1
|
Liu WH, Li M, Ren GQ, Tang ZY, Shan XH, Yang BQ. Radiomics model based on dual-energy CT venous phase parameters to predict Ki-67 levels in gastrointestinal stromal tumors. Front Oncol 2025; 15:1502062. [PMID: 40365339 PMCID: PMC12069033 DOI: 10.3389/fonc.2025.1502062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/26/2025] [Indexed: 05/15/2025] Open
Abstract
Objective To develop and validate a radiomics model based on the features of the Dual-Energy CT (DECT) venous phase iodine density maps and effective atomic number maps to predict Ki-67 expression levels in gastrointestinal stromal tumors (GISTs). Methods A total of 91 patients with GIST were retrospectively analyzed, including 69 patients with low Ki-67 expression (≤5%) and 22 patients with high Ki-67 expression (>5%). Four clinical features (gender, age, maximum tumor diameter, and tumor location) were extracted to construct a clinical model. The venous phase enhanced CT iodine density maps and effective atomic number maps of DSCT were used to build radiomics models. Logistic regression was used to combine radiomics features with clinical features to build a combined model. Finally, the optimal model's discrimination, calibration, and clinical decision curve were validated using the Bootstrap method. Results The combined model was identified as the best model, with high predictive performance. The model's discrimination had an AUC of 0.982 (95% CI, 0.9603-1). The calibration test showed a Hosmer-Lemeshow test P-value of 0.99. The clinical decision curve demonstrated a probability threshold range of 15% to 98%, with a high net benefit. Conclusion The nomogram model combining clinical features and radiomics (iodine density map radscore + effective atomic number map radscore) has the highest accuracy for preoperative prediction of Ki-67 expression in GISTs.
Collapse
Affiliation(s)
- Wen-hua Liu
- Dalian Medical University, Dalian, Liaoning, China
- Department of Radiology, Jiangsu University affiliated People’s Hospital (Zhenjiang First People’s Hospital), Zhenjiang, Jiangsu, China
| | - Min Li
- Department of Radiology, Jiangsu University affiliated People’s Hospital (Zhenjiang First People’s Hospital), Zhenjiang, Jiangsu, China
| | - Guo-qiang Ren
- Department of Radiology, Jiangsu University affiliated People’s Hospital (Zhenjiang First People’s Hospital), Zhenjiang, Jiangsu, China
| | - Zhi-yang Tang
- Department of Radiology, Jiangsu University affiliated People’s Hospital (Zhenjiang First People’s Hospital), Zhenjiang, Jiangsu, China
| | - Xiu-hong Shan
- Department of Radiology, Jiangsu University affiliated People’s Hospital (Zhenjiang First People’s Hospital), Zhenjiang, Jiangsu, China
| | - Ben-qiang Yang
- Department of Radiology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Jia X, Xiao Y, Zhang H, Li J, Lv S, Zhang Y, Chai F, Feng C, Liu Y, Chen H, Ma F, Wei S, Cheng J, Zhang S, Gao Z, Hong N, Tang L, Wang Y. CT assessed morphological features can predict higher mitotic index in gastric gastrointestinal stromal tumors. Eur Radiol 2025; 35:2094-2105. [PMID: 39349725 DOI: 10.1007/s00330-024-11087-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/13/2024] [Accepted: 08/02/2024] [Indexed: 03/18/2025]
Abstract
OBJECTIVES To investigate the correlation of the mitotic index (MI) of 1-5 cm gastric gastrointestinal stromal tumors (gGISTs) with CT-identified morphological and first-order radiomics features, incorporating subgroup analysis based on tumor size. METHODS We enrolled 344 patients across four institutions, each pathologically diagnosed with 1-5 cm gGISTs and undergoing preoperative contrast-enhanced CT scans. Univariate and multivariate analyses were performed to investigate the independent CT morphological high-risk features of MI. Lesions were categorized into four subgroups based on their pathological LD: 1-2 cm (n = 69), 2-3 cm (n = 96), 3-4 cm (n = 107), and 4-5 cm (n = 72). CT morphological high-risk features of MI were evaluated in each subgroup. In addition, first-order radiomics features were extracted on CT images of the venous phase, and the association between these features and MI was investigated. RESULTS Tumor size (p = 0.04, odds ratio, 1.41; 95% confidence interval: 1.01-1.96) and invasive margin (p < 0.01, odds ratio, 4.55; 95% confidence interval: 1.77-11.73) emerged as independent high-risk features for MI > 5 of 1-5 cm gGISTs from multivariate analysis. In the subgroup analysis, the invasive margin was correlated with MI > 5 in 3-4 cm and 4-5 cm gGISTs (p = 0.02, p = 0.03), and potentially correlated with MI > 5 in 2-3 cm gGISTs (p = 0.07). The energy was the sole first-order radiomics feature significantly correlated with gGISTs of MI > 5, displaying a strong correlation with CT-detected tumor size (Pearson's ρ = 0.85, p < 0.01). CONCLUSIONS The invasive margin stands out as the sole independent CT morphological high-risk feature for 1-5 cm gGISTs after tumor size-based subgroup analysis, overshadowing intratumoral morphological characteristics and first-order radiomics features. KEY POINTS Question How can accurate preoperative risk stratification of gGISTs be achieved to support treatment decision-making? Findings Invasive margins may serve as a reliable marker for risk prediction in gGISTs up to 5 cm, rather than surface ulceration, irregular shape, necrosis, or heterogeneous enhancement. Clinical relevance For gGISTs measuring up to 5 cm, preoperative prediction of the metastatic risk could help select patients who could be treated by endoscopic resection, thereby avoiding overtreatment.
