1
|
Liu Y, Gao Z, Shi N, Wu F, Shi Y, Chen Q, Zhuang X. MERIT: Multi-view evidential learning for reliable and interpretable liver fibrosis staging. Med Image Anal 2025; 102:103507. [PMID: 40022854 DOI: 10.1016/j.media.2025.103507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/30/2024] [Accepted: 02/11/2025] [Indexed: 03/04/2025]
Abstract
Accurate staging of liver fibrosis from magnetic resonance imaging (MRI) is crucial in clinical practice. While conventional methods often focus on a specific sub-region, multi-view learning captures more information by analyzing multiple patches simultaneously. However, previous multi-view approaches could not typically calculate uncertainty by nature, and they generally integrate features from different views in a black-box fashion, hence compromising reliability as well as interpretability of the resulting models. In this work, we propose a new multi-view method based on evidential learning, referred to as MERIT, which tackles the two challenges in a unified framework. MERIT enables uncertainty quantification of the predictions to enhance reliability, and employs a logic-based combination rule to improve interpretability. Specifically, MERIT models the prediction from each sub-view as an opinion with quantified uncertainty under the guidance of the subjective logic theory. Furthermore, a distribution-aware base rate is introduced to enhance performance, particularly in scenarios involving class distribution shifts. Finally, MERIT adopts a feature-specific combination rule to explicitly fuse multi-view predictions, thereby enhancing interpretability. Results have showcased the effectiveness of the proposed MERIT, highlighting the reliability and offering both ad-hoc and post-hoc interpretability. They also illustrate that MERIT can elucidate the significance of each view in the decision-making process for liver fibrosis staging. Our code will be released via https://github.com/HenryLau7/MERIT.
Collapse
Affiliation(s)
- Yuanye Liu
- School of Data Science, Fudan University, Shanghai, 200433, China
| | - Zheyao Gao
- School of Data Science, Fudan University, Shanghai, 200433, China
| | - Nannan Shi
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Fuping Wu
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Yuxin Shi
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Qingchao Chen
- National Institute of Health Data Science, Peking University, Beijing, 100191, China; Institute of Medical Technology, Peking University, Beijing, 100191, China; State Key Laboratory of General Artificial Intelligence, Peking University, Beijing, 100191, China
| | - Xiahai Zhuang
- School of Data Science, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
2
|
Huang W, Peng Y, Kang L. Advancements of non‐invasive imaging technologies for the diagnosis and staging of liver fibrosis: Present and future. VIEW 2024; 5. [DOI: 10.1002/viw.20240010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/28/2024] [Indexed: 01/04/2025] Open
Abstract
AbstractLiver fibrosis is a reparative response triggered by liver injury. Non‐invasive assessment and staging of liver fibrosis in patients with chronic liver disease are of paramount importance, as treatment strategies and prognoses depend significantly on the degree of fibrosis. Although liver fibrosis has traditionally been staged through invasive liver biopsy, this method is prone to sampling errors, particularly when biopsy sizes are inadequate. Consequently, there is an urgent clinical need for an alternative to biopsy, one that ensures precise, sensitive, and non‐invasive diagnosis and staging of liver fibrosis. Non‐invasive imaging assessments have assumed a pivotal role in clinical practice, enjoying growing popularity and acceptance due to their potential for diagnosing, staging, and monitoring liver fibrosis. In this comprehensive review, we first delved into the current landscape of non‐invasive imaging technologies, assessing their accuracy and the transformative impact they have had on the diagnosis and management of liver fibrosis in both clinical practice and animal models. Additionally, we provided an in‐depth exploration of recent advancements in ultrasound imaging, computed tomography imaging, magnetic resonance imaging, nuclear medicine imaging, radiomics, and artificial intelligence within the field of liver fibrosis research. We summarized the key concepts, advantages, limitations, and diagnostic performance of each technique. Finally, we discussed the challenges associated with clinical implementation and offer our perspective on advancing the field, hoping to provide alternative directions for the future research.
Collapse
Affiliation(s)
- Wenpeng Huang
- Department of Nuclear Medicine Peking University First Hospital Beijing China
| | - Yushuo Peng
- Department of Nuclear Medicine Peking University First Hospital Beijing China
| | - Lei Kang
- Department of Nuclear Medicine Peking University First Hospital Beijing China
| |
Collapse
|
3
|
Dai R, Sun M, Lu M, Deng L. Deep learning for predicting fibrotic progression risk in diabetic individuals with metabolic dysfunction-associated steatotic liver disease initially free of hepatic fibrosis. Heliyon 2024; 10:e34150. [PMID: 39071617 PMCID: PMC11282990 DOI: 10.1016/j.heliyon.2024.e34150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024] Open
Abstract
Objective Metabolic dysfunction-associated steatotic liver disease (MASLD) significantly impacts patients with type 2 diabetes mellitus (T2DM), where current non-invasive assessment methods show limited predictive power for future fibrotic progression. This study aims to develop an enhanced deep learning (DL) model that integrates ultrasound elastography images with clinical data, refining the prediction of fibrotic progression in T2DM patients with MASLD who initially exhibit no signs of hepatic fibrosis. Methods We enrolled 946 diabetic MASLD patients without advanced fibrosis, confirmed by initial liver stiffness measurements (LSM) below 6.5 kPa. Patients were divided into a training dataset of 671 and a testing dataset of 275. Hepatic shear wave elastography (SWE) images measured liver stiffness, classifying participants based on progression. A DL integrated model (DI-model) combining SWE images and clinical data was trained and its predictive performance compared with individual Image and Tabular models, as well as a logistic regression model on the testing dataset. Results Fibrotic progression was observed in 18.1 % of patients over three years. During the training phase, the DI-model outperformed other models, achieving the lowest validation loss of 0.161 and highest accuracy of 0.933 through cross-validation. In the testing phase, it demonstrated robust discrimination with AUCs of 0.884 and 0.903 for the receiver operating characteristic and precision-recall curves, respectively, clearly outperforming other models. Shapley analysis identified BMI, LSM, and glycated hemoglobin as critical predictors. Conclusion The DI-model significantly enhances the prediction of future fibrotic progression in diabetic MASLD patients, demonstrating the benefit of combining clinical and imaging data for early diagnosis and intervention.
