1
|
Chen F, Chen C, Wu M, Luo B, Cai H, Yu F, Wang L. Impaired emotional response inhibition among adolescents with bipolar depression: evidence from event-related potentials and behavioral performance. BMC Psychiatry 2025; 25:303. [PMID: 40165142 PMCID: PMC11956177 DOI: 10.1186/s12888-025-06748-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/19/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Impaired inhibition of inappropriate responses in the emotional context is a core feature in patients with bipolar disorder. However, there has been little research exploring the underlying mechanism of impaired response inhibition for emotional stimuli in adolescents with bipolar depression. To explore this issue, we employed event-related potentials (ERPs) to investigate the underlying neuroelectrophysiological mechanisms of inhibition of inappropriate emotional stimuli in adolescents with bipolar depression. METHODS Twenty-five adolescents with bipolar depression and nineteen healthy controls completed an emotional Go/No-Go task during electroencephalography recording. Reaction time (RT), reaction time variability (RTV), discriminability, and response bias were measured as behavioral performance indicators. ERP components, theta-band oscillation and inter-trial coherence (ITC) were compared between the two groups. RESULTS Behavioral performance analysis found that adolescents with bipolar depression showed smaller d' values, and larger RT and RTV, than healthy controls. Nogo-P3 amplitude was decreased in adolescents with bipolar depression in comparison with healthy controls. Theta-band oscillation and ITC for emotional stimuli were also reduced in adolescents with bipolar depression. Pearson correlation analysis showed there was a negative correlation between the Nogo-P3 amplitude induced by negative trials and RTV in adolescents with bipolar depression. CONCLUSION Our findings suggest that adolescents with bipolar depression exhibit abnormal response inhibition in the emotional context. Impaired attentional function and discrimination of emotional information are related to the failure of behavioral inhibition in negative emotional contexts, and attenuated P3 amplitude and theta-band oscillation could be an electrophysiological indicator for this impairment.
Collapse
Affiliation(s)
- Fangfang Chen
- Wuhu Forth People's Hospital, Wuhu, 241000, China
- Wuhu Hospital of Anding Hospital, Wuhu, 241000, China
| | - Cheng Chen
- Health Education Center, Anhui Normal University, Wuhu, 241000, China
| | - Mingfei Wu
- Wuhu Forth People's Hospital, Wuhu, 241000, China
- Wuhu Hospital of Anding Hospital, Wuhu, 241000, China
| | - Bingqing Luo
- Wuhu Forth People's Hospital, Wuhu, 241000, China
- Wuhu Hospital of Anding Hospital, Wuhu, 241000, China
| | - Han Cai
- Wuhu Forth People's Hospital, Wuhu, 241000, China
- Wuhu Hospital of Anding Hospital, Wuhu, 241000, China
| | - Fengqiong Yu
- Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, 230000, China.
| | - Lianzi Wang
- Wuhu Forth People's Hospital, Wuhu, 241000, China.
- Wuhu Hospital of Anding Hospital, Wuhu, 241000, China.
| |
Collapse
|
2
|
Yun S. Advances, challenges, and prospects of electroencephalography-based biomarkers for psychiatric disorders: a narrative review. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2024; 41:261-268. [PMID: 39246060 PMCID: PMC11534409 DOI: 10.12701/jyms.2024.00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024]
Abstract
Owing to a lack of appropriate biomarkers for accurate diagnosis and treatment, psychiatric disorders cause significant distress and functional impairment, leading to social and economic losses. Biomarkers are essential for diagnosing, predicting, treating, and monitoring various diseases. However, their absence in psychiatry is linked to the complex structure of the brain and the lack of direct monitoring modalities. This review examines the potential of electroencephalography (EEG) as a neurophysiological tool for identifying psychiatric biomarkers. EEG noninvasively measures brain electrophysiological activity and is used to diagnose neurological disorders, such as depression, bipolar disorder (BD), and schizophrenia, and identify psychiatric biomarkers. Despite extensive research, EEG-based biomarkers have not been clinically utilized owing to measurement and analysis constraints. EEG studies have revealed spectral and complexity measures for depression, brainwave abnormalities in BD, and power spectral abnormalities in schizophrenia. However, no EEG-based biomarkers are currently used clinically for the treatment of psychiatric disorders. The advantages of EEG include real-time data acquisition, noninvasiveness, cost-effectiveness, and high temporal resolution. Challenges such as low spatial resolution, susceptibility to interference, and complexity of data interpretation limit its clinical application. Integrating EEG with other neuroimaging techniques, advanced signal processing, and standardized protocols is essential to overcome these limitations. Artificial intelligence may enhance EEG analysis and biomarker discovery, potentially transforming psychiatric care by providing early diagnosis, personalized treatment, and improved disease progression monitoring.
Collapse
Affiliation(s)
- Seokho Yun
- Department of Psychiatry, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
3
|
Jang KI, Kim E, Lee HS, Lee HA, Han JH, Kim S, Kim JS. Electroencephalography-based endogenous phenotype of diagnostic transition from major depressive disorder to bipolar disorder. Sci Rep 2024; 14:21045. [PMID: 39251633 PMCID: PMC11383931 DOI: 10.1038/s41598-024-71287-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
The neuropathology of mood disorders, including the diagnostic transition from major depressive disorder (MDD) to bipolar disorder (BD), is poorly understood. This study investigated resting-state electroencephalography (EEG) activity in patients with MDD and those whose diagnosis changed from MDD to BD. Among sixty-eight enrolled patients with MDD, the diagnosis of 17 patients converted to BD during the study period. We applied machine learning techniques to differentiate the two groups using sensor- and source-level EEG features. At the sensor level, patients with BD showed higher theta band power at the AF3 channel and low-alpha band power at the FC5 channel compared to patients with MDD. At the source level, patients with BD showed higher theta band activity in the right anterior cingulate and low-alpha band activity in the left parahippocampal gyrus. These four EEG features were selected for discriminating between BD and MDD with the best classification performance showing an accuracy of 80.88%, a sensitivity of 76.47%, and a specificity of 82.35%. Our findings revealed distinct theta and low-alpha band activities in patients with BD and MDD. These differences could potentially serve as candidate neuromarkers for the diagnosis and diagnostic transition between the two distinct mood disorders.
Collapse
Affiliation(s)
- Kuk-In Jang
- Department of Cognitive Science Research, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Euijin Kim
- Department of Human-Computer Interaction, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Ho Sung Lee
- Department of Pulmonology and Allergy, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Hyeon-Ah Lee
- Department of Psychiatry, College of Medicine, Soonchunhyang University Cheonan Hospital, 31 Suncheonhyang 6-gil, Dongnam-gu, Cheonan, 31151, Republic of Korea
| | - Jae Hyun Han
- Department of Psychiatry, College of Medicine, Soonchunhyang University Cheonan Hospital, 31 Suncheonhyang 6-gil, Dongnam-gu, Cheonan, 31151, Republic of Korea
| | - Sungkean Kim
- Department of Human-Computer Interaction, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| | - Ji Sun Kim
- Department of Psychiatry, College of Medicine, Soonchunhyang University Cheonan Hospital, 31 Suncheonhyang 6-gil, Dongnam-gu, Cheonan, 31151, Republic of Korea.
| |
Collapse
|
4
|
Lechner S, Northoff G. Abnormal resting-state EEG phase dynamics distinguishes major depressive disorder and bipolar disorder. J Affect Disord 2024; 359:269-276. [PMID: 38795776 DOI: 10.1016/j.jad.2024.05.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/22/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024]
Abstract
Changes in EEG have been reported in both major depressive disorder (MDD) and bipolar disorder (BD). Specifically, power changes in EEG alpha and theta frequency bands during rest and task are known in both disorders. This leaves open whether there are changes in yet another component of the electrophysiological EEG signal, namely phase-related processes that may allow for distinguishing MDD and BD. For that purpose, we investigate EEG-based spontaneous phase in the resting state of MDD, BD and healthy controls. Our main findings show: (i) decreased spontaneous phase variability in frontal theta of both MDD and BD compared to HC; (ii) decreased spontaneous phase variability in central-parietal alpha in MDD compared to both BD and HC; (iii) increased delays or lags of alpha phase cycles in MDD (but not in BD), which (iv) correlate with the decreased phase variability in MDD. Together, we show similar (decreased frontal theta variability) and distinct (decreased central-parietal alpha variability with increased lags or delays) findings in the spontaneous phase dynamics of MDD and BD. This suggests potential relevance of theta and alpha phase dynamics in distinguishing MDD and BD in clinical differential-diagnosis.
