1
|
Lo Mastro A, Grassi E, Berritto D, Russo A, Reginelli A, Guerra E, Grassi F, Boccia F. Artificial intelligence in fracture detection on radiographs: a literature review. Jpn J Radiol 2025; 43:551-585. [PMID: 39538068 DOI: 10.1007/s11604-024-01702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Fractures are one of the most common reasons of admission to emergency department affecting individuals of all ages and regions worldwide that can be misdiagnosed during radiologic examination. Accurate and timely diagnosis of fracture is crucial for patients, and artificial intelligence that uses algorithms to imitate human intelligence to aid or enhance human performs is a promising solution to address this issue. In the last few years, numerous commercially available algorithms have been developed to enhance radiology practice and a large number of studies apply artificial intelligence to fracture detection. Recent contributions in literature have described numerous advantages showing how artificial intelligence performs better than doctors who have less experience in interpreting musculoskeletal X-rays, and assisting radiologists increases diagnostic accuracy and sensitivity, improves efficiency, and reduces interpretation time. Furthermore, algorithms perform better when they are trained with big data on a wide range of fracture patterns and variants and can provide standardized fracture identification across different radiologist, thanks to the structured report. In this review article, we discuss the use of artificial intelligence in fracture identification and its benefits and disadvantages. We also discuss its current potential impact on the field of radiology and radiomics.
Collapse
Affiliation(s)
- Antonio Lo Mastro
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Enrico Grassi
- Department of Orthopaedics, University of Florence, Florence, Italy
| | - Daniela Berritto
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Anna Russo
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alfonso Reginelli
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Egidio Guerra
- Emergency Radiology Department, "Policlinico Riuniti Di Foggia", Foggia, Italy
| | - Francesca Grassi
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Boccia
- Department of Radiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
2
|
Zhu L, Shi B, Ding B, Xia Y, Wang K, Feng W, Dai J, Xu T, Wang B, Yuan F, Shen H, Dong H, Zhang H. Accelerated T2W Imaging with Deep Learning Reconstruction in Staging Rectal Cancer: A Preliminary Study. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024:10.1007/s10278-024-01345-x. [PMID: 39663320 DOI: 10.1007/s10278-024-01345-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024]
Abstract
Deep learning reconstruction (DLR) has exhibited potential in saving scan time. There is limited research on the evaluation of accelerated acquisition with DLR in staging rectal cancers. Our first objective was to explore the best DLR level in saving time through phantom experiments. Resolution and number of excitations (NEX) adjusted for different scan time, image quality of conventionally reconstructed T2W images were measured and compared with images reconstructed with different DLR level. The second objective was to explore the feasibility of accelerated T2W imaging with DLR in image quality and diagnostic performance for rectal cancer patients. 52 patients were prospectively enrolled to undergo accelerated acquisition reconstructed with highly-denoised DLR (DLR_H40sec) and conventional reconstruction (ConR2min). The image quality and diagnostic performance were evaluated by observers with varying experience and compared between protocols using κ statistics and area under the receiver operating characteristic curve (AUC). The phantom experiments demonstrated that DLR_H could achieve superior signal-to-noise ratio (SNR), detail conspicuity, sharpness, and less distortion within the least scan time. The DLR_H40sec images exhibited higher sharpness and SNR than ConR2min. The agreements with pathological TN-stages were improved using DLR_H40sec images compared to ConR2min (T: 0.846vs. 0.771, 0.825vs. 0.700, and 0.697vs. 0.512; N: 0.527vs. 0.521, 0.421vs. 0.348 and 0.517vs. 0.363 for junior, intermediate, and senior observes, respectively). Comparable AUCs to identify T3-4 and N1-2 tumors were achieved using DLR_H40sec and ConR2min images (P > 0.05). Consequently, with 2/3-time reduction, DLR_H40sec images showed improved image quality and comparable TN-staging performance to conventional T2W imaging for rectal cancer patients.
Collapse
Affiliation(s)
- Lan Zhu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University of Medicine, No.197 Ruijin Er Road, Shanghai, 200025, China
| | - Bowen Shi
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University of Medicine, No.197 Ruijin Er Road, Shanghai, 200025, China
| | - Bei Ding
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University of Medicine, No.197 Ruijin Er Road, Shanghai, 200025, China
| | - Yihan Xia
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University of Medicine, No.197 Ruijin Er Road, Shanghai, 200025, China
| | - Kangning Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University of Medicine, No.197 Ruijin Er Road, Shanghai, 200025, China
| | - Weiming Feng
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University of Medicine, No.197 Ruijin Er Road, Shanghai, 200025, China
| | - Jiankun Dai
- Department of MR, GE Healthcare, Beijing, China
| | - Tianyong Xu
- Department of MR, GE Healthcare, Beijing, China
| | - Baisong Wang
- Department of Biomedical Statistics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fei Yuan
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University of Medicine, No.197 Ruijin Er Road, Shanghai, 200025, China
| | - Hailin Shen
- Department of Radiology, Suzhou Kowloon Hospital, Shanghai Jiao Tong University of Medicine, No.118 Wansheng Street, Suzhou Industrial Park, Suzhou City, 215028, Jiangsu Province, China.
| | - Haipeng Dong
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University of Medicine, No.197 Ruijin Er Road, Shanghai, 200025, China.