Collapse
Affiliation(s)
- Xiaoxuan Jia
- Department of Radiology, Peking University People's Hospital, Beijing, China
| | - Youping Xiao
- Department of Radiology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Hui Zhang
- Department of Radiology, Peking University People's Hospital, Beijing, China
| | - Jiazheng Li
- Department of Radiology, Peking University Cancer Hospital and Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing, China
| | - Shiying Lv
- Department of Radiology, Shijiazhuang People's Hospital, Shijiazhuang, China
| | - Yinli Zhang
- Department of Pathology, Peking University People's Hospital, Beijing, China
| | - Fan Chai
- Department of Radiology, Peking University People's Hospital, Beijing, China
| | - Caizhen Feng
- Department of Radiology, Peking University People's Hospital, Beijing, China
| | - Yulu Liu
- Department of Radiology, Peking University People's Hospital, Beijing, China
| | - Haoquan Chen
- Department of Radiology, Peking University People's Hospital, Beijing, China
| | - Feiyu Ma
- Department of Radiology, Peking University People's Hospital, Beijing, China
| | - Shengcai Wei
- Department of Radiology, Peking University People's Hospital, Beijing, China
| | - Jin Cheng
- Department of Radiology, Peking University People's Hospital, Beijing, China
| | - Sen Zhang
- Department of Radiology, Peking University People's Hospital, Beijing, China
| | - Zhidong Gao
- Department of Gastrointestinal Surgery, Peking University People's Hospital, Beijing, China
| | - Nan Hong
- Department of Radiology, Peking University People's Hospital, Beijing, China
| | - Lei Tang
- Department of Radiology, Peking University Cancer Hospital and Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing, China.
| | - Yi Wang
- Department of Radiology, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
3
|
Sun C, Fan E, Huang L, Zhang Z. Performance of radiomics in preoperative determination of malignant potential and Ki-67 expression levels in gastrointestinal stromal tumors: a systematic review and meta-analysis. Acta Radiol 2024; 65:1307-1318. [PMID: 39411915 DOI: 10.1177/02841851241285958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Empirical evidence for radiomics predicting the malignant potential and Ki-67 expression in gastrointestinal stromal tumors (GISTs) is lacking. The aim of this review article was to explore the preoperative discriminative performance of radiomics in assessing the malignant potential, mitotic index, and Ki-67 expression levels of GISTs. We systematically searched PubMed, EMBASE, Web of Science, and the Cochrane Library. The search was conducted up to 30 September 2023. Quality assessment was performed using the Radiomics Quality Score (RQS). A total of 35 original studies were included in the analysis. Among them, 26 studies focused on determining malignant potential, three studies on mitotic index discrimination, and six studies on Ki-67 discrimination. In the validation set, the sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) of radiomics in the determination of high malignant potential were 0.74 (95% CI=0.69-0.78), 0.90 (95% CI=0.83-0.94), and 0.81 (95% CI=0.14-0.99), respectively. For moderately to highly malignant potential, the sensitivity, specificity, and AUC were 0.86 (95% CI=0.83-0.88), 0.73 (95% CI=0.67-0.78), and 0.88 (95% CI=0.27-0.99), respectively. Regarding the determination of high mitotic index, the sensitivity, specificity, and AUC of radiomics were 0.86 (95% CI=0.83-0.88), 0.73 (95% CI=0.67-0.78), and 0.88 (95% CI=0.27-0.99), respectively. When determining high Ki-67 expression, the combined sensitivity, specificity, and AUC were 0.74 (95% CI=0.65-0.81), 0.81 (95% CI=0.74-0.86), and 0.84 (95% CI=0.61-0.95), respectively. Radiomics demonstrates promising discriminative performance in the preoperative assessment of malignant potential, mitotic index, and Ki-67 expression levels in GISTs.