Collapse
Affiliation(s)
- Stephan Lechner
- The Royal's Institute of Mental Health Research, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1Z 7K4, Canada; Research Group Neuroinformatics, Faculty of Computer Science, University of Vienna, 1010 Vienna, Austria; Vienna Doctoral School Cognition, Behavior and Neuroscience, University of Vienna, 1030 Vienna, Austria.
| | - Georg Northoff
- The Royal's Institute of Mental Health Research, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1Z 7K4, Canada
| |
Collapse
|
5
|
Kolev V, Falkenstein M, Yordanova J. A distributed theta network of error generation and processing in aging. Cogn Neurodyn 2024; 18:447-459. [PMID: 38699606 PMCID: PMC11061062 DOI: 10.1007/s11571-023-10018-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/05/2023] [Accepted: 09/28/2023] [Indexed: 05/05/2024] Open
Abstract
Based on previous concepts that a distributed theta network with a central "hub" in the medial frontal cortex is critically involved in movement regulation, monitoring, and control, the present study explored the involvement of this network in error processing with advancing age in humans. For that aim, the oscillatory neurodynamics of motor theta oscillations was analyzed at multiple cortical regions during correct and error responses in a sample of older adults. Response-related potentials (RRPs) of correct and incorrect reactions were recorded in a four-choice reaction task. RRPs were decomposed in the time-frequency domain to extract oscillatory theta activity. Motor theta oscillations at extended motor regions were analyzed with respect to power, temporal synchronization, and functional connectivity. Major results demonstrated that errors had pronounced effects on motor theta oscillations at cortical regions beyond the medial frontal cortex by being associated with (1) theta power increase in the hemisphere contra-lateral to the movement, (2) suppressed spatial and temporal synchronization at pre-motor areas contra-lateral to the responding hand, (2) inhibited connections between the medial frontal cortex and sensorimotor areas, and (3) suppressed connectivity and temporal phase-synchronization of motor theta networks in the posterior left hemisphere, irrespective of the hand, left, or right, with which the error was made. The distributed effects of errors on motor theta oscillations demonstrate that theta networks support performance monitoring. The reorganization of these networks with aging implies that in older individuals, performance monitoring is associated with a disengagement of the medial frontal region and difficulties in controlling the focus of motor attention and response selection. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-023-10018-4.
Collapse
Affiliation(s)
- Vasil Kolev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 23, Sofia, 1113 Bulgaria
| | | | - Juliana Yordanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 23, Sofia, 1113 Bulgaria
| |
Collapse
|
6
|
Bölükbaş B, Aktürk T, Ardalı H, Dündar Y, Güngör C, Kahveci Ş, Güntekin B. Event-related delta and theta responses may reflect the valence discrimination in the emotional oddball task. Cogn Process 2023; 24:595-608. [PMID: 37615788 DOI: 10.1007/s10339-023-01158-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/12/2023] [Indexed: 08/25/2023]
Abstract
How emotion and cognition interact is still a matter of debate. Investigation of this interaction in terms of the brain oscillatory dynamics appears to be an essential approach. To investigate this topic, we designed two separate three-stimulus oddball tasks, including emotional stimuli with different valences. Twenty healthy young subjects were included in the study. They completed two tasks, namely: the positive emotional oddball task and the negative emotional oddball task. Each task included the target, non-target, and distractor stimuli. Positive and negative pictures were the target stimuli in the positive and negative emotional oddball task. We asked participants to determine the number of target stimuli in each task. During sessions, EEGs were recorded with 32 electrodes. We found that (negative) target stimuli elicit higher delta (1-3.5 Hz) and theta (4-7 Hz) power responses but not the phase-locking responses compared to (positive) distractor stimuli during the negative oddball task. On the other hand, the same effect was not seen during the positive emotional oddball task. Here, we showed that the valence dimension interacted with the target status. Finally, we summarized our results that the presence of negative distractors attenuated the target effect of the positive stimuli due to the negative bias.
Collapse
Affiliation(s)
- Burcu Bölükbaş
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Neuroscience, Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Tuba Aktürk
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Program of Electroneurophysiology, Vocational School, Istanbul Medipol University, Istanbul, Turkey
| | - Hilal Ardalı
- School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Yasemin Dündar
- School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ceren Güngör
- School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Şaika Kahveci
- School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Bahar Güntekin
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.
| |
Collapse
|
7
|
Lasagna CA, Grove TB, Semple E, Suzuki T, Menkes MW, Pamidighantam P, McInnis M, Deldin PJ, Tso IF. Reductions in regional theta power and fronto-parietal theta-gamma phase-amplitude coupling during gaze processing in bipolar disorder. Psychiatry Res Neuroimaging 2023; 331:111629. [PMID: 36966619 PMCID: PMC10567117 DOI: 10.1016/j.pscychresns.2023.111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/16/2023] [Accepted: 03/11/2023] [Indexed: 04/28/2023]
Abstract
Impaired social cognition is common in bipolar disorder (BD) and predicts poor functional outcomes. A critical determinant of social cognition is the ability to discriminate others' gaze direction, and its alteration may contribute to functional impairment in BD. However, the neural mechanisms underlying gaze processing in BD are unclear. Because neural oscillations are crucial neurobiological mechanisms supporting cognition, we aimed to understand their role in gaze processing in BD. Using electroencephalography (EEG) data recorded during a gaze discrimination task for 38 BD and 34 controls (HC), we examined: theta and gamma power over bilateral posterior and midline anterior locations associated with early face processing and higher-level cognitive processing, and theta-gamma phase-amplitude coupling (PAC) between locations. Compared to HC, BD showed reduced midline-anterior and left-posterior theta power, and diminished bottom-up/top-down theta-gamma PAC between anterior/posterior sites. Reduced theta power and theta-gamma PAC related to slower response times. These findings suggest that altered theta oscillations and anterior-posterior cross-frequency coupling between areas associated with higher-level cognition and early face processing may underlie impaired gaze processing in BD. This is a crucial step towards translational research that may inform novel social cognitive interventions (e.g., neuromodulation to target specific oscillatory dynamics) to improve functioning in BD.