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University of Medicine, No.197 Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
3
|
Park SH, Han K, Lee JG. Conceptual review of outcome metrics and measures used in clinical evaluation of artificial intelligence in radiology. LA RADIOLOGIA MEDICA 2024; 129:1644-1655. [PMID: 39225919 DOI: 10.1007/s11547-024-01886-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Artificial intelligence (AI) has numerous applications in radiology. Clinical research studies to evaluate the AI models are also diverse. Consequently, diverse outcome metrics and measures are employed in the clinical evaluation of AI, presenting a challenge for clinical radiologists. This review aims to provide conceptually intuitive explanations of the outcome metrics and measures that are most frequently used in clinical research, specifically tailored for clinicians. While we briefly discuss performance metrics for AI models in binary classification, detection, or segmentation tasks, our primary focus is on less frequently addressed topics in published literature. These include metrics and measures for evaluating multiclass classification; those for evaluating generative AI models, such as models used in image generation or modification and large language models; and outcome measures beyond performance metrics, including patient-centered outcome measures. Our explanations aim to guide clinicians in the appropriate use of these metrics and measures.
Collapse
Affiliation(s)
- Seong Ho Park
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, South Korea.
| | - Kyunghwa Han
- Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, South Korea
| | - June-Goo Lee
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Takayama Y, Sato K, Tanaka S, Murayama R, Jingu R, Yoshimitsu K. Effectiveness of deep learning-based reconstruction for improvement of image quality and liver tumor detectability in the hepatobiliary phase of gadoxetic acid-enhanced magnetic resonance imaging. Abdom Radiol (NY) 2024; 49:3450-3463. [PMID: 38755452 DOI: 10.1007/s00261-024-04374-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/04/2024] [Accepted: 05/04/2024] [Indexed: 05/18/2024]
Abstract
PURPOSE To evaluate the effectiveness of deep learning-based reconstruction (DLR) in improving image quality and tumor detectability of isovoxel high-resolution breath-hold fat-suppressed T1-weighted imaging (HR-BH-FS-T1WI) in the hepatobiliary phase (HBP) of Gadoxetic acid-enhanced magnetic resonance imaging (Gd-EOB-MRI). MATERIALS AND METHODS This retrospective evaluated 42 patients with 98 liver tumors who underwent Gd-EOB-MRI between March 2023 and May 2023 using three techniques based on HBP imaging: isovoxel HR-BH-FS-T1WI reconstructed (1) with DLR (BH-DLR +) and (2) without DLR (BH-DLR -) and (3) HR-FS-T1WI scanned with a free-breathing technique using a navigator-echo-triggered technique and DLR (Navi-DLR +). The three techniques were qualitatively and quantitatively compared by the Friedman test and the Bonferroni post-hoc test. Tumor detectability was compared using the McNemar test. RESULTS BH-DLR + (3.85, average score of two radiologists) showed significantly better qualitative scores for image noise than BH-DLR - (2.84) and Navi-DLR + (3.37) (p < 0.0167), and Navi-DLR + showed significantly better scores than BH-DLR - (p < 0.0167). BH-DLR + (3.77) and BH-DLR - (3.77) showed significantly better qualitative scores for respiratory motion artifact than Navi-DLR + (2.75) (p < 0.0167), but there was no significant difference in scores between BH-DLR + and BH-DLR - (p > 0.0167). BH-DLR + (0.32) and Navi-DLR + (0.33) showed significantly higher lesion-to-nonlesion CR than BH-DLR - (0.29) (p < 0.0167), but there was no significant difference in lesion-to-nonlesion CR between BH-DLR + and Navi-DLR + (p > 0.0167). BH-DLR + (89.8%) showed significantly better tumor detectability than BH-DLR - (76.0%) and Navi-DLR + (77.6%) (p < 0.05). CONCLUSION The use of DLR for isovoxel HR-BH-FS-T1WI was effective in improving image quality and tumor detectability.