Collapse
Affiliation(s)
- Ruihong Dai
- Department of Ultrasound, Meng Cheng County Hospital of Chinese Medicine, Bozhou City, Anhui Province, China
| | - Miaomiao Sun
- Department of Ultrasound, Meng Cheng County Hospital of Chinese Medicine, Bozhou City, Anhui Province, China
| | - Mei Lu
- Department of Ultrasound, Meng Cheng County Hospital of Chinese Medicine, Bozhou City, Anhui Province, China
| | - Lanhua Deng
- Department of Ultrasound, Meng Cheng County Hospital of Chinese Medicine, Bozhou City, Anhui Province, China
| |
Collapse
|
4
|
Kutaiba N, Dahan A, Goodwin M, Testro A, Egan G, Lim R. Deep Learning for Computed Tomography Assessment of Hepatic Fibrosis and Cirrhosis: A Systematic Review. MAYO CLINIC PROCEEDINGS. DIGITAL HEALTH 2023; 1:574-585. [PMID: 40206310 PMCID: PMC11975692 DOI: 10.1016/j.mcpdig.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Studies were identified using deep learning artificial intelligence methods for the analysis of computed tomography images in the assessment of hepatic fibrosis and cirrhosis. A systematic review was conducted in line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses of Diagnostic Test Accuracy Studies protocol to evaluate the accuracy of deep learning algorithms for this objective (PROSPERO CRD 42023366201). A literature search was conducted on Medline, Embase, Web of Science, and IEEE Xplore databases. The search was conducted with a timeline from January 1, 2000,through November 13, 2022. Our search resulted in 3877 studies for screening, which yielded 6 studies meeting our inclusion criteria. All studies were retrospective. Three studies performed internal validation, and 2 studies performed external validation. Four studies used image classification algorithms, whereas 2 studies used image segmentation algorithms to derive volumetric measurements of the liver and spleen. Accuracy of the algorithms was variable in diagnosing significant and advanced fibrosis and cirrhosis, with the area under the curve ranging from 0.63 to 0.97. Deep learning algorithms using computed tomography images have the potential to classify fibrosis stages. Heterogeneity in cohorts and methodologies limits the generalizability of these studies.
Collapse
Affiliation(s)
- Numan Kutaiba
- Department of Radiology, Austin Health, Heidelberg VIC, Australia
- The University of Melbourne, Parkville, Australia
| | - Ariel Dahan
- Department of Radiology, Austin Health, Heidelberg VIC, Australia
| | - Mark Goodwin
- Department of Radiology, Austin Health, Heidelberg VIC, Australia
- The University of Melbourne, Parkville, Australia
| | - Adam Testro
- Department of Gastroenterology, Austin Health, Heidelberg VIC, Australia
- The University of Melbourne, Parkville, Australia
| | - Gary Egan
- Monash Biomedical Imaging, Monash University, Clayton VIC, Australia
| | - Ruth Lim
- Department of Radiology, Austin Health, Heidelberg VIC, Australia
- The University of Melbourne, Parkville, Australia
| |
Collapse
|
5
|
Radiya K, Joakimsen HL, Mikalsen KØ, Aahlin EK, Lindsetmo RO, Mortensen KE. Performance and clinical applicability of machine learning in liver computed tomography imaging: a systematic review. Eur Radiol 2023; 33:6689-6717. [PMID: 37171491 PMCID: PMC10511359 DOI: 10.1007/s00330-023-09609-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 05/13/2023]
Abstract
OBJECTIVES Machine learning (ML) for medical imaging is emerging for several organs and image modalities. Our objectives were to provide clinicians with an overview of this field by answering the following questions: (1) How is ML applied in liver computed tomography (CT) imaging? (2) How well do ML systems perform in liver CT imaging? (3) What are the clinical applications of ML in liver CT imaging? METHODS A systematic review was carried out according to the guidelines from the PRISMA-P statement. The search string focused on studies containing content relating to artificial intelligence, liver, and computed tomography. RESULTS One hundred ninety-one studies were included in the study. ML was applied to CT liver imaging by image analysis without clinicians' intervention in majority of studies while in newer studies the fusion of ML method with clinical intervention have been identified. Several were documented to perform very accurately on reliable but small data. Most models identified were deep learning-based, mainly using convolutional neural networks. Potentially many clinical applications of ML to CT liver imaging have been identified through our review including liver and its lesion segmentation and classification, segmentation of vascular structure inside the liver, fibrosis and cirrhosis staging, metastasis prediction, and evaluation of chemotherapy. CONCLUSION Several studies attempted to provide transparent result of the model. To make the model convenient for a clinical application, prospective clinical validation studies are in urgent call. Computer scientists and engineers should seek to cooperate with health professionals to ensure this. KEY POINTS • ML shows great potential for CT liver image tasks such as pixel-wise segmentation and classification of liver and liver lesions, fibrosis staging, metastasis prediction, and retrieval of relevant liver lesions from similar cases of other patients. • Despite presenting the result is not standardized, many studies have attempted to provide transparent results to interpret the machine learning method performance in the literature. • Prospective studies are in urgent call for clinical validation of ML method, preferably carried out by cooperation between clinicians and computer scientists.