Collapse
Affiliation(s)
- Carly A Lasagna
- Department of Psychology, University of Michigan, United States; Department of Psychiatry, University of Michigan, United States.
| | - Tyler B Grove
- Department of Psychiatry, University of Michigan, United States
| | - Erin Semple
- Department of Psychiatry, University of Michigan, United States
| | - Takakuni Suzuki
- Department of Psychology, University of Michigan, United States; Department of Psychiatry, University of Michigan, United States
| | - Margo W Menkes
- Department of Psychology, University of Michigan, United States; Department of Psychiatry, University of Michigan, United States
| | - Preetha Pamidighantam
- Michigan State University College of Human Medicine, Michigan State University, United States
| | - Melvin McInnis
- Department of Psychology, University of Michigan, United States; Department of Psychiatry, University of Michigan, United States
| | - Patricia J Deldin
- Department of Psychology, University of Michigan, United States; Department of Psychiatry, University of Michigan, United States
| | - Ivy F Tso
- Department of Psychiatry & Behavioral Health, The Ohio State University, United States
| |
Collapse
|
8
|
Andrews CM, Menkes MW, Suzuki T, Lasagna CA, Chun J, O'Donnell L, Grove T, McInnis MG, Deldin PJ, Tso IF. Reduced theta-band neural oscillatory activity during affective cognitive control in bipolar I disorder. J Psychiatr Res 2023; 158:27-35. [PMID: 36549197 PMCID: PMC9898182 DOI: 10.1016/j.jpsychires.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/04/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Individuals with bipolar I disorder (BD) have difficulty inhibiting context-inappropriate responses. However, neural mechanisms of impaired cognitive control over impulsive behaviors, especially in response to emotion, are unclear. Theta-band neural oscillatory activity over midfrontal areas is thought to reflect cognitive control. The current study examined behavioral performance and theta-band activity during inhibition to affective stimuli in BD, relative to healthy control participants (HC). Sixty-seven participants with BD and 48 HC completed a Go/No-Go task with emotional face stimuli during electroencephalography (EEG) recording. Behavior was measured with reaction time, discriminability (d') and response bias (β). Time-frequency decomposition of EEG data was used to extract event-related theta-band (4-7 Hz) neural oscillatory power and inter-trial phase consistency (ITPC) over midline fronto-central areas. Behavior and theta-band activity were compared between groups, while covarying for age. Participants with BD exhibited slower response execution times on correct Go trials and reduced behavioral discrimination of emotional versus neutral faces, compared to HC. Theta-band power and ITPC were reduced in BD relative to HC. Theta-band power was higher on No-Go trials than Go trials. The magnitude of differences in theta-band activity between Go/No-Go trial types did not differ between groups. Increased theta-band power was associated with faster response execution times, greater discrimination of differing facial expressions, and stronger tendency to respond both across the full sample and within the BD group. Attenuated midline fronto-central theta-band activity may contribute to reduced cognitive control and maladaptive behavioral responding to emotional cues in individuals with BD.
Collapse
Affiliation(s)
- Carolyn M Andrews
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Margo W Menkes
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Takakuni Suzuki
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Carly A Lasagna
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Jinsoo Chun
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Lisa O'Donnell
- School of Social Work, Wayne State University, Detroit, MI, USA
| | - Tyler Grove
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Melvin G McInnis
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Patricia J Deldin
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Ivy F Tso
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry & Behavioral Health, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
9
|
Lu Z, Wang H, Gu J, Gao F. Association between abnormal brain oscillations and cognitive performance in patients with bipolar disorder; Molecular mechanisms and clinical evidence. Synapse 2022; 76:e22247. [PMID: 35849784 DOI: 10.1002/syn.22247] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/23/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022]
Abstract
Brain oscillations have gained great attention in neuroscience during recent decades as functional building blocks of cognitive-sensory processes. Research has shown that oscillations in "alpha," "beta," "gamma," "delta," and "theta" frequency windows are highly modified in brain pathology, including in patients with cognitive impairment like bipolar disorder (BD). The study of changes in brain oscillations can provide fundamental knowledge for exploring neurophysiological biomarkers in cognitive impairment. The present article reviews findings from the role and molecular basis of abnormal neural oscillation and synchronization in the symptoms of patients with BD. An overview of the results clearly demonstrates that, in cognitive-sensory processes, resting and evoked/event-related electroencephalogram (EEG) spectra in the delta, theta, alpha, beta, and gamma bands are abnormally changed in patients with BD showing psychotic features. Abnormal oscillations have been found to be associated with several neural dysfunctions and abnormalities contributing to BD, including abnormal GABAergic neurotransmission signaling, hippocampal cell discharge, abnormal hippocampal neurogenesis, impaired cadherin and synaptic contact-based cell adhesion processes, extended lateral ventricles, decreased prefrontal cortical gray matter, and decreased hippocampal volume. Mechanistically, impairment in calcium voltage-gated channel subunit alpha1 I, neurotrophic tyrosine receptor kinase proteins, genes involved in brain neurogenesis and synaptogenesis like WNT3 and ACTG2, genes involved in the cell adhesion process like CDH12 and DISC1, and gamma-aminobutyric acid (GABA) signaling have been reported as the main molecular contributors to the abnormalities in resting-state low-frequency oscillations in BD patients. Findings also showed the association of impaired synaptic connections and disrupted membrane potential with abnormal beta/gamma oscillatory activity in patients with BD. Of note, the synaptic GABA neurotransmitter has been found to be a fundamental requirement for the occurrence of long-distance synchronous gamma oscillations necessary for coordinating the activity of neural networks between various brain regions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhou Lu
- Department of Neurosurgery, The Affiliated People's Hospital of NingBo University, NingBo, 315000, China
| | - Huixiao Wang
- Department of Neurosurgery, The Affiliated People's Hospital of NingBo University, NingBo, 315000, China
| | - Jiajie Gu
- Department of Neurosurgery, The Affiliated People's Hospital of NingBo University, NingBo, 315000, China
| | - Feng Gao
- Department of Neurosurgery, The Affiliated People's Hospital of NingBo University, NingBo, 315000, China
| |
Collapse
|
10
|
Campanella S, Arikan K, Babiloni C, Balconi M, Bertollo M, Betti V, Bianchi L, Brunovsky M, Buttinelli C, Comani S, Di Lorenzo G, Dumalin D, Escera C, Fallgatter A, Fisher D, Giordano GM, Guntekin B, Imperatori C, Ishii R, Kajosch H, Kiang M, López-Caneda E, Missonnier P, Mucci A, Olbrich S, Otte G, Perrottelli A, Pizzuti A, Pinal D, Salisbury D, Tang Y, Tisei P, Wang J, Winkler I, Yuan J, Pogarell O. Special Report on the Impact of the COVID-19 Pandemic on Clinical EEG and Research and Consensus Recommendations for the Safe Use of EEG. Clin EEG Neurosci 2021; 52:3-28. [PMID: 32975150 PMCID: PMC8121213 DOI: 10.1177/1550059420954054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION The global COVID-19 pandemic has affected the economy, daily life, and mental/physical health. The latter includes the use of electroencephalography (EEG) in clinical practice and research. We report a survey of the impact of COVID-19 on the use of clinical EEG in practice and research in several countries, and the recommendations of an international panel of experts for the safe application of EEG during and after this pandemic. METHODS Fifteen clinicians from 8 different countries and 25 researchers from 13 different countries reported the impact of COVID-19 on their EEG activities, the procedures implemented in response to the COVID-19 pandemic, and precautions planned or already implemented during the reopening of EEG activities. RESULTS Of the 15 clinical centers responding, 11 reported a total stoppage of all EEG activities, while 4 reduced the number of tests per day. In research settings, all 25 laboratories reported a complete stoppage of activity, with 7 laboratories reopening to some extent since initial closure. In both settings, recommended precautions for restarting or continuing EEG recording included strict hygienic rules, social distance, and assessment for infection symptoms among staff and patients/participants. CONCLUSIONS The COVID-19 pandemic interfered with the use of EEG recordings in clinical practice and even more in clinical research. We suggest updated best practices to allow safe EEG recordings in both research and clinical settings. The continued use of EEG is important in those with psychiatric diseases, particularly in times of social alarm such as the COVID-19 pandemic.