Collapse
Affiliation(s)
- Yukihisa Takayama
- Department of Radiology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka City, Fukuoka, 814-0180, Japan.
| | - Keisuke Sato
- Department of Radiology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka City, Fukuoka, 814-0180, Japan
| | - Shinji Tanaka
- Department of Radiology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka City, Fukuoka, 814-0180, Japan
| | - Ryo Murayama
- Department of Radiology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka City, Fukuoka, 814-0180, Japan
| | - Ryotaro Jingu
- Radiology Center, Fukuoka University Hospital, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka City, Fukuoka, 814-0180, Japan
| | - Kengo Yoshimitsu
- Department of Radiology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka City, Fukuoka, 814-0180, Japan
| |
Collapse
|
5
|
Lee Y, Yoon S, Paek M, Han D, Choi MH, Park SH. Advanced MRI techniques in abdominal imaging. Abdom Radiol (NY) 2024; 49:3615-3636. [PMID: 38802629 DOI: 10.1007/s00261-024-04369-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
Magnetic resonance imaging (MRI) is a crucial modality for abdominal imaging evaluation of focal lesions and tissue properties. However, several obstacles, such as prolonged scan times, limitations in patients' breath-hold capacity, and contrast agent-associated artifacts, remain in abdominal MR images. Recent techniques, including parallel imaging, three-dimensional acquisition, compressed sensing, and deep learning, have been developed to reduce the scan time while ensuring acceptable image quality or to achieve higher resolution without extending the scan duration. Quantitative measurements using MRI techniques enable the noninvasive evaluation of specific materials. A comprehensive understanding of these advanced techniques is essential for accurate interpretation of MRI sequences. Herein, we therefore review advanced abdominal MRI techniques.
Collapse
Affiliation(s)
- Yoonhee Lee
- Department of Radiology, Gil Medical Center, Gachon University College of Medicine, 21, Namdong-daero 774beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea
| | - Sungjin Yoon
- Department of Radiology, Gil Medical Center, Gachon University College of Medicine, 21, Namdong-daero 774beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea
| | | | - Dongyeob Han
- Siemens Healthineers Ltd, Seoul, Republic of Korea
| | - Moon Hyung Choi
- Department of Radiology, Catholic University of Korea Eunpyeong St Mary's Hospital, Seoul, Republic of Korea
| | - So Hyun Park
- Department of Radiology, Gil Medical Center, Gachon University College of Medicine, 21, Namdong-daero 774beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea.
| |
Collapse
|
6
|
Kim M, Lee HJ, Lee S, Lee J, Kang Y. Three-dimensional heavily T2-weighted FLAIR in the detection of blood-labyrinthine barrier leakage in patients with sudden sensorineural hearing loss: comparison with T1 sequences and application of deep learning-based reconstruction. Eur Radiol 2024; 34:5379-5388. [PMID: 38231393 DOI: 10.1007/s00330-023-10580-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024]
Abstract
OBJECTIVE Blood-labyrinthine barrier leakage has been reported in sudden sensorineural hearing loss (SSNHL). We compared immediate post-contrast 3D heavily T2-weighted fluid-attenuated inversion recovery (FLAIR), T1 spin echo (SE), and 3D T1 gradient echo (GRE) sequences, and heavily T2-weighted FLAIR (hvT2F) with and without deep learning-based reconstruction (DLR) in detecting perilymphatic enhancement. METHODS Fifty-four patients with unilateral SSNHL who underwent ear MRI with three sequences were included. We compared asymmetry scores, confidence scores, and detection rates of perilymphatic enhancement among the three sequences and obtained 3D hvT2F with DLR from 35 patients. The above parameters and subjective image quality between 3D hvT2F with and without DLR were compared. RESULTS Asymmetry scores and detection rate of 3D hvT2F were significantly higher than 3D GRE T1 and SE T1 (respectively, 1.37, 0.11, 0.19; p < 0.001). Asymmetry scores significantly increased with DLR compared to 3D hvT2F for experienced and inexperienced readers (respectively, 1.77 vs. 1.40, p = 0.036; 1.49 vs. 1.03, p = 0.012). The detection rate significantly increased only for the latter (57.1% vs. 31.4%, p = 0.022). Patients with perilymphatic enhancement had significantly higher air conduction thresholds on initial (77.96 vs. 57.79, p = 0.002) and 5 days after presentation (63.38 vs. 41.85, p = 0.019). CONCLUSION 3D hvT2F significantly increased the detectability of perilymphatic enhancement compared to 3D GRE T1 and SE T1. DLR further improved the conspicuity of perilymphatic enhancement in 3D hvT2F. 3D hvT2F and DLR are useful for evaluating blood-labyrinthine barrier leakage; furthermore, they might provide prognostic value in the early post-treatment period. CLINICAL RELEVANCE STATEMENT Ten-minute post-contrast 3D heavily T2-weighed FLAIR imaging is a potentially efficacious sequence in demonstrating perilymphatic enhancement in patients with sudden sensorineural hearing loss and may be further improved by deep learning-based reconstruction. KEY POINTS • 3D heavily T2-weighted FLAIR (3D hvT2F) is a sequence sensitive in detecting low concentrations of contrast in the perilymphatic space. • 3D hvT2F sequences properly demonstrated perilymphatic enhancement in sudden sensorineural hearing loss compared to T1 sequences and were further improved by deep learning-based reconstruction (DLR). • 3D hvT2F and DLR are efficacious sequences in detecting blood-labyrinthine barrier leakage and with potential prognostic information.