Collapse
Affiliation(s)
- Keyur Radiya
- Department of Gastroenterological Surgery at University Hospital of North Norway (UNN), Tromso, Norway.
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway.
| | - Henrik Lykke Joakimsen
- Institute of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
- Centre for Clinical Artificial Intelligence (SPKI), University Hospital of North Norway, Tromso, Norway
| | - Karl Øyvind Mikalsen
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
- Centre for Clinical Artificial Intelligence (SPKI), University Hospital of North Norway, Tromso, Norway
- UiT Machine Learning Group, Department of Physics and Technology, UiT the Arctic University of Norway, Tromso, Norway
| | - Eirik Kjus Aahlin
- Department of Gastroenterological Surgery at University Hospital of North Norway (UNN), Tromso, Norway
| | - Rolv-Ole Lindsetmo
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
- Head Clinic of Surgery, Oncology and Women Health, University Hospital of North Norway, Tromso, Norway
| | - Kim Erlend Mortensen
- Department of Gastroenterological Surgery at University Hospital of North Norway (UNN), Tromso, Norway
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway
| |
Collapse
|
6
|
Lakshmipriya B, Pottakkat B, Ramkumar G. Deep learning techniques in liver tumour diagnosis using CT and MR imaging - A systematic review. Artif Intell Med 2023; 141:102557. [PMID: 37295904 DOI: 10.1016/j.artmed.2023.102557] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 06/12/2023]
Abstract
Deep learning has become a thriving force in the computer aided diagnosis of liver cancer, as it solves extremely complicated challenges with high accuracy over time and facilitates medical experts in their diagnostic and treatment procedures. This paper presents a comprehensive systematic review on deep learning techniques applied for various applications pertaining to liver images, challenges faced by the clinicians in liver tumour diagnosis and how deep learning bridges the gap between clinical practice and technological solutions with an in-depth summary of 113 articles. Since, deep learning is an emerging revolutionary technology, recent state-of-the-art research implemented on liver images are reviewed with more focus on classification, segmentation and clinical applications in the management of liver diseases. Additionally, similar review articles in literature are reviewed and compared. The review is concluded by presenting the contemporary trends and unaddressed research issues in the field of liver tumour diagnosis, offering directions for future research in this field.
Collapse
Affiliation(s)
- B Lakshmipriya
- Department of Surgical Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Biju Pottakkat
- Department of Surgical Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India.
| | - G Ramkumar
- Department of Radio Diagnosis, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|
7
|
Popa SL, Ismaiel A, Abenavoli L, Padureanu AM, Dita MO, Bolchis R, Munteanu MA, Brata VD, Pop C, Bosneag A, Dumitrascu DI, Barsan M, David L. Diagnosis of Liver Fibrosis Using Artificial Intelligence: A Systematic Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59050992. [PMID: 37241224 DOI: 10.3390/medicina59050992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Background and Objectives: The development of liver fibrosis as a consequence of continuous inflammation represents a turning point in the evolution of chronic liver diseases. The recent developments of artificial intelligence (AI) applications show a high potential for improving the accuracy of diagnosis, involving large sets of clinical data. For this reason, the aim of this systematic review is to provide a comprehensive overview of current AI applications and analyze the accuracy of these systems to perform an automated diagnosis of liver fibrosis. Materials and Methods: We searched PubMed, Cochrane Library, EMBASE, and WILEY databases using predefined keywords. Articles were screened for relevant publications about AI applications capable of diagnosing liver fibrosis. Exclusion criteria were animal studies, case reports, abstracts, letters to the editor, conference presentations, pediatric studies, studies written in languages other than English, and editorials. Results: Our search identified a total of 24 articles analyzing the automated imagistic diagnosis of liver fibrosis, out of which six studies analyze liver ultrasound images, seven studies analyze computer tomography images, five studies analyze magnetic resonance images, and six studies analyze liver biopsies. The studies included in our systematic review showed that AI-assisted non-invasive techniques performed as accurately as human experts in detecting and staging liver fibrosis. Nevertheless, the findings of these studies need to be confirmed through clinical trials to be implemented into clinical practice. Conclusions: The current systematic review provides a comprehensive analysis of the performance of AI systems in diagnosing liver fibrosis. Automatic diagnosis, staging, and risk stratification for liver fibrosis is currently possible considering the accuracy of the AI systems, which can overcome the limitations of non-invasive diagnosis methods.