Collapse
Affiliation(s)
- Chengyu Sun
- Department of Colorectal Surgery, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Enguo Fan
- State Key Laboratory of Medical Molecular Biology, Department of Microbiology and Parasitology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, PR China
| | - Luqiao Huang
- Department of Colorectal Surgery, Xuzhou Central Hospital, Xuzhou, Jiangsu, PR China
| | - Zhengguo Zhang
- Department of Colorectal Surgery, Xuzhou Central Hospital, Xuzhou, Jiangsu, PR China
| |
Collapse
|
4
|
Xie Z, Suo S, Zhang W, Zhang Q, Dai Y, Song Y, Li X, Zhou Y. Prediction of high Ki-67 proliferation index of gastrointestinal stromal tumors based on CT at non-contrast-enhanced and different contrast-enhanced phases. Eur Radiol 2024; 34:2223-2232. [PMID: 37773213 PMCID: PMC10957607 DOI: 10.1007/s00330-023-10249-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/12/2023] [Accepted: 07/23/2023] [Indexed: 10/01/2023]
Abstract
OBJECTIVES To evaluate and analyze radiomics models based on non-contrast-enhanced computed tomography (CT) and different phases of contrast-enhanced CT in predicting Ki-67 proliferation index (PI) among patients with pathologically confirmed gastrointestinal stromal tumors (GISTs). METHODS A total of 383 patients with pathologically proven GIST were divided into a training set (n = 218, vendor 1) and 2 validation sets (n = 96, vendor 2; n = 69, vendors 3-5). Radiomics features extracted from the most recent non-contrast-enhanced and three contrast-enhanced CT scan prior to pathological examination. Random forest models were trained for each phase to predict tumors with high Ki-67 proliferation index (Ki-67>10%) and were evaluated using the area under the receiver operating characteristic curve (AUC) and other metrics on the validation sets. RESULTS Out of 107 radiomics features extracted from each phase of CT images, four were selected for analysis. The model trained using the non-contrast-enhanced phase achieved an AUC of 0.792 in the training set and 0.822 and 0.711 in the two validation sets, similar to models trained on different contrast-enhanced phases (p > 0.05). Several relevant features, including NGTDM Busyness and tumor size, remained predictive in non-contrast-enhanced and different contrast-enhanced images. CONCLUSION The results of this study indicate that a radiomics model based on non-contrast-enhanced CT matches that of models based on different phases of contrast-enhanced CT in predicting the Ki-67 PI of GIST. GIST may exhibit similar radiological patterns irrespective of the use of contrast agent, and such radiomics features may help quantify these patterns to predict Ki-67 PI of GISTs. CLINICAL RELEVANCE STATEMENT GIST may exhibit similar radiomics patterns irrespective of contrast agent; thus, radiomics models based on non-contrast-enhanced CT could be an alternative for risk stratification in GIST patients with contraindication to contrast agent. KEY POINTS • Performance of radiomics models in predicting Ki-67 proliferation based on different CT phases is evaluated. • Non-contrast-enhanced CT-based radiomics models performed similarly to contrast-enhanced CT in risk stratification in GIST patients. • NGTDM Busyness remains stable to contrast agents in GISTs in radiomics models.