Collapse
Affiliation(s)
- Mingyu Kim
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Seokhwan Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | | | - Yeonah Kang
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea.
| |
Collapse
|
7
|
Rocca A, Komici K, Brunese MC, Pacella G, Avella P, Di Benedetto C, Caiazzo C, Zappia M, Brunese L, Vallone G. Quantitative ultrasound (QUS) in the evaluation of liver steatosis: data reliability in different respiratory phases and body positions. LA RADIOLOGIA MEDICA 2024; 129:549-557. [PMID: 38512608 PMCID: PMC11021279 DOI: 10.1007/s11547-024-01786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/10/2024] [Indexed: 03/23/2024]
Abstract
Liver steatosis is the most common chronic liver disease and affects 10-24% of the general population. As the grade of disease can range from fat infiltration to steatohepatitis and cirrhosis, an early diagnosis is needed to set the most appropriate therapy. Innovative noninvasive radiological techniques have been developed through MRI and US. MRI-PDFF is the reference standard, but it is not so widely diffused due to its cost. For this reason, ultrasound tools have been validated to study liver parenchyma. The qualitative assessment of the brightness of liver parenchyma has now been supported by quantitative values of attenuation and scattering to make the analysis objective and reproducible. We aim to demonstrate the reliability of quantitative ultrasound in assessing liver fat and to confirm the inter-operator reliability in different respiratory phases. We enrolled 45 patients examined during normal breathing at rest, peak inspiration, peak expiration, and semi-sitting position. The highest inter-operator agreement in both attenuation and scattering parameters was achieved at peak inspiration and peak expiration, followed by semi-sitting position. In conclusion, this technology also allows to monitor uncompliant patients, as it grants high reliability and reproducibility in different body position and respiratory phases.
Collapse
Affiliation(s)
- Aldo Rocca
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100, Campobasso, Italy
| | - Klara Komici
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100, Campobasso, Italy
| | - Maria Chiara Brunese
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100, Campobasso, Italy.
| | - Giulia Pacella
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100, Campobasso, Italy
| | - Pasquale Avella
- Department of General Surgery, Center for Hepatobiliary and Pancreatic Surgery, Pineta Grande Hospital, Castel Volturno, CE, Italy
| | - Chiara Di Benedetto
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100, Campobasso, Italy
| | - Corrado Caiazzo
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100, Campobasso, Italy
| | - Marcello Zappia
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100, Campobasso, Italy
| | - Luca Brunese
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100, Campobasso, Italy
| | - Gianfranco Vallone
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100, Campobasso, Italy
| |
Collapse
|
8
|
Lee Y, Yoon S, Park SH, Nickel MD. Advanced Abdominal MRI Techniques and Problem-Solving Strategies. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2024; 85:345-362. [PMID: 38617869 PMCID: PMC11009130 DOI: 10.3348/jksr.2023.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/04/2023] [Accepted: 10/14/2023] [Indexed: 04/16/2024]
Abstract
MRI plays an important role in abdominal imaging because of its ability to detect and characterize focal lesions. However, MRI examinations have several challenges, such as comparatively long scan times and motion management through breath-holding maneuvers. Techniques for reducing scan time with acceptable image quality, such as parallel imaging, compressed sensing, and cutting-edge deep learning techniques, have been developed to enable problem-solving strategies. Additionally, free-breathing techniques for dynamic contrast-enhanced imaging, such as extra-dimensional-volumetric interpolated breath-hold examination, golden-angle radial sparse parallel, and liver acceleration volume acquisition Star, can help patients with severe dyspnea or those under sedation to undergo abdominal MRI. We aimed to present various advanced abdominal MRI techniques for reducing the scan time while maintaining image quality and free-breathing techniques for dynamic imaging and illustrate cases using the techniques mentioned above. A review of these advanced techniques can assist in the appropriate interpretation of sequences.
