1
|
Premchand B, Toe KK, Wang C, Wan KR, Selvaratnam T, Toh VE, Ng WH, Libedinsky C, Chen W, Lim R, Cheng MY, Gao Y, Ang KK, So RQY. Comparing a BCI communication system in a patient with Multiple System Atrophy, with an animal model. Brain Res Bull 2025; 223:111289. [PMID: 40049458 DOI: 10.1016/j.brainresbull.2025.111289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/27/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025]
Abstract
Paralysis affects many people worldwide, and the people affected often suffer from impaired communication. We developed a microelectrode-based Brain-Computer Interface (BCI) for enabling communication in patients affected by paralysis, and implanted it in a patient with Multiple System Atrophy (MSA), a neurodegenerative disease that causes widespread neural symptoms including paralysis. To verify the effectiveness of the BCI system, it was also tested by implanting it in a non-human primate (NHP). Data from the human and NHP were used to train binary classifiers two different types of machine learning models: a Linear Discriminant Analysis (LDA) model, and a Long Short-Term Memory (LSTM)-based Artificial Neural Network (ANN). The LDA model performed at up to 72.7 % accuracy for binary decoding in the human patient, however, performance was highly variable and was much lower on most recording days. The BCI system was able to accurately decode movement vs non-movement in the NHP (accuracy using LDA: 82.7 ± 3.3 %, LSTM: 83.7 ± 2.2 %, 95 % confidence intervals), however it was not able to with recordings from the human patient (accuracy using LDA: 47.0 ± 5.1 %, LSTM: 44.6 ± 9.9 %, 95 % confidence intervals). We discuss how neurodegenerative diseases such as MSA can impede BCI-based communication, and postulate on the mechanisms by which this may occur.
Collapse
Affiliation(s)
- Brian Premchand
- Institute for Infocomm Research (I²R), Agency for Science, Technology and Research (A⁎STAR), 1 Fusionopolis Way, #21-01 Connexis (South Tower), Singapore 138632, Singapore.
| | - Kyaw Kyar Toe
- Institute for Infocomm Research (I²R), Agency for Science, Technology and Research (A⁎STAR), 1 Fusionopolis Way, #21-01 Connexis (South Tower), Singapore 138632, Singapore
| | - Chuanchu Wang
- Institute for Infocomm Research (I²R), Agency for Science, Technology and Research (A⁎STAR), 1 Fusionopolis Way, #21-01 Connexis (South Tower), Singapore 138632, Singapore
| | - Kai Rui Wan
- Department of Neurosurgery, National Neuroscience Institute, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore; Department of Neurosurgery, National Neuroscience Institute, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - Thevapriya Selvaratnam
- Department of Neurosurgery, National Neuroscience Institute, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore; Department of Neurosurgery, National Neuroscience Institute, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - Valerie Ethans Toh
- Department of Psychology, National Neuroscience Institute, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Wai Hoe Ng
- Department of Neurosurgery, National Neuroscience Institute, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore; Department of Neurosurgery, National Neuroscience Institute, Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - Camilo Libedinsky
- Department of Psychology, National University of Singapore, Singapore 117570, Singapore; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Weiguo Chen
- Institute Of Microelectronics, Agency for Science, Technology and Research (A⁎STAR), 11 Science Park Rd, Singapore 117685, Singapore
| | - Ruiqi Lim
- Institute Of Microelectronics, Agency for Science, Technology and Research (A⁎STAR), 11 Science Park Rd, Singapore 117685, Singapore
| | - Ming-Yuan Cheng
- Institute Of Microelectronics, Agency for Science, Technology and Research (A⁎STAR), 11 Science Park Rd, Singapore 117685, Singapore
| | - Yuan Gao
- Institute Of Microelectronics, Agency for Science, Technology and Research (A⁎STAR), 11 Science Park Rd, Singapore 117685, Singapore
| | - Kai Keng Ang
- Institute for Infocomm Research (I²R), Agency for Science, Technology and Research (A⁎STAR), 1 Fusionopolis Way, #21-01 Connexis (South Tower), Singapore 138632, Singapore; College of Computing and Data Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Rosa Qi Yue So
- Institute for Infocomm Research (I²R), Agency for Science, Technology and Research (A⁎STAR), 1 Fusionopolis Way, #21-01 Connexis (South Tower), Singapore 138632, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
2
|