Collapse
Affiliation(s)
- Stefan Lucian Popa
- 2nd Medical Department, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| | - Abdulrahman Ismaiel
- 2nd Medical Department, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| | - Ludovico Abenavoli
- Department of Health Sciences, University "Magna Graecia", 88100 Catanzaro, Italy
| | | | - Miruna Oana Dita
- Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| | - Roxana Bolchis
- Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| | - Mihai Alexandru Munteanu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Vlad Dumitru Brata
- Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| | - Cristina Pop
- Department of Pharmacology, Physiology, and Pathophysiology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Andrei Bosneag
- Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| | - Dinu Iuliu Dumitrascu
- Department of Anatomy, UMF "Iuliu Hatieganu" Cluj-Napoca, 400000 Cluj-Napoca, Romania
| | - Maria Barsan
- Department of Occupational Health, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| | - Liliana David
- 2nd Medical Department, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Hu Z, Cao D, Hu Y, Wang B, Zhang Y, Tang R, Zhuang J, Gao A, Chen Y, Lin Z. Diagnosis of in vivo vertical root fracture using deep learning on cone-beam CT images. BMC Oral Health 2022; 22:382. [PMID: 36064682 PMCID: PMC9446797 DOI: 10.1186/s12903-022-02422-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
Objectives Evaluating the diagnostic efficiency of deep learning models to diagnose vertical root fracture in vivo on cone-beam CT (CBCT) images.
Materials and methods The CBCT images of 276 teeth (138 VRF teeth and 138 non-VRF teeth) were enrolled and analyzed retrospectively. The diagnostic results of these teeth were confirmed by two chief radiologists. There were two experimental groups: auto-selection group and manual selection group. A total of 552 regions of interest of teeth were cropped in manual selection group and 1118 regions of interest of teeth were cropped in auto-selection group. Three deep learning networks (ResNet50, VGG19 and DenseNet169) were used for diagnosis (3:1 for training and testing). The diagnostic efficiencies (accuracy, sensitivity, specificity, and area under the curve (AUC)) of three networks were calculated in two experiment groups. Meanwhile, 552 teeth images in manual selection group were diagnosed by a radiologist. The diagnostic efficiencies of the three deep learning network models in two experiment groups and the radiologist were calculated. Results In manual selection group, ResNet50 presented highest accuracy and sensitivity for diagnosing VRF teeth. The accuracy, sensitivity, specificity and AUC was 97.8%, 97.0%, 98.5%, and 0.99, the radiologist presented accuracy, sensitivity, and specificity as 95.3%, 96.4 and 94.2%. In auto-selection group, ResNet50 presented highest accuracy and sensitivity for diagnosing VRF teeth, the accuracy, sensitivity, specificity and AUC was 91.4%, 92.1%, 90.7% and 0.96. Conclusion In manual selection group, ResNet50 presented higher diagnostic efficiency in diagnosis of in vivo VRF teeth than VGG19, DensenNet169 and radiologist with 2 years of experience. In auto-selection group, Resnet50 also presented higher diagnostic efficiency in diagnosis of in vivo VRF teeth than VGG19 and DensenNet169. This makes it a promising auxiliary diagnostic technique to screen for VRF teeth.
Collapse
Affiliation(s)
- Ziyang Hu
- Department of Dentomaxillofacial Radiology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Zhong Yang Road 30, Nanjing City, 210008, Jiangsu, People's Republic of China.,Department of Stomatology, Guangdong Medical University Affiliated Longhua Central Hospital, Shenzhen, China
| | - Dantong Cao
- Department of Dentomaxillofacial Radiology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Zhong Yang Road 30, Nanjing City, 210008, Jiangsu, People's Republic of China
| | - Yanni Hu
- Department of Dentomaxillofacial Radiology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Zhong Yang Road 30, Nanjing City, 210008, Jiangsu, People's Republic of China
| | - Baixin Wang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Yifan Zhang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Rong Tang
- Department of Dentomaxillofacial Radiology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Zhong Yang Road 30, Nanjing City, 210008, Jiangsu, People's Republic of China
| | - Jia Zhuang
- Department of Dentomaxillofacial Radiology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Zhong Yang Road 30, Nanjing City, 210008, Jiangsu, People's Republic of China
| | - Antian Gao
- Department of Dentomaxillofacial Radiology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Zhong Yang Road 30, Nanjing City, 210008, Jiangsu, People's Republic of China
| | - Ying Chen
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China.
| | - Zitong Lin
- Department of Dentomaxillofacial Radiology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Zhong Yang Road 30, Nanjing City, 210008, Jiangsu, People's Republic of China.