Collapse
|
9
|
Palumbo P, Martinese A, Antenucci MR, Granata V, Fusco R, De Muzio F, Brunese MC, Bicci E, Bruno A, Bruno F, Giovagnoni A, Gandolfo N, Miele V, Di Cesare E, Manetta R. Diffusion kurtosis imaging and standard diffusion imaging in the magnetic resonance imaging assessment of prostate cancer. Gland Surg 2023; 12:1806-1822. [PMID: 38229839 PMCID: PMC10788566 DOI: 10.21037/gs-23-53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 11/09/2023] [Indexed: 01/18/2024]
Abstract
Background and Objective In recent years, magnetic resonance imaging (MRI) has shown excellent results in the study of the prostate gland. MRI has indeed shown to be advantageous in the prostate cancer (PCa) detection, as in guiding targeting biopsy, improving its diagnostic yield. Although current acquisition protocols provide for multiparametric acquisition, recent evidence has shown that biparametric protocols can be non-inferior in PCa detection. Diffusion-weighted imaging (DWI) sequence, in particular, plays a key role, particularly in the peripheral zone which accounts for the larger part of the prostate. High b-values are generally recommended, although with the possibility of obtaining non-Gaussian diffusion effects, which requires a more sophisticated model for the analysis, namely through the diffusion kurtosis imaging (DKI). Purpose of this narrative review was to analyze the current applications and clinical evidence regarding the use of DKI with a main focus on PCa detection, also in comparison with DWI. Methods This narrative review synthesized the findings of literature retrieved from main researches, narrative and systematic reviews, and meta-analyses obtained from PubMed. Key Content and Findings DKI analyses the non-Gaussian water diffusivity and describe the effect of signal intensity decay related to high b-value through two main metrics (Dapp and Kapp). Differently from DWI-apparent diffusion coefficient (DWI-ADC) which reflects only water restriction outside of cells, DKI metrics are supposed to represent also the direct interaction of water molecules with cell membranes and intracellular compounds. This review describes current evidence on ADC and DKI metrics in clinical imaging, and finally collect the results derived from the main articles focused on DWI and DKI models in detecting PCa. Conclusions DKI advantages, compared to conventional ADC analysis, still remain controversial. Wider application and greater technical knowledge of DKI, however, may help in proving its intrinsic validity in the field of oncology and therefore in the study of clinically significant PCa. Finally, a deep understanding of DKI is important for radiologists to better understand what Kapp and Dapp mean in the context of different cancer and how these metrics may vary specifically in PCa imaging.
Collapse
Affiliation(s)
- Pierpaolo Palumbo
- Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, L’Aquila, Italy
| | - Andrea Martinese
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, L’Aquila, Italy
| | - Maria Rosaria Antenucci
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, L’Aquila, Italy
| | - Vincenza Granata
- Division of Radiology, “Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli”, Naples, Italy
| | | | - Federica De Muzio
- Diagnostic Imaging Section, Department of Medical and Surgical Sciences & Neurosciences, University of Molise, Campobasso, Italy
| | - Maria Chiara Brunese
- Diagnostic Imaging Section, Department of Medical and Surgical Sciences & Neurosciences, University of Molise, Campobasso, Italy
| | - Eleonora Bicci
- Department of Emergency Radiology, University Hospital Careggi, Florence, Italy
| | - Alessandra Bruno
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Ancona, Italy
| | - Federico Bruno
- Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, L’Aquila, Italy
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Ancona, Italy
| | - Nicoletta Gandolfo
- Diagnostic Imaging Department, Villa Scassi Hospital-ASL 3, Genoa, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Milan, Italy
| | - Vittorio Miele
- Department of Emergency Radiology, University Hospital Careggi, Florence, Italy
| | - Ernesto Di Cesare
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Rosa Manetta
- Radiology Unit, San Salvatore Hospital, Abruzzo Health Unit 1, L’Aquila, Italy
- Prostate Unit, San Salvatore Hospital, Abruzzo Health Unit 1, L’Aquila, Italy
| |
Collapse
|
10
|
Granata V, Fusco R, De Muzio F, Brunese MC, Setola SV, Ottaiano A, Cardone C, Avallone A, Patrone R, Pradella S, Miele V, Tatangelo F, Cutolo C, Maggialetti N, Caruso D, Izzo F, Petrillo A. Radiomics and machine learning analysis by computed tomography and magnetic resonance imaging in colorectal liver metastases prognostic assessment. LA RADIOLOGIA MEDICA 2023; 128:1310-1332. [PMID: 37697033 DOI: 10.1007/s11547-023-01710-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/22/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVE The aim of this study was the evaluation radiomics analysis efficacy performed using computed tomography (CT) and magnetic resonance imaging in the prediction of colorectal liver metastases patterns linked to patient prognosis: tumor growth front; grade; tumor budding; mucinous type. Moreover, the prediction of liver recurrence was also evaluated. METHODS The retrospective study included an internal and validation dataset; the first was composed by 119 liver metastases from 49 patients while the second consisted to 28 patients with single lesion. Radiomic features were extracted using PyRadiomics. Univariate and multivariate approaches including machine learning algorithms were employed. RESULTS The best predictor to identify tumor growth was the Wavelet_HLH_glcm_MaximumProbability with an accuracy of 84% and to detect recurrence the best predictor was wavelet_HLH_ngtdm_Complexity with an accuracy of 90%, both extracted by T1-weigthed arterial phase sequence. The best predictor to detect tumor budding was the wavelet_LLH_glcm_Imc1 with an accuracy of 88% and to identify mucinous type was wavelet_LLH_glcm_JointEntropy with an accuracy of 92%, both calculated on T2-weigthed sequence. An increase statistically significant of accuracy (90%) was obtained using a linear weighted combination of 15 predictors extracted by T2-weigthed images to detect tumor front growth. An increase statistically significant of accuracy at 93% was obtained using a linear weighted combination of 11 predictors by the T1-weigthed arterial phase sequence to classify tumor budding. An increase statistically significant of accuracy at 97% was obtained using a linear weighted combination of 16 predictors extracted on CT to detect recurrence. An increase statistically significant of accuracy was obtained in the tumor budding identification considering a K-nearest neighbors and the 11 significant features extracted T1-weigthed arterial phase sequence. CONCLUSIONS The results confirmed the Radiomics capacity to recognize clinical and histopathological prognostic features that should influence the choice of treatments in colorectal liver metastases patients to obtain a more personalized therapy.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy.