Grivel E, Berthelot B, Colin G, Legrand P, Ibanez V. Benefits of Zero-Phase or Linear Phase Filters to Design Multiscale Entropy: Theory and Application. ENTROPY (BASEL, SWITZERLAND) 2024; 26:332. [PMID: 38667886 PMCID: PMC11048990 DOI: 10.3390/e26040332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/16/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024]
Abstract
In various applications, multiscale entropy (MSE) is often used as a feature to characterize the complexity of the signals in order to classify them. It consists of estimating the sample entropies (SEs) of the signal under study and its coarse-grained (CG) versions, where the CG process amounts to (1) filtering the signal with an average filter whose order is the scale and (2) decimating the filter output by a factor equal to the scale. In this paper, we propose to derive a new variant of the MSE. Its novelty stands in the way to get the sequences at different scales by avoiding distortions during the decimation step. To this end, a linear-phase or null-phase low-pass filter whose cutoff frequency is well suited to the scale is used. Interpretations on how the MSE behaves and illustrations with a sum of sinusoids, as well as white and pink noises, are given. Then, an application to detect attentional tunneling is presented. It shows the benefit of the new approach in terms of p value when one aims at differentiating the set of MSEs obtained in the attentional tunneling state from the set of MSEs obtained in the nominal state. It should be noted that CG versions can be replaced not only for the MSE but also for other variants.
Collapse
Affiliation(s)
- Eric Grivel
- IMS Laboratory, Bordeaux INP, Bordeaux University, UMR CNRS 5218, 33400 Talence, France
| | - Bastien Berthelot
- Thales AVS France, Campus Merignac, 75-77 Av. Marcel Dassault, 33700 Mérignac, France; (B.B.); (V.I.)
| | - Gaetan Colin
- ENSEIRB-MATMECA, Bordeaux INP, 33400 Talence, France
| | - Pierrick Legrand
- IMB Laboratory, Bordeaux University, UMR CNRS 5251, ASTRAL Team, INRIA, 33400 Talence, France;
| | - Vincent Ibanez
- Thales AVS France, Campus Merignac, 75-77 Av. Marcel Dassault, 33700 Mérignac, France; (B.B.); (V.I.)
| |
Collapse
|
3
|
Natalizio A, Sieghartsleitner S, Schreiner L, Walchshofer M, Esposito A, Scharinger J, Pretl H, Arpaia P, Parvis M, Solé-Casals J, Sebastián-Romagosa M, Ortner R, Guger C. Real-time estimation of EEG-based engagement in different tasks. J Neural Eng 2024; 21:016014. [PMID: 38237182 DOI: 10.1088/1741-2552/ad200d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
Objective.Recent trends in brain-computer interface (BCI) research concern the passive monitoring of brain activity, which aim to monitor a wide variety of cognitive states. Engagement is such a cognitive state, which is of interest in contexts such as learning, entertainment or rehabilitation. This study proposes a novel approach for real-time estimation of engagement during different tasks using electroencephalography (EEG).Approach.Twenty-three healthy subjects participated in the BCI experiment. A modified version of the d2 test was used to elicit engagement. Within-subject classification models which discriminate between engaging and resting states were trained based on EEG recorded during a d2 test based paradigm. The EEG was recorded using eight electrodes and the classification model was based on filter-bank common spatial patterns and a linear discriminant analysis. The classification models were evaluated in cross-task applications, namely when playing Tetris at different speeds (i.e. slow, medium, fast) and when watching two videos (i.e. advertisement and landscape video). Additionally, subjects' perceived engagement was quantified using a questionnaire.Main results.The models achieved a classification accuracy of 90% on average when tested on an independent d2 test paradigm recording. Subjects' perceived and estimated engagement were found to be greater during the advertisement compared to the landscape video (p= 0.025 andp<0.001, respectively); greater during medium and fast compared to slow Tetris speed (p<0.001, respectively); not different between medium and fast Tetris speeds. Additionally, a common linear relationship was observed for perceived and estimated engagement (rrm= 0.44,p<0.001). Finally, theta and alpha band powers were investigated, which respectively increased and decreased during more engaging states.Significance.This study proposes a task-specific EEG engagement estimation model with cross-task capabilities, offering a framework for real-world applications.
