominal Oncology Division, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Antonio Avallone
- Abdominal Oncology Division, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Francesco Izzo
- Division of Hepatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Antonella Petrillo
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| |
Collapse
|