Collapse
Affiliation(s)
- Salvatore Campanella
- Laboratoire de Psychologie Médicale et d'Addictologie, ULB Neuroscience Institute (UNI), CHU Brugmann-Université Libre de Bruxelles (U.L.B.), Belgium
| | - Kemal Arikan
- Kemal Arıkan Psychiatry Clinic, Istanbul, Turkey
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Erspamer", Sapienza University of Rome, Italy.,San Raffaele Cassino, Cassino (FR), Italy
| | - Michela Balconi
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Catholic University of Milan, Milan, Italy
| | - Maurizio Bertollo
- BIND-Behavioral Imaging and Neural Dynamics Center, Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Viviana Betti
- Department of Psychology, Sapienza University of Rome, Fondazione Santa Lucia, Rome, Italy
| | - Luigi Bianchi
- Dipartimento di Ingegneria Civile e Ingegneria Informatica (DICII), University of Rome Tor Vergata, Rome, Italy
| | - Martin Brunovsky
- National Institute of Mental Health, Klecany Czech Republic.,Third Medical Faculty, Charles University, Prague, Czech Republic
| | - Carla Buttinelli
- Department of Neurosciences, Public Health and Sense Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Silvia Comani
- BIND-Behavioral Imaging and Neural Dynamics Center, Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Giorgio Di Lorenzo
- Laboratory of Psychophysiology and Cognitive Neuroscience, Chair of Psychiatry, Department of Systems Medicine, School of Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Daniel Dumalin
- AZ Sint-Jan Brugge-Oostende AV, Campus Henri Serruys, Lab of Neurophysiology, Department Neurology-Psychiatry, Ostend, Belgium
| | - Carles Escera
- Brainlab-Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Andreas Fallgatter
- Department of Psychiatry, University of Tübingen, Germany; LEAD Graduate School and Training Center, Tübingen, Germany.,German Center for Neurodegenerative Diseases DZNE, Tübingen, Germany
| | - Derek Fisher
- Department of Psychology, Mount Saint Vincent University, and Department of Psychiatry, Nova Scotia Health Authority, Halifax, Nova Scotia, Canada
| | | | - Bahar Guntekin
- Department of Biophysics, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Claudio Imperatori
- Cognitive and Clinical Psychology Laboratory, Department of Human Science, European University of Rome, Rome, Italy
| | - Ryouhei Ishii
- Department of Psychiatry Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hendrik Kajosch
- Laboratoire de Psychologie Médicale et d'Addictologie, ULB Neuroscience Institute (UNI), CHU Brugmann-Université Libre de Bruxelles (U.L.B.), Belgium
| | - Michael Kiang
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Eduardo López-Caneda
- Psychological Neuroscience Laboratory, Center for Research in Psychology, School of Psychology, University of Minho, Braga, Portugal
| | - Pascal Missonnier
- Mental Health Network Fribourg (RFSM), Sector of Psychiatry and Psychotherapy for Adults, Marsens, Switzerland
| | - Armida Mucci
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sebastian Olbrich
- Psychotherapy and Psychosomatics, Department for Psychiatry, University Hospital Zurich, Zurich, Switzerland
| | | | - Andrea Perrottelli
- Department of Psychiatry, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandra Pizzuti
- Department of Psychology, Sapienza University of Rome, Fondazione Santa Lucia, Rome, Italy
| | - Diego Pinal
- Psychological Neuroscience Laboratory, Center for Research in Psychology, School of Psychology, University of Minho, Braga, Portugal
| | - Dean Salisbury
- Clinical Neurophysiology Research Laboratory, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Paolo Tisei
- Department of Neurosciences, Public Health and Sense Organs (NESMOS), Sapienza University of Rome, Rome, Italy
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Istvan Winkler
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Jiajin Yuan
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Oliver Pogarell
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
11
|
Neurophysiological correlates of cognitive control and approach motivation abnormalities in adolescent bipolar disorders. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 19:677-691. [PMID: 31098857 DOI: 10.3758/s13415-019-00719-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypersensitivity to reward-relevant stimuli is theorized to be a core etiological factor in bipolar disorders (BDs). However, little is known about the role of cognitive control dysregulation within reward contexts in BDs, particularly during adolescence. Using electroencephalography (EEG), we explored alterations in cognitive control processes and approach motivation in 99 adolescents with (n=53) and without (n=46) BD during reward striving (target anticipation) and reward attainment (feedback) phases of a monetary incentive delay (MID) task. Time-frequency analysis yielded frontal theta and frontal alpha asymmetry as indices of cognitive control and approach motivation, respectively. Multilevel mixed models examined group differences, as well as age, sex, and other effects, on frontal theta and frontal alpha asymmetry during both phases of the task and on performance accuracy and reaction times. Healthy adolescent girls exhibited lower frontal theta than both adolescent girls with BD and adolescent boys with and without BD during reward anticipation and feedback. Across groups, adolescent boys displayed greater relative left frontal alpha activity than adolescent girls during reward anticipation and feedback. Behaviorally, adolescents with BD exhibited faster responses on both positively and negatively motivated trials versus neutral trials, whereas healthy adolescents had faster responses only on positively motivated trials; adolescents with BD were less accurate in responding to neutral trials compared to healthy controls. These findings shed light on normative and BD-specific involvement of approach motivation and cognitive control during different stages of reward processing in adolescence and, further, provide evidence of adolescent sex differences in these processes.
Collapse
|
12
|
Painold A, Faber PL, Reininghaus EZ, Mörkl S, Holl AK, Achermann P, Saletu B, Saletu-Zyhlarz G, Anderer P, Dalkner N, Birner A, Bengesser S, Kapfhammer HP, Milz P. Reduced Brain Electric Activity and Functional Connectivity in Bipolar Euthymia: An sLORETA Source Localization Study. Clin EEG Neurosci 2020; 51:155-166. [PMID: 31845595 DOI: 10.1177/1550059419893472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bipolar disorder (BD) is a chronic illness with a relapsing and remitting time course. Relapses are manic or depressive in nature and intermitted by euthymic states. During euthymic states, patients lack the criteria for a manic or depressive diagnosis, but still suffer from impaired cognitive functioning as indicated by difficulties in executive and language-related processing. The present study investigated whether these deficits are reflected by altered intracortical activity in or functional connectivity between brain regions involved in these processes such as the prefrontal and the temporal cortices. Vigilance-controlled resting state EEG of 13 euthymic BD patients and 13 healthy age- and sex-matched controls was analyzed. Head-surface EEG was recomputed into intracortical current density values in 8 frequency bands using standardized low-resolution electromagnetic tomography. Intracortical current densities were averaged in 19 evenly distributed regions of interest (ROIs). Lagged coherences were computed between each pair of ROIs. Source activity and coherence measures between patients and controls were compared (paired t tests). Reductions in temporal cortex activity and in large-scale functional connectivity in patients compared to controls were observed. Activity reductions affected all 8 EEG frequency bands. Functional connectivity reductions affected the delta, theta, alpha-2, beta-2, and gamma band and involved but were not limited to prefrontal and temporal ROIs. The findings show reduced activation of the temporal cortex and reduced coordination between many brain regions in BD euthymia. These activation and connectivity changes may disturb the continuous frontotemporal information flow required for executive and language-related processing, which is impaired in euthymic BD patients.