| |
Collapse
|
9
|
Hirano R, Rogalla P, Farrell C, Hoppel B, Fujisawa Y, Ohyu S, Hattori C, Sakaguchi T. Development of a classification method for mild liver fibrosis using non-contrast CT image. Int J Comput Assist Radiol Surg 2022; 17:2041-2049. [PMID: 35930131 DOI: 10.1007/s11548-022-02724-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE Detection of early-stage liver fibrosis has direct clinical implications on patient management and treatment. The aim of this paper is to develop a non-invasive, cost-effective method for classifying liver disease between "non-fibrosis" (F0) and "fibrosis" (F1-F4), and to evaluate the classification performance quantitatively. METHODS Image data from 75 patients who underwent a simultaneous liver biopsy and non-contrast CT examination were used for this study. Non-contrast CT image texture features such as wavelet-based features, standard deviation of variance filter, and mean CT number were calculated in volumes of interest (VOIs) positioned within the liver parenchyma. In addition, a combined feature was calculated using logistic regression with L2-norm regularization to further improve fibrosis detection. Based on the final pathology from the liver biopsy, the patients were labelled either as "non-fibrosis" or "fibrosis". Receiver-operating characteristic (ROC) curve, area under the ROC curve (AUROC), specificity, sensitivity, and accuracy were determined for the algorithm to differentiate between "non-fibrosis" and "fibrosis". RESULTS The combined feature showed the highest classification performance with an AUROC of 0.86, compared to the wavelet-based feature (AUROC, 0.76), the standard deviation of variance filter (AUROC, 0.65), and mean CT number (AUROC, 0.84). The combined feature's specificity, sensitivity, and accuracy were 0.66, 0.88, and 0.76, respectively, showing the most promising results. CONCLUSION A new non-invasive and cost-effective method was developed to classify liver diseases between "non-fibrosis" (F0) and "fibrosis" (F1-F4). The proposed method makes it possible to detect liver fibrosis in asymptomatic patients using non-contrast CT images for better patient management and treatment.
Collapse
Affiliation(s)
- Ryo Hirano
- Research and Development Center, Canon Medical Systems Corporation, Otawara, Japan.
| | - Patrik Rogalla
- Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | | | | | - Yasuko Fujisawa
- Research and Development Center, Canon Medical Systems Corporation, Otawara, Japan
| | - Shigeharu Ohyu
- Research and Development Center, Canon Medical Systems Corporation, Otawara, Japan
| | - Chihiro Hattori
- Research and Development Center, Canon Medical Systems Corporation, Otawara, Japan
| | - Takuya Sakaguchi
- Research and Development Center, Canon Medical Systems Corporation, Otawara, Japan
| |
Collapse
|
10
|
Hu Z, Wang B, Pan X, Cao D, Gao A, Yang X, Chen Y, Lin Z. Using deep learning to distinguish malignant from benign parotid tumors on plain computed tomography images. Front Oncol 2022; 12:919088. [PMID: 35978811 PMCID: PMC9376440 DOI: 10.3389/fonc.2022.919088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Evaluating the diagnostic efficiency of deep-learning models to distinguish malignant from benign parotid tumors on plain computed tomography (CT) images. Materials and methods The CT images of 283 patients with parotid tumors were enrolled and analyzed retrospectively. Of them, 150 were benign and 133 were malignant according to pathology results. A total of 917 regions of interest of parotid tumors were cropped (456 benign and 461 malignant). Three deep-learning networks (ResNet50, VGG16_bn, and DenseNet169) were used for diagnosis (approximately 3:1 for training and testing). The diagnostic efficiencies (accuracy, sensitivity, specificity, and area under the curve [AUC]) of three networks were calculated and compared based on the 917 images. To simulate the process of human diagnosis, a voting model was developed at the end of the networks and the 283 tumors were classified as benign or malignant. Meanwhile, 917 tumor images were classified by two radiologists (A and B) and original CT images were classified by radiologist B. The diagnostic efficiencies of the three deep-learning network models (after voting) and the two radiologists were calculated. Results For the 917 CT images, ResNet50 presented high accuracy and sensitivity for diagnosing malignant parotid tumors; the accuracy, sensitivity, specificity, and AUC were 90.8%, 91.3%, 90.4%, and 0.96, respectively. For the 283 tumors, the accuracy, sensitivity, and specificity of ResNet50 (after voting) were 92.3%, 93.5% and 91.2%, respectively. Conclusion ResNet50 presented high sensitivity in distinguishing malignant from benign parotid tumors on plain CT images; this made it a promising auxiliary diagnostic method to screen malignant parotid tumors.