Collapse
Affiliation(s)
- Zhenhui Xie
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shiteng Suo
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wang Zhang
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingwei Zhang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yongming Dai
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Yang Song
- MR Scientific Marketing, Siemens Healthineers Ltd., Shanghai, China
| | - Xiaobo Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China.
| | - Yan Zhou
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
Zhang C, Wang C, Mao G, Cheng G, Ji H, He L, Yang Y, Hu H, Wang J. Radiomics analysis of contrast-enhanced computerized tomography for differentiation of gastric schwannomas from gastric gastrointestinal stromal tumors. J Cancer Res Clin Oncol 2024; 150:87. [PMID: 38336926 PMCID: PMC10858083 DOI: 10.1007/s00432-023-05545-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/20/2023] [Indexed: 02/12/2024]
Abstract
PURPOSE To assess the performance of radiomics-based analysis of contrast-enhanced computerized tomography (CE-CT) images for distinguishing GS from gastric GIST. METHODS Forty-nine patients with GS and two hundred fifty-three with GIST were enrolled in this retrospective study. CT features were evaluated by two associate chief radiologists. Radiomics features were extracted from portal venous phase images using Pyradiomics software. A non-radiomics dataset (combination of clinical characteristics and radiologist-determined CT features) and a radiomics dataset were used to build stepwise logistic regression and least absolute shrinkage and selection operator (LASSO) logistic regression models, respectively. Model performance was evaluated according to sensitivity, specificity, accuracy, and receiver operating characteristic (ROC) curve, and Delong's test was applied to compare the area under the curve (AUC) between different models. RESULTS A total of 1223 radiomics features were extracted from portal venous phase images. After reducing dimensions by calculating Pearson correlation coefficients (PCCs), 20 radiomics features, 20 clinical characteristics + CT features were used to build the models, respectively. The AUC values for the models using radiomics features and those using clinical features were more than 0.900 for both the training and validation groups. There were no significant differences in predictive performance between the radiomic and clinical data models according to Delong's test. CONCLUSION A radiomics-based model applied to CE-CT images showed comparable predictive performance to senior physicians in the differentiation of GS from GIST.
Collapse
Affiliation(s)
- Cui Zhang
- Department of Radiology, TongDe Hospital of ZheJiang Province, No. 234, Gucui Road, Hangzhou, 310013, Zhejiang, China
| | - Chongwei Wang
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guoqun Mao
- Department of Radiology, TongDe Hospital of ZheJiang Province, No. 234, Gucui Road, Hangzhou, 310013, Zhejiang, China
| | | | - Hongli Ji
- Jianpei Technology, Hangzhou, Zhejiang, China
| | - Linyang He
- Jianpei Technology, Hangzhou, Zhejiang, China
| | - Yang Yang
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Hongjie Hu
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Wang
- Department of Radiology, TongDe Hospital of ZheJiang Province, No. 234, Gucui Road, Hangzhou, 310013, Zhejiang, China.
| |
Collapse
|
6
|
Galluzzo A, Boccioli S, Danti G, De Muzio F, Gabelloni M, Fusco R, Borgheresi A, Granata V, Giovagnoni A, Gandolfo N, Miele V. Radiomics in gastrointestinal stromal tumours: an up-to-date review. Jpn J Radiol 2023; 41:1051-1061. [PMID: 37171755 DOI: 10.1007/s11604-023-01441-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
Gastrointestinal stromal tumours are rare mesenchymal neoplasms originating from the Cajal cells and represent the most common sarcomas in the gastroenteric tract. Symptoms may be absent or non-specific, ranging from fatigue and weight loss to acute abdomen. Nowadays endoscopy, echoendoscopy, contrast-enhanced computed tomography, magnetic resonance imaging and positron emission tomography are the main methods for diagnosis. Because of their rarity, these neoplasms may not be included immediately in the differential diagnosis of a solitary abdominal mass. Radiomics is an emerging technique that can extract medical imaging information, not visible to the human eye, transforming it into quantitative data. The purpose of this review is to demonstrate how radiomics can improve the already known imaging techniques by providing useful tools for the diagnosis, treatment, and prognosis of these tumours.
Collapse
Affiliation(s)
- Antonio Galluzzo
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Sofia Boccioli
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Ginevra Danti
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy.