Collapse
Affiliation(s)
- Annamaria Painold
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Graz, Austria
| | - Pascal L Faber
- Department of Psychiatry, Psychotherapy and Psychosomatics, The KEY Institute for Brain-Mind Research, University Hospital of Psychiatry, Zurich, Switzerland
| | - Eva Z Reininghaus
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Graz, Austria
| | - Sabrina Mörkl
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Graz, Austria
| | - Anna K Holl
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Graz, Austria
| | - Peter Achermann
- Department of Psychiatry, Psychotherapy and Psychosomatics, The KEY Institute for Brain-Mind Research, University Hospital of Psychiatry, Zurich, Switzerland
| | - Bernd Saletu
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Gerda Saletu-Zyhlarz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Peter Anderer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Nina Dalkner
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Graz, Austria
| | - Armin Birner
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Graz, Austria
| | - Susanne Bengesser
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Graz, Austria
| | - Hans-Peter Kapfhammer
- Department of Psychiatry and Psychotherapy, Medical University of Graz, Graz, Austria
| | - Patricia Milz
- Department of Psychiatry, Psychotherapy and Psychosomatics, The KEY Institute for Brain-Mind Research, University Hospital of Psychiatry, Zurich, Switzerland
| |
Collapse
|
13
|
Michelini G, Kitsune V, Vainieri I, Hosang GM, Brandeis D, Asherson P, Kuntsi J. Shared and Disorder-Specific Event-Related Brain Oscillatory Markers of Attentional Dysfunction in ADHD and Bipolar Disorder. Brain Topogr 2018; 31:672-689. [PMID: 29417321 PMCID: PMC5999167 DOI: 10.1007/s10548-018-0625-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/25/2018] [Indexed: 12/28/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) and bipolar disorder (BD) often present with overlapping symptoms and cognitive impairments, such as increased fluctuations in attentional performance measured by increased reaction-time variability (RTV). We previously provided initial evidence of shared and distinct event-related potential (ERP) impairments in ADHD and BD in a direct electrophysiological comparison, but no study to date has compared neural mechanisms underlying attentional impairments with finer-grained brain oscillatory markers. Here, we aimed to compare the neural underpinnings of impaired attentional processes in ADHD and BD, by examining event-related brain oscillations during a reaction-time task under slow-unrewarded baseline and fast-incentive conditions. We measured cognitive performance, ERPs and brain-oscillatory modulations of power and phase variability in 20 women with ADHD, 20 women with BD (currently euthymic) and 20 control women. Compared to controls, both ADHD and BD groups showed increased RTV in the baseline condition and increased RTV, theta phase variability and lower contingent negative variation in the fast-incentive condition. Unlike controls, neither clinical group showed an improvement from the slow-unrewarded baseline to the fast-incentive condition in attentional P3 amplitude or alpha power suppression. Most impairments did not differ between the disorders, as only an adjustment in beta suppression between conditions (lower in the ADHD group) distinguished between the clinical groups. These findings suggest shared impairments in women with ADHD and BD in cognitive and neural variability, preparatory activity and inability to adjust attention allocation and activation. These overlapping impairments may represent shared neurobiological mechanisms of attentional dysfunction in ADHD and BD, and potentially underlie common symptoms in both disorders.
Collapse
Affiliation(s)
- Giorgia Michelini
- Institute of Psychiatry, Psychology and Neuroscience, Social, Genetic and Developmental Psychiatry Centre, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Viryanaga Kitsune
- Institute of Psychiatry, Psychology and Neuroscience, Social, Genetic and Developmental Psychiatry Centre, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Isabella Vainieri
- Institute of Psychiatry, Psychology and Neuroscience, Social, Genetic and Developmental Psychiatry Centre, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Georgina M Hosang
- Centre for Psychiatry, Wolfson Institute of Preventive Medicine, Barts & The London School of Medicine & Dentistry, Queen Mary, University of London, London, UK
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany.,Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Philip Asherson
- Institute of Psychiatry, Psychology and Neuroscience, Social, Genetic and Developmental Psychiatry Centre, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Jonna Kuntsi
- Institute of Psychiatry, Psychology and Neuroscience, Social, Genetic and Developmental Psychiatry Centre, King's College London, De Crespigny Park, London, SE5 8AF, UK.
| |
Collapse
|
14
|
Lundin NB, Bartolomeo LA, O’Donnell BF, Hetrick WP. Reduced electroencephalogram responses to standard and target auditory stimuli in bipolar disorder and the impact of psychotic features: Analysis of event-related potentials, spectral power, and inter-trial coherence. Bipolar Disord 2018; 20:49-59. [PMID: 29024302 PMCID: PMC5807206 DOI: 10.1111/bdi.12561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/08/2017] [Indexed: 12/01/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is associated with reductions in the P3b event-related potential (ERP) response to target auditory stimuli, which suggests deficits in context updating. Previous studies have typically examined these responses in the temporal domain, which may not capture alterations in specific frequencies of phase-locked or induced electrophysiological activity. Therefore, the present study examined early and late ERPs in temporal and frequency domains in a bipolar sample with and without current psychotic features. METHODS The electroencephalogram (EEG) was recorded during an auditory oddball task. Seventy-five BD patients and 98 healthy controls (HCs) discriminated between standard and target tones. N1 ERPs to standards and P3b ERPs to targets were analyzed in the temporal domain. Event-related spectral perturbation (ERSP) and inter-trial coherence (ITC) were analyzed in the frequency domain. RESULTS The early N1 response to standard tones was not significantly different between the total HC and BD samples irrespective of psychotic features. However, N1 amplitude was reduced in BD patients with psychotic features (BDP) compared to HCs and BD patients without psychotic features. P3b was reduced in BD patients versus HCs, with the BDP sample having the most reduced amplitude. In the time-frequency analysis, delta and theta ERSP and ITC were reduced across the time window for both standard and target stimuli in BD patients compared to HCs, but did not differ in the psychotic features analysis. CONCLUSIONS The results provide neural evidence that BD is associated with disrupted sensory, attentional, and cognitive processing of auditory stimuli, which may be worsened with the presence of psychotic features.
Collapse
Affiliation(s)
- Nancy B. Lundin
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN
| | | | - Brian F. O’Donnell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN,Larue D. Carter Memorial Hospital, Indianapolis, IN,Department of Psychiatry, Indiana School of Medicine, Indianapolis, IN
| | - William P. Hetrick
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN,Larue D. Carter Memorial Hospital, Indianapolis, IN,Department of Psychiatry, Indiana School of Medicine, Indianapolis, IN
| |
Collapse
|
15
|
Di Giorgio Silva LW, Aprigio D, Di Giacomo J, Gongora M, Budde H, Bittencourt J, Cagy M, Teixeira S, Ribeiro P, de Carvalho MR, Freire R, Nardi AE, Basile LF, Velasques B. How high level of anxiety in Panic Disorder can interfere in working memory? A computer simulation and electrophysiological investigation. J Psychiatr Res 2017; 95:238-246. [PMID: 28918162 DOI: 10.1016/j.jpsychires.2017.08.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/21/2017] [Accepted: 08/24/2017] [Indexed: 12/23/2022]
Abstract
Panic disorder (PD) is characterized by repeated and unexpected attacks of intense anxiety, which are not restricted to a determined situation or circumstance. The coherence function has been used to investigate the communication among brain structures through the quantitative EEG (qEEG). The objective of this study is to analyze if there is a difference in frontoparietal gamma coherence (GC) between panic disorder patients (PDP) and healthy controls (HC) during the Visual oddball paradigm; and verify if high levels of anxiety (produced by a computer simulation) affect PDP's working memory. Nine PDP (9 female with average age of 48.8, SD: 11.16) and ten HC (1 male and 9 female with average age of 38.2, SD: 13.69) were enrolled in this study. The subjects performed the visual oddball paradigm simultaneously to the EEG record before and after the presentation of computer simulation (CS). A two-way ANOVA was applied to analyze the factors Group and the Moment for each pair of electrodes separately, and another one to analyze the reaction time variable. We verified a F3-P3 GC increased after the CS movie, demonstrating the left hemisphere participation during the anxiety processing. The greater GC in HC observed in the frontal and parietal areas (P3-Pz, F4-F8 and Fp2-F4) points to the participation of these areas with the expected behavior. The greater GC in PDP for F7-F3 and F4-P4 pairs of electrodes assumes that it produces a prejudicial "noise" during information processing, and can be associated to interference on the communication between frontal and parietal areas. This "noise" during information processing is related to PD symptoms, which should be better known in order to develop effective treatment strategies.