Collapse
Affiliation(s)
- Ziyang Hu
- Department of Dentomaxillofacial Radiology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Baixin Wang
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Xiao Pan
- Department of Dentomaxillofacial Radiology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Dantong Cao
- Department of Dentomaxillofacial Radiology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Antian Gao
- Department of Dentomaxillofacial Radiology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xudong Yang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Zitong Lin, ; Ying Chen, ; Xudong Yang,
| | - Ying Chen
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
- *Correspondence: Zitong Lin, ; Ying Chen, ; Xudong Yang,
| | - Zitong Lin
- Department of Dentomaxillofacial Radiology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Zitong Lin, ; Ying Chen, ; Xudong Yang,
| |
Collapse
|
11
|
A Novel Focal Ordinal Loss for Assessment of Knee Osteoarthritis Severity. Neural Process Lett 2022. [DOI: 10.1007/s11063-022-10857-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Wu L, Ning B, Yang J, Chen Y, Zhang C, Yan Y. Diagnosis of Liver Cirrhosis and Liver Fibrosis by Artificial Intelligence Algorithm-Based Multislice Spiral Computed Tomography. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1217003. [PMID: 35341007 PMCID: PMC8941514 DOI: 10.1155/2022/1217003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022]
Abstract
This research was aimed at investigating the artificial intelligence (AI) segmentation algorithm-based multislice spiral computed tomography (MSCT) in the diagnosis of liver cirrhosis and liver fibrosis. Besides, it was aimed at providing new methods for the diagnosis of liver cirrhosis and liver fibrosis. All patients were divided into the control group, mild liver fibrosis group, and significant liver fibrosis group. A total of 112 patients were included, with 40 cases in the mild liver fibrosis group, 48 cases in the significant liver fibrosis group, and 24 cases who underwent computed tomography (CT) examination in the control group. In the research, deconvolution algorithm of AI segmentation algorithm was adopted to process the images. The average hepatic arterial fraction (HAF) values of patients in the control group, mild liver fibrosis group, and severe liver fibrosis group were 17.59 ± 10.03%, 18.23 ± 5.57%, and 20.98 ± 6.63%, respectively. The average MTT values of patients in the control group, mild liver fibrosis group, and severe liver fibrosis group were 12.69 ± 1.78S, 12.53 ± 2.05S, and 12.04 ± 1.57S, respectively. The average blood flow (BF) values of patients in the control group, mild liver fibrosis group, and severe liver fibrosis group were 105.68 ± 15.57 mL 100 g-1·min-1, 116.07 ± 16.5 mL·100 g-1·min-1, and 110.39 ± 16.32 mL·100 g-1·min-1, respectively. Besides, the average blood volume (BV) values of patients in the control group, mild liver fibrosis group, and significant liver fibrosis group were 15.69 ± 4.35 mL·log-1, 16.97 ± 2.68 mL·log-1, and 16.11 ± 4.87 mL·100 g-1, respectively. According to statistics, the differences among the average HAF, MTT, BF, and BV values showed no statistical meaning. AI segmentation algorithm-based MSCT imaging could promote the diagnosis of liver cirrhosis and liver fibrosis effectively and offer new methods to clinical diagnosis of liver cirrhosis and liver fibrosis.
Collapse
Affiliation(s)
- Liexiu Wu
- Department of Infectious Disease, Baoji Central Hospital, Baoji, 721008 Shaanxi, China
| | - Bo Ning
- Department of Infectious Disease, Baoji Central Hospital, Baoji, 721008 Shaanxi, China
| | - Jianjun Yang
- Department of Infectious Disease, Baoji Central Hospital, Baoji, 721008 Shaanxi, China
| | - Yanni Chen
- Department of Immunization Plan, Disease Control and Prevention of Yulin Center, Yulin, 719000 Shaanxi, China
| | - Caihong Zhang
- Department of Health, Disease Control and Prevention of Yulin Center, Yulin, 719000 Shaanxi, China
| | - Yun Yan
- Department of Chronic Disease Control, Yulin City Center for Disease Control and Prevention, Yulin, 719000 Shaanxi, China
| |
Collapse
|
13
|
Balsano C, Alisi A, Brunetto MR, Invernizzi P, Burra P, Piscaglia F. The application of artificial intelligence in hepatology: A systematic review. Dig Liver Dis 2022; 54:299-308. [PMID: 34266794 DOI: 10.1016/j.dld.2021.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
The integration of human and artificial intelligence (AI) in medicine has only recently begun but it has already become obvious that intelligent systems can dramatically improve the management of liver diseases. Big data made it possible to envisage transformative developments of the use of AI for diagnosing, predicting prognosis and treating liver diseases, but there is still a lot of work to do. If we want to achieve the 21st century digital revolution, there is an urgent need for specific national and international rules, and to adhere to bioethical parameters when collecting data. Avoiding misleading results is essential for the effective use of AI. A crucial question is whether it is possible to sustain, technically and morally, the process of integration between man and machine. We present a systematic review on the applications of AI to hepatology, highlighting the current challenges and crucial issues related to the use of such technologies.