| | | | - Federica De Muzio
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100, Campobasso, Italy
| | - Maria Chiara Brunese
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100, Campobasso, Italy
| | - Sergio Venanzio Setola
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| | - Alessandro Ottaiano
- Clinical Experimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Claudia Cardone
- Clinical Experimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Antonio Avallone
- Clinical Experimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Renato Patrone
- Division of Hepatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, 80131, Naples, Italy
| | - Silvia Pradella
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
- SIRM Foundation, Italian Society of Medical and Interventional Radiology (SIRM), 20122, Milan, Italy
| | - Vittorio Miele
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
- SIRM Foundation, Italian Society of Medical and Interventional Radiology (SIRM), 20122, Milan, Italy
| | - Fabiana Tatangelo
- Division of Pathological Anatomy and Cytopathology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, 80131, Naples, Italy
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084, Salerno, Italy
| | - Nicola Maggialetti
- Department of Medical Science, Neuroscience and Sensory Organs (DSMBNOS), University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Damiano Caruso
- Department of Medical Surgical Sciences and Translational Medicine, Radiology Unit-Sant'Andrea University Hospital, Sapienza-University of Rome, 00189, Rome, Italy
| | - Francesco Izzo
- Division of Hepatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, 80131, Naples, Italy
| | - Antonella Petrillo
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli, Naples, Italy
| |
Collapse
|
11
|
Galluzzo A, Boccioli S, Danti G, De Muzio F, Gabelloni M, Fusco R, Borgheresi A, Granata V, Giovagnoni A, Gandolfo N, Miele V. Radiomics in gastrointestinal stromal tumours: an up-to-date review. Jpn J Radiol 2023; 41:1051-1061. [PMID: 37171755 DOI: 10.1007/s11604-023-01441-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
Gastrointestinal stromal tumours are rare mesenchymal neoplasms originating from the Cajal cells and represent the most common sarcomas in the gastroenteric tract. Symptoms may be absent or non-specific, ranging from fatigue and weight loss to acute abdomen. Nowadays endoscopy, echoendoscopy, contrast-enhanced computed tomography, magnetic resonance imaging and positron emission tomography are the main methods for diagnosis. Because of their rarity, these neoplasms may not be included immediately in the differential diagnosis of a solitary abdominal mass. Radiomics is an emerging technique that can extract medical imaging information, not visible to the human eye, transforming it into quantitative data. The purpose of this review is to demonstrate how radiomics can improve the already known imaging techniques by providing useful tools for the diagnosis, treatment, and prognosis of these tumours.
Collapse
Affiliation(s)
- Antonio Galluzzo
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Sofia Boccioli
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Ginevra Danti
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy.