Collapse
Affiliation(s)
- Luiza Wanick Di Giorgio Silva
- Neurophysiology and Neuropsychology of Attention Laboratory, Institute of Psychiatry of the Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, RJ, Brazil.
| | - Danielle Aprigio
- Neurophysiology and Neuropsychology of Attention Laboratory, Institute of Psychiatry of the Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, RJ, Brazil
| | - Jesse Di Giacomo
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil
| | - Mariana Gongora
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil; Institute of Applied Neuroscience (INA), Rio de Janeiro, Brazil
| | - Henning Budde
- Faculty of Human Sciences, Medical School Hamburg, Hamburg, Germany; Sport Science, Reykjavik University, Reykjavik, Iceland; Lithuanian Sports University, Kaunas, Lithuania
| | - Juliana Bittencourt
- Neurophysiology and Neuropsychology of Attention Laboratory, Institute of Psychiatry of the Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, RJ, Brazil; Veiga de Almeida University, Rio de Janeiro, Brazil; Institute of Applied Neuroscience (INA), Rio de Janeiro, Brazil
| | - Mauricio Cagy
- Biomedical Engineering Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silmar Teixeira
- Brain Mapping and Plasticity Laboratory, Federal University of Piauí (UFPI), Parnaíba, Brazil; Biomedical Sciences, Federal University of Piauí (UFPI), Parnaíba, Brazil
| | - Pedro Ribeiro
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, Brazil; Institute of Applied Neuroscience (INA), Rio de Janeiro, Brazil; Bioscience Department (EEFD/ UFRJ), School of Physical Education, Rio de Janeiro, Brazil
| | - Marcele Regine de Carvalho
- Laboratory of Panic & Respiration, Institute of Psychiatry, Federal University of Rio de Janeiro, Brazil
| | - Rafael Freire
- Laboratory of Panic & Respiration, Institute of Psychiatry, Federal University of Rio de Janeiro, Brazil
| | - Antonio Egidio Nardi
- Laboratory of Panic & Respiration, Institute of Psychiatry, Federal University of Rio de Janeiro, Brazil
| | - Luis Fernando Basile
- Division of Neurosurgery, University of São Paulo Medical School, Brazil; Laboratory of Psychophysiology, Department of Psychology and Phonoaudiology, UMESP, Brazil
| | - Bruna Velasques
- Neurophysiology and Neuropsychology of Attention Laboratory, Institute of Psychiatry of the Federal University of Rio de Janeiro (IPUB/UFRJ), Rio de Janeiro, RJ, Brazil; Institute of Applied Neuroscience (INA), Rio de Janeiro, Brazil; Bioscience Department (EEFD/ UFRJ), School of Physical Education, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Atagun MI, Balaban OD, Lordoglu DY, Evren EC. Lithium and Valproate May Affect Motor and Sensory Speed in Patients with Bipolar Disorder. ACTA ACUST UNITED AC 2016. [DOI: 10.5455/bcp.20130304010158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Murat Ilhan Atagun
- Yildirim Beyazit University, Faculty of Medicine, Department of Psychiatry, Ankara - Turkey
| | - Ozlem Devrim Balaban
- Bakirkoy Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul - Turkey
| | - Dilek Yesilbas Lordoglu
- Bakirkoy Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul - Turkey
| | - Ekrem Cuneyt Evren
- Bakirkoy Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Alcohol and Drug Research, Treatment and Training Center (AMATEM), Istanbul - Turkey
| |
Collapse
|
17
|
Başar E, Gölbaşı BT, Tülay E, Aydın S, Başar-Eroğlu C. Best method for analysis of brain oscillations in healthy subjects and neuropsychiatric diseases. Int J Psychophysiol 2016; 103:22-42. [DOI: 10.1016/j.ijpsycho.2015.02.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
|
19
|
Tan D, Özerdem A, Güntekin B, Atagün MI, Tülay E, Karadağ F, Başar E. Increased Beta Frequency (15-30 Hz) Oscillatory Responses in Euthymic Bipolar Patients Under Lithium Monotherapy. Clin EEG Neurosci 2016; 47:87-95. [PMID: 25465436 DOI: 10.1177/1550059414561056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/27/2014] [Indexed: 11/17/2022]
Abstract
The effect of lithium on neurocognition is not still fully explored. Brain oscillatory activity is altered in bipolar disorder. We aimed to assess the oscillatory responses of euthymic bipolar patients and how they are affected by lithium monotherapy. Event-related oscillations in response to visual target stimulus during an oddball paradigm in 16 euthymic drug-free and 13 euthymic lithium-treated bipolar patients were compared with 16 healthy controls. The maximum peak-to-peak amplitudes were measured for each subject's averaged beta (15-30 Hz) responses in the 0- to 300-ms time window over frontal (F3, Fz, F4), central (C3, Cz, C4), temporal (T7, T8), temporo-parietal (TP7, TP8), parietal (P3, Pz, P4), and occipital (O1, Oz, O2) areas. Patients under lithium monotherapy had significantly higher beta responses to visual target stimuli than healthy controls (P=.017) and drug-free patients (P=.015). The increase in beta response was observed at all electrode locations, however, the difference was statistically significant for the left (T7; P=.016) and right (T8; P=.031) temporal beta responses. Increased beta responses in drug-free patients and further significant increase in lithium-treated patients may be indicative of a core pathophysiological process of bipolar disorder and how it is affected by lithium. Whether the finding corresponds to lithium's corrective effect on the underlying pathology or to its neurocognitive side effect remains to be further explored. In either case, the finding is a sign that the oscillatory activity may be useful in tracking medication effect in bipolar disorder.
Collapse
Affiliation(s)
- Devran Tan
- Department of Psychiatry, Maltepe University, Faculty of Medicine, Istanbul, Turkey
| | - Ayşegül Özerdem
- Department of Psychiatry, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey Department of Neuroscience, Dokuz Eylul University Health Sciences Institute, Izmir, Turkey Multidisciplinary Brain Dynamics Research Center, Dokuz Eylul University, Izmir, Turkey
| | - Bahar Güntekin
- Brain Dynamics, Cognition, and Complex Systems Research Center, Istanbul Kultur University, Istanbul, Turkey
| | - M Ilhan Atagün
- Department of Psychiatry, Faculty of Medicine, Yıldırım Beyazıt University, Ankara, Turkey
| | - Elif Tülay
- Brain Dynamics, Cognition, and Complex Systems Research Center, Istanbul Kultur University, Istanbul, Turkey
| | - Figen Karadağ
- Department of Psychiatry, Maltepe University, Faculty of Medicine, Istanbul, Turkey
| | - Erol Başar
- Brain Dynamics, Cognition, and Complex Systems Research Center, Istanbul Kultur University, Istanbul, Turkey
| |
Collapse
|
20
|
Abstract
Electroencephalography (EEG) studies in patients with bipolar disorder have revealed lower amplitudes in brain oscillations. The aim of this review is to describe lithium-induced EEG changes in bipolar disorder and to discuss potential underlying factors. A literature survey about lithium-induced EEG changes in bipolar disorder was performed. Lithium consistently enhances magnitudes of brain oscillations in slow frequencies (delta and theta) in both resting-state EEG studies as well as event-related oscillations studies. Enhancement of magnitudes of beta oscillations is specific to event-related oscillations. Correlation between serum lithium levels and brain oscillations has been reported. Lithium-induced changes in brain oscillations might correspond to lithium-induced alterations in neurotransmitters, signaling cascades, plasticity, brain structure, or biophysical properties of lithium. Therefore, lithium-induced changes in brain oscillations could be promising biomarkers to assess the molecular mechanisms leading to variability in efficacy. Since the variability of lithium response in bipolar disorder is due to the genetic differences in the mechanisms involving lithium, it would be highly promising to assess the lithium-induced EEG changes as biomarkers in genetic studies.