Collapse
Affiliation(s)
- Clara Balsano
- Dept. of Life, Health and Environmental Sciences MESVA, University of L'Aquila, Piazza S. Salvatore Tommasi 1, 67100, Coppito, L'Aquila. Italy; Francesco Balsano Foundation, Via Giovanni Battista Martini 6, 00198, Rome, Italy.
| | - Anna Alisi
- Research Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maurizia R Brunetto
- Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, University Hospital of Pisa, Pisa, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology and Center of Autoimmune Liver Diseases, Department of Medicine and Surgery, San Gerardo Hospital, University of Milano, Bicocca, Italy
| | - Patrizia Burra
- Multivisceral Transplant Unit, Department of Surgery, Oncology, Gastroenterology, Padua University Hospital, Padua, Italy
| | - Fabio Piscaglia
- Division of Internal Medicine, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
14
|
Li Q, Kang H, Zhang R, Guo Q. Non-invasive precise staging of liver fibrosis using deep residual network model based on plain CT images. Int J Comput Assist Radiol Surg 2022; 17:627-637. [PMID: 35194737 DOI: 10.1007/s11548-022-02573-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/26/2022] [Indexed: 12/11/2022]
Abstract
PURPOSE The aim of this study was to explore the application of five-class deep residual network models based on plain CT images and clinical features for the precise staging of liver fibrosis. METHODS This retrospective clinical study included 347 patients who underwent liver CT, with pathological staging of liver fibrosis as the gold standard. We established three ResNet models to stage liver fibrosis. The output diagnosis labels of models were 0, 1, 2, 3 and 4, which correspond to F0, F1, F2, F3, and F4 stages. Confusion matrices were used to evaluate the performances of models to precisely stage liver fibrosis. The performance for diagnosing cirrhosis (F4), advanced fibrosis (≥ F3) and significant fibrosis (≥ F2) of models was evaluated with receiver operating characteristic (ROC) analyses. RESULTS The kappa coefficients of the five-class ResNet model (based on plain CT images), the five-class ResNet clinical model (based on clinical features), and the five-class mixed ResNet model (based on plain CT images and clinical features) for precise staging liver fibrosis were 0.566, 0.306, and 0.63, respectively. The recall rates and precision rates for F0, F1, F2, and F3 of three models were lower than 60%. The ROC AUC values of the five-class ResNet model, the five-class ResNet clinical model, and the five-class mixed ResNet model for diagnosing cirrhosis, advanced fibrosis, and significant fibrosis were 0.95, 0.88, and 0.82, 0.80, 0.72, and 0.70, 0.95, 0.90, and 0.83, respectively. CONCLUSIONS The five-class ResNet models are of high value in the diagnosis of liver cirrhosis, advanced liver fibrosis, and significant liver fibrosis. However, for the precise staging of liver fibrosis, the models cannot accurately distinguish other liver fibrosis stages except F4. Plain CT images combined with clinical features have the potential to improve the performance of the ResNet models in diagnosing liver fibrosis.
Collapse
Affiliation(s)
- Qiuju Li
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning, China
| | - Han Kang
- Institute of Advanced Research, Infervision Medical Technology Co., Ltd., Beijing, China
| | - Rongguo Zhang
- Institute of Advanced Research, Infervision Medical Technology Co., Ltd., Beijing, China
| | - Qiyong Guo
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, Liaoning, China.
| |
Collapse
|
15
|
Lim S, Shin Y, Lee YH. Arterial enhancing local tumor progression detection on CT images using convolutional neural network after hepatocellular carcinoma ablation: a preliminary study. Sci Rep 2022; 12:1754. [PMID: 35110631 PMCID: PMC8810956 DOI: 10.1038/s41598-022-05794-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
To evaluate the performance of a deep convolutional neural network (DCNN) in detecting local tumor progression (LTP) after tumor ablation for hepatocellular carcinoma (HCC) on follow-up arterial phase CT images. The DCNN model utilizes three-dimensional (3D) patches extracted from three-channel CT imaging to detect LTP. We built a pipeline to automatically produce a bounding box localization of pathological regions using a 3D-CNN trained for classification. The performance metrics of the 3D-CNN prediction were analyzed in terms of accuracy, sensitivity, specificity, positive predictive value (PPV), area under the receiver operating characteristic curve (AUC), and average precision. We included 34 patients with 49 LTP lesions and randomly selected 40 patients without LTP. A total of 74 patients were randomly divided into three sets: training (n = 48; LTP: no LTP = 21:27), validation (n = 10; 5:5), and test (n = 16; 8:8). When used with the test set (160 LTP positive patches, 640 LTP negative patches), our proposed 3D-CNN classifier demonstrated an accuracy of 97.59%, sensitivity of 96.88%, specificity of 97.65%, and PPV of 91.18%. The AUC and precision-recall curves showed high average precision values of 0.992 and 0.96, respectively. LTP detection on follow-up CT images after tumor ablation for HCC using a DCNN demonstrated high accuracy and incorporated multichannel registration.