| | - Federica De Muzio
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100, Campobasso, Italy
| | - Michela Gabelloni
- Department of Translational Research, Diagnostic and Interventional Radiology, University of Pisa, Pisa, Italy
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013, Naples, Italy
| | - Alessandra Borgheresi
- Department of Clinical, Special and Dental Sciences, University Politecnica Delle Marche, Via Conca 71, 60126, Ancona, Italy
- Department of Radiology, University Hospital "Azienda Ospedaliera Universitaria Delle Marche", Via Conca 71, 60126, Ancona, Italy
| | - Vincenza Granata
- Department of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione, Pascale-IRCCS di Napoli", 80131, Naples, Italy
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences, University Politecnica Delle Marche, Via Conca 71, 60126, Ancona, Italy
- Department of Radiology, University Hospital "Azienda Ospedaliera Universitaria Delle Marche", Via Conca 71, 60126, Ancona, Italy
| | - Nicoletta Gandolfo
- Diagnostic Imaging Department, Villa Scassi Hospital-ASL 3, Corso Scassi 1, 16149, Genoa, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via Della Signora 2, 20122, Milan, Italy
| | - Vittorio Miele
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| |
Collapse
|
12
|
Granata V, Fusco R, Setola SV, Galdiero R, Maggialetti N, Patrone R, Ottaiano A, Nasti G, Silvestro L, Cassata A, Grassi F, Avallone A, Izzo F, Petrillo A. Colorectal liver metastases patients prognostic assessment: prospects and limits of radiomics and radiogenomics. Infect Agent Cancer 2023; 18:18. [PMID: 36927442 PMCID: PMC10018963 DOI: 10.1186/s13027-023-00495-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
In this narrative review, we reported un up-to-date on the role of radiomics to assess prognostic features, which can impact on the liver metastases patient treatment choice. In the liver metastases patients, the possibility to assess mutational status (RAS or MSI), the tumor growth pattern and the histological subtype (NOS or mucinous) allows a better treatment selection to avoid unnecessary therapies. However, today, the detection of these features require an invasive approach. Recently, radiomics analysis application has improved rapidly, with a consequent growing interest in the oncological field. Radiomics analysis allows the textural characteristics assessment, which are correlated to biological data. This approach is captivating since it should allow to extract biological data from the radiological images, without invasive approach, so that to reduce costs and time, avoiding any risk for the patients. Several studies showed the ability of Radiomics to identify mutational status, tumor growth pattern and histological type in colorectal liver metastases. Although, radiomics analysis in a non-invasive and repeatable way, however features as the poor standardization and generalization of clinical studies results limit the translation of this analysis into clinical practice. Clear limits are data-quality control, reproducibility, repeatability, generalizability of results, and issues related to model overfitting.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy.
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, Napoli, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, Milan, 20122, Italy
| | - Sergio Venanzio Setola
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy
| | - Roberta Galdiero
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy
| | - Nicola Maggialetti
- Department of Medical Science, Neuroscience and Sensory Organs (DSMBNOS), University of Bari "Aldo Moro", Bari, 70124, Italy
| | - Renato Patrone
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, Naples, 80131, Italy
| | - Alessandro Ottaiano
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Guglielmo Nasti
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Lucrezia Silvestro
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Antonio Cassata
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Francesca Grassi
- Division of Radiology, "Università degli Studi della Campania Luigi Vanvitelli", Naples, 80138, Italy
| | - Antonio Avallone
- Clinical Sperimental Abdominal Oncology Unit, Istituto Nazionale Tumori, IRCCS Fondazione G. Pascale, Napoli, 80131, Italy
| | - Francesco Izzo
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, Naples, 80131, Italy
| | - Antonella Petrillo
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Naples, Italy
| |
Collapse
|
13
|
Gabelloni M, Faggioni L, Fusco R, De Muzio F, Danti G, Grassi F, Grassi R, Palumbo P, Bruno F, Borgheresi A, Bruno A, Catalano O, Gandolfo N, Giovagnoni A, Miele V, Barile A, Granata V. Exploring Radiologists' Burnout in the COVID-19 Era: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3350. [PMID: 36834044 PMCID: PMC9966123 DOI: 10.3390/ijerph20043350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/03/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Since its beginning in March 2020, the COVID-19 pandemic has claimed an exceptionally high number of victims and brought significant disruption to the personal and professional lives of millions of people worldwide. Among medical specialists, radiologists have found themselves at the forefront of the crisis due to the pivotal role of imaging in the diagnostic and interventional management of COVID-19 pneumonia and its complications. Because of the disruptive changes related to the COVID-19 outbreak, a proportion of radiologists have faced burnout to several degrees, resulting in detrimental effects on their working activities and overall wellbeing. This paper aims to provide an overview of the literature exploring the issue of radiologists' burnout in the COVID-19 era.