| | - Federica De Muzio
- Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100, Campobasso, Italy
| | - Michela Gabelloni
- Department of Translational Research, Diagnostic and Interventional Radiology, University of Pisa, Pisa, Italy
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013, Naples, Italy
| | - Alessandra Borgheresi
- Department of Clinical, Special and Dental Sciences, University Politecnica Delle Marche, Via Conca 71, 60126, Ancona, Italy
- Department of Radiology, University Hospital "Azienda Ospedaliera Universitaria Delle Marche", Via Conca 71, 60126, Ancona, Italy
| | - Vincenza Granata
- Department of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione, Pascale-IRCCS di Napoli", 80131, Naples, Italy
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences, University Politecnica Delle Marche, Via Conca 71, 60126, Ancona, Italy
- Department of Radiology, University Hospital "Azienda Ospedaliera Universitaria Delle Marche", Via Conca 71, 60126, Ancona, Italy
| | - Nicoletta Gandolfo
- Diagnostic Imaging Department, Villa Scassi Hospital-ASL 3, Corso Scassi 1, 16149, Genoa, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via Della Signora 2, 20122, Milan, Italy
| | - Vittorio Miele
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| |
Collapse
|
7
|
Weeda YA, Kalisvaart GM, van Velden FHP, Gelderblom H, van der Molen AJ, Bovee JVMG, van der Hage JA, Grootjans W, de Geus-Oei LF. Early Prediction and Monitoring of Treatment Response in Gastrointestinal Stromal Tumors by Means of Imaging: A Systematic Review. Diagnostics (Basel) 2022; 12:2722. [PMID: 36359564 PMCID: PMC9689665 DOI: 10.3390/diagnostics12112722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 05/11/2025] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are rare mesenchymal neoplasms. Tyrosine kinase inhibitor (TKI) therapy is currently part of routine clinical practice for unresectable and metastatic disease. It is important to assess the efficacy of TKI treatment at an early stage to optimize therapy strategies and eliminate futile ineffective treatment, side effects and unnecessary costs. This systematic review provides an overview of the imaging features obtained from contrast-enhanced (CE)-CT and 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) PET/CT to predict and monitor TKI treatment response in GIST patients. PubMed, Web of Science, the Cochrane Library and Embase were systematically screened. Articles were considered eligible if quantitative outcome measures (area under the curve (AUC), correlations, sensitivity, specificity, accuracy) were used to evaluate the efficacy of imaging features for predicting and monitoring treatment response to various TKI treatments. The methodological quality of all articles was assessed using the Quality Assessment of Diagnostic Accuracy Studies, v2 (QUADAS-2) tool and modified versions of the Radiomics Quality Score (RQS). A total of 90 articles were included, of which 66 articles used baseline [18F]FDG-PET and CE-CT imaging features for response prediction. Generally, the presence of heterogeneous enhancement on baseline CE-CT imaging was considered predictive for high-risk GISTs, related to underlying neovascularization and necrosis of the tumor. The remaining articles discussed therapy monitoring. Clinically established imaging features, including changes in tumor size and density, were considered unfavorable monitoring criteria, leading to under- and overestimation of response. Furthermore, changes in glucose metabolism, as reflected by [18F]FDG-PET imaging features, preceded changes in tumor size and were more strongly correlated with tumor response. Although CE-CT and [18F]FDG-PET can aid in the prediction and monitoring in GIST patients, further research on cost-effectiveness is recommended.
Collapse
Affiliation(s)
- Ylva. A. Weeda
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Gijsbert M. Kalisvaart
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Aart. J. van der Molen
- Department of Radiology, Section of Abdominal Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Judith V. M. G. Bovee
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jos A. van der Hage
- Department of Surgical Oncology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Willem Grootjans
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Biomedical Photonic Imaging Group, University of Twente, 7522 NB Enschede, The Netherlands
- Department of Radiation Science & Technology, Technical University of Delft, 2629 JB Delft, The Netherlands
| |
Collapse
|
8
|
Yang Y, Zhang L, Wang T, Jiang Z, Li Q, Wu Y, Cai Z, Chen X. MRI Fat‐Saturated T2‐Weighted
Radiomics Model for Identifying the Ki‐67 Index of Soft Tissue Sarcomas. J Magn Reson Imaging 2022. [DOI: 10.1002/jmri.28518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yang Yang
- Department of Radiology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu People's Republic of China
| | - Liyuan Zhang
- Department of Plastic Surgery Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China Chengdu People's Republic of China
| | - Ting Wang
- Department of Plastic Surgery The First People's Hospital of Yibin Yibin People's Republic of China
| | - Zhiyuan Jiang
- Department of Plastic Surgery Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China Chengdu People's Republic of China
| | - Qingqing Li
- Department of Plastic Surgery Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China Chengdu People's Republic of China
| | - Yinghua Wu
- Department of Radiology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu People's Republic of China
| | - Zhen Cai
- Department of Plastic Surgery Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China Chengdu People's Republic of China
| | - Xi Chen
- Sichuan College of Traditional Chinese Medicine Mianyang People's Republic of China
| |
Collapse
|