Collapse
Affiliation(s)
- Sanghyeok Lim
- Department of Radiology, Research Institute of Radiological Science, and Center for Clinical Imaging Data Science (CCIDS), Yonsei University College of Medicine, Seoul, Korea.,Department of Radiology, SoonChunHyang University Bucheon Hospital, SoonChunHyang University College of Medicine, Bucheon-si, Gyeonggi-do, Korea
| | - YiRang Shin
- Department of Radiology, Research Institute of Radiological Science, and Center for Clinical Imaging Data Science (CCIDS), Yonsei University College of Medicine, Seoul, Korea
| | - Young Han Lee
- Department of Radiology, Research Institute of Radiological Science, and Center for Clinical Imaging Data Science (CCIDS), Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
16
|
Zhang J, Wang H, Yao L, Zhao P, Wu X. MiR-34a promotes fibrosis of hepatic stellate cells via the TGF-β pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1520. [PMID: 34790726 PMCID: PMC8576652 DOI: 10.21037/atm-21-5005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022]
Abstract
Background Previous studies have confirmed that MicroRNA (miRNA) is a key regulator exhibiting different effects in human liver fibrosis. However, the function of miR-34a in liver fibrosis has not been reported. Hence, this study aimed to investigate the regulatory mechanism of miR-34a in liver fibrosis. Methods The expression of miR-34a was measured in fibrosis tissues via the quantitative real-time PCR (qRT-PCR) assay. Subsequently, 30 male C57BL/6J mice were divided into control and treatment groups and used to establish animal models of liver fibrosis to explore the expression level of miR-34a. Moreover, Cell Counting Kit 8 (CCK-8) and transwell assays were preformed to identify the regulatory mechanism of miR-34a in cells. The effect of miR-34a on the activity of transforming growth factor-β (TGF-β) pathway was observed by western blot. Results Up-regulation of miR-34a was detected in fibrosis cells. Moreover, the cellular phenotype was suppressed by miR-34a down-regulation in a primary culture of hepatic stellate cells (HSCs). Besides, it was found that increased miR-34a could significantly promote the invasion and migration of HSCs. Moreover, miR-34a activates HSCs through transforming TGF-β, α-smooth muscle actin (α-SMA), and Monocyte chemoattractant protein-1 (MCP-1), which further affects liver fibrosis. Conclusions MiR-34a promotes the fibrosis of HSCs as well as cell proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Nutrition, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Nutrition, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Haixia Wang
- Healthcare Department, The Third Hospital of Jinan, Jinan, China
| | - Linlin Yao
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Peng Zhao
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoyan Wu
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
17
|
Anteby R, Klang E, Horesh N, Nachmany I, Shimon O, Barash Y, Kopylov U, Soffer S. Deep learning for noninvasive liver fibrosis classification: A systematic review. Liver Int 2021; 41:2269-2278. [PMID: 34008300 DOI: 10.1111/liv.14966] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/23/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS While biopsy is the gold standard for liver fibrosis staging, it poses significant risks. Noninvasive assessment of liver fibrosis is a growing field. Recently, deep learning (DL) technology has revolutionized medical image analysis. This technology has the potential to enhance noninvasive fibrosis assessment. We systematically examined the application of DL in noninvasive liver fibrosis imaging. METHODS Embase, MEDLINE, Web of Science, and IEEE Xplore databases were used to identify studies that reported on the accuracy of DL for classification of liver fibrosis on noninvasive imaging. The search keywords were "liver or hepatic," "fibrosis or cirrhosis," and "neural or DL networks." Risk of bias and applicability were evaluated using the QUADAS-2 tool. RESULTS Sixteen studies were retrieved. Imaging modalities included ultrasound (n = 10), computed tomography (n = 3), and magnetic resonance imaging (n = 3). The studies analyzed a total of 40 405 radiological images from 15 853 patients. All but two of the studies were retrospective. In most studies the "ground truth" reference was the METAVIR score for pathological staging (n = 9.56%). The majority of the studies reported an accuracy >85% when compared to histopathology. Fourteen studies (87.5%) had a high risk of bias and concerns regarding applicability. CONCLUSIONS Deep learning has the potential to play an emerging role in liver fibrosis classification. Yet, it is still limited by a relatively small number of retrospective studies. Clinicians should facilitate the use of this technology by sharing databases and standardized reports. This may optimize the noninvasive evaluation of liver fibrosis on a large scale.
Collapse
Affiliation(s)
- Roi Anteby
- School of Public Health, Harvard University, Boston, MA, USA
| | - Eyal Klang
- Department of Population Health Science and Policy, Institute for Healthcare Delivery Science, New York, NY, USA.,Sackler Medical School, Tel Aviv University, Tel Aviv, Israel.,Deep Vision Lab, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Israel
| | - Nir Horesh
- Sackler Medical School, Tel Aviv University, Tel Aviv, Israel.,Department of Surgery and Transplantation B, Sheba Medical Center, Tel Hashomer, Israel
| | - Ido Nachmany
- Sackler Medical School, Tel Aviv University, Tel Aviv, Israel.,Department of Surgery and Transplantation B, Sheba Medical Center, Tel Hashomer, Israel
| | - Orit Shimon
- Sackler Medical School, Tel Aviv University, Tel Aviv, Israel.,Department of Anesthesia, Rabin Medical Center, Beilinson Hospital, Petach Tikvah, Israel
| | - Yiftach Barash
- Sackler Medical School, Tel Aviv University, Tel Aviv, Israel.,Deep Vision Lab, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Israel
| | - Uri Kopylov
- Sackler Medical School, Tel Aviv University, Tel Aviv, Israel.,Department of Gastroenterology, Sheba Medical Center, Tel Hashomer, Israel
| | - Shelly Soffer
- Deep Vision Lab, The Chaim Sheba Medical Center, Ramat Gan, Israel.,Internal Medicine B, Assuta Medical Center, Ashdod, Israel.,Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|