Collapse
Affiliation(s)
- Murat İlhan Atagün
- Department of Psychiatry, Yıldırım Beyazıt University Medical School, Cankaya, Ankara, Turkey
| |
Collapse
|
21
|
Electrical mapping in bipolar disorder patients during the oddball paradigm. J Psychiatr Res 2016; 72:64-71. [PMID: 26551764 DOI: 10.1016/j.jpsychires.2015.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 11/21/2022]
Abstract
Bipolar disorder (BD) is characterized by an alternated occurrence between acute mania episodes and depression or remission moments. The objective of this study is to analyze the information processing changes in BP (Bipolar Patients) (euthymia, depression and mania) during the oddball paradigm, focusing on the P300 component, an electric potential of the cerebral cortex generated in response to external sensorial stimuli, which involves more complex neurophysiological processes related to stimulus interpretation. Twenty-eight bipolar disorder patients (BP) (17 women and 11 men with average age of 32.5, SD: 9.5) and eleven healthy controls (HC) (7 women and 4 men with average age of 29.78, SD: 6.89) were enrolled in this study. The bipolar patients were divided into 3 major groups (i.e., euthymic, depressive and maniac) according to the score on the Clinical Global Impression--Bipolar Version (CGI-BP). The subjects performed the oddball paradigm simultaneously to the EEG record. EEG data were also recorded before and after the execution of the task. A one-way ANOVA was applied to compare the P300 component among the groups. After observing P300 and the subcomponents P3a and P3b, a similarity of amplitude and latency between euthymic and depressive patients was observed, as well as small amplitude in the pre-frontal cortex and reduced P3a response. This can be evidence of impaired information processing, cognitive flexibility, working memory, executive functions and ability to shift the attention and processing to the target and away from distracting stimuli in BD. Such neuropsychological impairments are related to different BD symptoms, which should be known and considered, in order to develop effective clinical treatment strategies.
Collapse
|
22
|
Investigation of Heschl's gyrus and planum temporale in patients with schizophrenia and bipolar disorder: a proton magnetic resonance spectroscopy study. Schizophr Res 2015; 161:202-9. [PMID: 25480359 PMCID: PMC4308441 DOI: 10.1016/j.schres.2014.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 11/03/2014] [Accepted: 11/05/2014] [Indexed: 11/21/2022]
Abstract
BACKGROUND Superior temporal cortices include brain regions dedicated to auditory processing and several lines of evidence suggest structural and functional abnormalities in both schizophrenia and bipolar disorder within this brain region. However, possible glutamatergic dysfunction within this region has not been investigated in adult patients. METHODS Thirty patients with schizophrenia (38.67±12.46years of age), 28 euthymic patients with bipolar I disorder (35.32±9.12years of age), and 30 age-, gender- and education-matched healthy controls were enrolled. Proton magnetic resonance spectroscopy data were acquired using a 3.0T Siemens MAGNETOM TIM Trio MR system and single voxel Point REsolved Spectroscopy Sequence (PRESS) in order to quantify brain metabolites within the left and right Heschl's gyrus and planum temporale of superior temporal cortices. RESULTS There were significant abnormalities in glutamate (Glu) (F(2,78)=8.52, p<0.0001), N-acetyl aspartate (tNAA) (F(2,81)=5.73, p=0.005), creatine (tCr) (F(2,83)=5.91, p=0.004) and inositol (Ins) (F(2,82)=8.49, p<0.0001) concentrations in the left superior temporal cortex. In general, metabolite levels were lower for bipolar disorder patients when compared to healthy participants. Moreover, patients with bipolar disorder exhibited significantly lower tCr and Ins concentrations when compared to schizophrenia patients. In addition, we have found significant correlations between the superior temporal cortex metabolites and clinical measures. CONCLUSION As the left auditory cortices are associated with language and speech, left hemisphere specific abnormalities may have clinical significance. Our findings are suggestive of shared glutamatergic abnormalities in schizophrenia and bipolar disorder.
Collapse
|
23
|
Bornas X, Fiol-Veny A, Balle M, Morillas-Romero A, Tortella-Feliu M. Long range temporal correlations in EEG oscillations of subclinically depressed individuals: their association with brooding and suppression. Cogn Neurodyn 2015; 9:53-62. [PMID: 26052362 PMCID: PMC4454127 DOI: 10.1007/s11571-014-9313-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 09/02/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022] Open
Abstract
Long-range temporal correlations (LRTC) in brain oscillations have been found to be associated with depression severity in clinically depressed patients. Less is known, however, about the relationships between LRTC and proneness to engage in depression-related cognitive emotion regulation (ER) strategies which characterize both clinically and subclinically depressed (SBD) people. In this study we applied detrended fluctuation analysis to the amplitude envelope of broad band, theta band, and alpha band spontaneous EEG oscillations of a group of SBD individuals and a group of non-depressed individuals (both groups from a sample of healthy adults, N = 120), to whom brooding and thought suppression questionnaires were administered. Between-groups differences were not found for any band scaling exponents at any brain location, but linear correlations pointed out several associations between exponents at frontal, central, parietal, temporal, and occipital sites and maladaptive ER strategies. These results suggest that alterations in brain dynamics are related with the proneness that depressive individuals show to engage in brooding and thought suppression in order to cognitively regulate their emotions.
Collapse
Affiliation(s)
- Xavier Bornas
- University of the Balearic Islands, University Research Institute of Health Sciences (IUNICS), Carretera de Valldemossa km. 7.5, 07122 Palma, Mallorca Spain
| | - Aina Fiol-Veny
- University of the Balearic Islands, University Research Institute of Health Sciences (IUNICS), Carretera de Valldemossa km. 7.5, 07122 Palma, Mallorca Spain
| | - Maria Balle
- University of the Balearic Islands, University Research Institute of Health Sciences (IUNICS), Carretera de Valldemossa km. 7.5, 07122 Palma, Mallorca Spain
| | - Alfonso Morillas-Romero
- University of the Balearic Islands, University Research Institute of Health Sciences (IUNICS), Carretera de Valldemossa km. 7.5, 07122 Palma, Mallorca Spain
| | - Miquel Tortella-Feliu
- University of the Balearic Islands, University Research Institute of Health Sciences (IUNICS), Carretera de Valldemossa km. 7.5, 07122 Palma, Mallorca Spain
| |
Collapse
|
24
|
Atagün Mİ, Güntekin B, Tan D, Tülay EE, Başar E. Lithium excessively enhances event related beta oscillations in patients with bipolar disorder. J Affect Disord 2015; 170:59-65. [PMID: 25233240 DOI: 10.1016/j.jad.2014.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/19/2014] [Accepted: 08/15/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Previous resting-state electroencephalography studies have consistently shown that lithium enhances delta and theta oscillations in default mode networks. Cognitive task based networks differ from resting-state networks and this is the first study to investigate effects of lithium on evoked and event-related beta oscillatory responses of patients with bipolar disorder. METHODS The study included 16 euthymic patients with bipolar disorder on lithium monotherapy, 22 euthymic medication-free patients with bipolar disorder and 21 healthy participants. The maximum peak-to-peak amplitudes were measured for each subject's averaged beta responses (14-28 Hz) in the 0-300 ms time window. Auditory simple and oddball paradigm were presented to obtain evoked and event-related beta oscillatory responses. RESULTS There were significant differences in beta oscillatory responses between groups (p=0.010). Repeated measures ANOVA revealed location (p=0.007), laterality X group (p=0.043) and stimulus X location (p=0.013) type effects. Serum lithium levels were correlated with beta responses. LIMITATIONS The lithium group had higher number of previous episodes, suggesting that patients of the lithium were more severe cases than patients of the medication-free group. DISCUSSION Lithium stimulates neuroplastic cascades and beta oscillations become prominent during neuroplastic changes. Excessively enhanced beta oscillatory responses in the lithium-treated patients may be indicative of excessive activation of the neuron groups of the certain cognitive networks and dysfunctional GABAergic modulation during cognitive activity.