Collapse
Affiliation(s)
- Michela Gabelloni
- Nuclear Medicine Unit, Department of Translational Research, University of Pisa, 56126 Pisa, Italy
| | - Lorenzo Faggioni
- Academic Radiology, Department of Translational Research, University of Pisa, 56126 Pisa, Italy
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy
| | - Federica De Muzio
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100 Campobasso, Italy
| | - Ginevra Danti
- Department of Emergency Radiology, Careggi University Hospital, 50134 Florence, Italy
- Italian Society of Medical and Interventional Radiology, SIRM Foundation, 20122 Milan, Italy
| | - Francesca Grassi
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Roberta Grassi
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Pierpaolo Palumbo
- Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, Department of Diagnostic Imaging, 67100 L’Aquila, Italy
| | - Federico Bruno
- Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, Department of Diagnostic Imaging, 67100 L’Aquila, Italy
| | - Alessandra Borgheresi
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, 60126 Ancona, Italy
- Department of Clinical, Special and Dental Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Alessandra Bruno
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, 60126 Ancona, Italy
- Department of Clinical, Special and Dental Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Orlando Catalano
- Department of Radiology, Istituto Diagnostico Varelli, 80126 Naples, Italy
| | - Nicoletta Gandolfo
- Diagnostic Imaging Department, Villa Scassi Hospital-ASL 3, 16149 Genoa, Italy
| | - Andrea Giovagnoni
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, 60126 Ancona, Italy
- Department of Clinical, Special and Dental Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Vittorio Miele
- Department of Emergency Radiology, Careggi University Hospital, 50134 Florence, Italy
- Italian Society of Medical and Interventional Radiology, SIRM Foundation, 20122 Milan, Italy
| | - Antonio Barile
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| |
Collapse
|
14
|
De Muzio F, Fusco R, Cutolo C, Giacobbe G, Bruno F, Palumbo P, Danti G, Grazzini G, Flammia F, Borgheresi A, Agostini A, Grassi F, Giovagnoni A, Miele V, Barile A, Granata V. Post-Surgical Imaging Assessment in Rectal Cancer: Normal Findings and Complications. J Clin Med 2023; 12:1489. [PMID: 36836024 PMCID: PMC9966470 DOI: 10.3390/jcm12041489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/30/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Rectal cancer (RC) is one of the deadliest malignancies worldwide. Surgery is the most common treatment for RC, performed in 63.2% of patients. The type of surgical approach chosen aims to achieve maximum residual function with the lowest risk of recurrence. The selection is made by a multidisciplinary team that assesses the characteristics of the patient and the tumor. Total mesorectal excision (TME), including both low anterior resection (LAR) and abdominoperineal resection (APR), is still the standard of care for RC. Radical surgery is burdened by a 31% rate of major complications (Clavien-Dindo grade 3-4), such as anastomotic leaks and a risk of a permanent stoma. In recent years, less-invasive techniques, such as local excision, have been tested. These additional procedures could mitigate the morbidity of rectal resection, while providing acceptable oncologic results. The "watch and wait" approach is not a globally accepted model of care but encouraging results on selected groups of patients make it a promising strategy. In this plethora of treatments, the radiologist is called upon to distinguish a physiological from a pathological postoperative finding. The aim of this narrative review is to identify the main post-surgical complications and the most effective imaging techniques.
Collapse
Affiliation(s)
- Federica De Muzio
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100 Campobasso, Italy
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Salerno, Italy
| | | | - Federico Bruno
- Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, 67100 L’Aquila, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via Della Signora 2, 20122 Milan, Italy
| | - Pierpaolo Palumbo
- Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, 67100 L’Aquila, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via Della Signora 2, 20122 Milan, Italy
| | - Ginevra Danti
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via Della Signora 2, 20122 Milan, Italy
- Division of Radiology, Azienda Ospedaliera Universitaria Careggi, 50134 Florence, Italy
| | - Giulia Grazzini
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via Della Signora 2, 20122 Milan, Italy
- Division of Radiology, Azienda Ospedaliera Universitaria Careggi, 50134 Florence, Italy
| | - Federica Flammia
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via Della Signora 2, 20122 Milan, Italy
- Division of Radiology, Azienda Ospedaliera Universitaria Careggi, 50134 Florence, Italy
| | - Alessandra Borgheresi
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Via Conca 71, 60126 Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Via Conca 71, 60126 Ancona, Italy
| | - Andrea Agostini
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Via Conca 71, 60126 Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Via Conca 71, 60126 Ancona, Italy
| | - Francesca Grassi
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Via Conca 71, 60126 Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Via Conca 71, 60126 Ancona, Italy
| | - Vittorio Miele
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via Della Signora 2, 20122 Milan, Italy
- Division of Radiology, Azienda Ospedaliera Universitaria Careggi, 50134 Florence, Italy
| | - Antonio Barile
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, 67100 L’Aquila, Italy
| | - Vincenza Granata
- Division of Radiology, “Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli”, 80131 Naples, Italy
| |
Collapse
|
15
|
Kojima S. [[MRI] 3. Current Status of AI Image Reconstruction in Clinical MRI Systems]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2023; 79:1200-1209. [PMID: 37866905 DOI: 10.6009/jjrt.2023-2260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Affiliation(s)
- Shinya Kojima
- Department of Medical Radiology, Faculty of Medical Technology, Teikyo University
| |
Collapse
|