Collapse
Affiliation(s)
- Murat İlhan Atagün
- Yıldırım Beyazıt University, Faculty of Medicine, Department of Psychiatry, Ankara, Turkey; Ankara Atatürk Training and Education Hospital, Department of Psychiatry, Ankara, Turkey
| | - Bahar Güntekin
- Istanbul Kultur University, Brain Dynamics, Cognition and Complex Systems Research Center, Ataköy Campus Bakırköy, 34156 Istanbul, Turkey
| | - Devran Tan
- Maltepe University, Faculty of Medicine, Department of Psychiatry, Istanbul, Turkey
| | - Emine Elif Tülay
- Istanbul Kultur University, Brain Dynamics, Cognition and Complex Systems Research Center, Ataköy Campus Bakırköy, 34156 Istanbul, Turkey
| | - Erol Başar
- Istanbul Kultur University, Brain Dynamics, Cognition and Complex Systems Research Center, Ataköy Campus Bakırköy, 34156 Istanbul, Turkey.
| |
Collapse
|
25
|
Zheng L, Chai H, Yu S, Xu Y, Chen W, Wang W. EEG theta power and coherence to octave illusion in first-episode paranoid schizophrenia with auditory hallucinations. Psychopathology 2014; 48:36-46. [PMID: 25359515 DOI: 10.1159/000366104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/19/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND The exact mechanism behind auditory hallucinations in schizophrenia remains unknown. A corollary discharge dysfunction hypothesis has been put forward, but it requires further confirmation. Electroencephalography (EEG) of the Deutsch octave illusion might offer more insight, by demonstrating an abnormal cerebral activation similar to that under auditory hallucinations in schizophrenic patients. METHODS We invited 23 first-episode schizophrenic patients with auditory hallucinations and 23 healthy participants to listen to silence and two sound sequences, which consisted of alternating 400- and 800-Hz tones. EEG spectral power and coherence values of different frequency bands, including theta rhythm (3.5-7.5 Hz), were computed using 32 scalp electrodes. Task-related spectral power changes and task-related coherence differences were also calculated. Clinical characteristics of patients were rated using the Positive and Negative Syndrome Scale. RESULTS After both sequences of octave illusion, the task-related theta power change values of frontal and temporal areas were significantly lower, and the task-related theta coherence difference values of intrahemispheric frontal-temporal areas were significantly higher in schizophrenic patients than in healthy participants. Moreover, the task-related power change values in both hemispheres were negatively correlated and the task-related coherence difference values in the right hemisphere were positively correlated with the hallucination score in schizophrenic patients. LIMITATIONS We only tested the Deutsch octave illusion in primary schizophrenic patients with acute first episode. Further studies might adopt other illusions or employ other forms of schizophrenia. CONCLUSION Our results showed a lower activation but higher connection within frontal and temporal areas in schizophrenic patients under octave illusion. This suggests an oversynchronized but weak frontal area to exert an action to the ipsilateral temporal area, which supports the corollary discharge dysfunction hypothesis.
Collapse
Affiliation(s)
- Leilei Zheng
- Department of Clinical Psychology and Psychiatry, School of Public Health, Zhejiang University College of Medicine, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
26
|
Atagün Mİ, Güntekin B, Maşalı B, Tülay E, Başar E. Decrease of event-related delta oscillations in euthymic patients with bipolar disorder. Psychiatry Res 2014; 223:43-8. [PMID: 24819306 DOI: 10.1016/j.pscychresns.2014.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 02/02/2023]
Abstract
Decreased delta oscillation upon cognitive load is common in patients with Alzheimer׳s disease, mild cognitive impairment, and schizophrenia. However, there is no previous study analyzing the delta responses in euthymic medication-free patients with bipolar disorder. Participants comprised of 22 euthymic medication-free patients with DSM-IV diagnoses of bipolar disorder and 21 healthy controls who were matched to the patients for sex, age, and education. Electroencephalographic activity was recorded at 30 electrode sites using an application of an auditory oddball paradigm. The maximum peak-to-peak amplitudes for each subject׳s averaged delta response (0.5-3.5Hz) were measured. There was a significant inter-group difference in evoked and event-related delta (0.5-3.5Hz) responses. Post-hoc comparisons revealed that the event-related delta oscillatory responses of the bipolar patient group were significantly lower than those of the healthy control group over the temporo-parietal and occipital electrode sites. Euthymic bipolar patients showed reduced event-related delta oscillatory responses in comparison to healthy subjects under cognitive load. The decrease of delta oscillations may be a common phenomenon that can be observed in different neuropsychiatric disorders with cognitive dysfunction.
Collapse
Affiliation(s)
- Murat İlhan Atagün
- Department of Psychiatry, Faculty of Medicine, Yıldırım Beyazıt University, Ankara, Turkey; Ankara Ataturk Training and Education Hospital, Ankara, Turkey; Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kultur University, Istanbul, Turkey
| | - Bahar Güntekin
- Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kultur University, Istanbul, Turkey
| | | | - Elif Tülay
- Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kultur University, Istanbul, Turkey
| | - Erol Başar
- Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kultur University, Istanbul, Turkey.
| |
Collapse
|
27
|
Abstract
The term “brain (or neural) oscillations” refers to the rhythmic and/or repetitive electrical activity generated spontaneously and in response to stimuli by neural tissue in the central nervous system. The importance of brain oscillations in sensory-cognitive processes has become increasingly evident. It has also become clear that event-related oscillations are modified in many types of neuropathology, in particular in cognitive impairment. This review discusses methods such as evoked/event-related oscillations and spectra, coherence analysis, and phase locking. It gives examples of applications of essential methods and concepts in bipolar disorder that provide a basis for fundamental notions regarding neurophysiologic biomarkers in cognitive impairment. The take-home message is that in the development of diagnostic and pharmacotherapeutic strategies, neurophysiologic data should be analyzed in a framework that uses a multiplicity of methods and frequency bands.
Collapse
Affiliation(s)
- Erol Başar
- Istanbul Kultur University, Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul, Turkey
| |
Collapse
|
28
|
Güntekin B, Başar E. A review of brain oscillations in perception of faces and emotional pictures. Neuropsychologia 2014; 58:33-51. [PMID: 24709570 DOI: 10.1016/j.neuropsychologia.2014.03.014] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 03/07/2014] [Accepted: 03/26/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Bahar Güntekin
- Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kültür University, Istanbul 34156, Turkey.
| | - Erol Başar
- Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kültür University, Istanbul 34156, Turkey
| |
Collapse
|
29
|
Başar E. Brain oscillations in neuropsychiatric disease. DIALOGUES IN CLINICAL NEUROSCIENCE 2013; 15:291-300. [PMID: 24174901 PMCID: PMC3811101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
The term "brain (or neural) oscillations" refers to the rhythmic and/or repetitive electrical activity generated spontaneously and in response to stimuli by neural tissue in the central nervous system. The importance of brain oscillations in sensory-cognitive processes has become increasingly evident. It has also become clear that event-related oscillations are modified in many types of neuropathology, in particular in cognitive impairment. This review discusses methods such as evoked/event-related oscillations and spectra, coherence analysis, and phase locking. It gives examples of applications of essential methods and concepts in bipolar disorder that provide a basis for fundamental notions regarding neurophysiologic biomarkers in cognitive impairment. The take-home message is that in the development of diagnostic and pharmacotherapeutic strategies, neurophysiologic data should be analyzed in a framework that uses a multiplicity of methods and frequency bands.
Collapse
Affiliation(s)
- Erol Başar
- Istanbul Kultur University, Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul, Turkey
| |
Collapse
|