Collapse
Affiliation(s)
- Angela Natalizio
- g.tec medical engineering GmbH, Schiedlberg, Austria
- Augmented Reality for Health Monitoring Laboratory (ARHeMLab), Università degli Studi di Napoli Federico II, Naples, Italy
- Department of Electronics and Telecommunications (DET), Polytechnic of Turin, Turin, Italy
| | - Sebastian Sieghartsleitner
- g.tec medical engineering GmbH, Schiedlberg, Austria
- Institute of Computational Perception, Johannes Kepler University, Linz, Austria
| | - Leonhard Schreiner
- g.tec medical engineering GmbH, Schiedlberg, Austria
- Institute for Integrated Circuits, Johannes Kepler University, Linz, Austria
| | | | - Antonio Esposito
- Augmented Reality for Health Monitoring Laboratory (ARHeMLab), Università degli Studi di Napoli Federico II, Naples, Italy
- Department of Engineering for Innovation University of Salento, Lecce, Italy
| | - Josef Scharinger
- Institute of Computational Perception, Johannes Kepler University, Linz, Austria
| | - Harald Pretl
- Institute for Integrated Circuits, Johannes Kepler University, Linz, Austria
| | - Pasquale Arpaia
- Augmented Reality for Health Monitoring Laboratory (ARHeMLab), Università degli Studi di Napoli Federico II, Naples, Italy
- Department of Electrical Engineering and Information Technology (DIETI), Università degli Studi di Napoli Federico II, Naples, Italy
- Centro Interdipartimentale di Ricerca in Management Sanitario e Innovazione in Sanità (CIRMIS), Università degli Studi di Napoli Federico II, Naples, Italy
| | - Marco Parvis
- Department of Electronics and Telecommunications (DET), Polytechnic of Turin, Turin, Italy
| | - Jordi Solé-Casals
- Data and Signal Processing Research Group, University of Vic-Central, University of Catalonia, Vic, Catalonia, Spain
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | | | - Rupert Ortner
- g.tec medical engineering Spain SL, Barcelona, Spain
| | - Christoph Guger
- g.tec medical engineering GmbH, Schiedlberg, Austria
- g.tec medical engineering Spain SL, Barcelona, Spain
| |
Collapse
|
4
|
Fernández-Rodríguez Á, Ron-Angevin R, Velasco-Álvarez F, Diaz-Pineda J, Letouzé T, André JM. Evaluation of Single-Trial Classification to Control a Visual ERP-BCI under a Situation Awareness Scenario. Brain Sci 2023; 13:886. [PMID: 37371365 DOI: 10.3390/brainsci13060886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/15/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
An event-related potential (ERP)-based brain-computer interface (BCI) can be used to monitor a user's cognitive state during a surveillance task in a situational awareness context. The present study explores the use of an ERP-BCI for detecting new planes in an air traffic controller (ATC). Two experiments were conducted to evaluate the impact of different visual factors on target detection. Experiment 1 validated the type of stimulus used and the effect of not knowing its appearance location in an ERP-BCI scenario. Experiment 2 evaluated the effect of the size of the target stimulus appearance area and the stimulus salience in an ATC scenario. The main results demonstrate that the size of the plane appearance area had a negative impact on the detection performance and on the amplitude of the P300 component. Future studies should address this issue to improve the performance of an ATC in stimulus detection using an ERP-BCI.
Collapse
Affiliation(s)
- Álvaro Fernández-Rodríguez
- Departamento de Tecnología Electrónica, Instituto Universitario de Investigación en Telecomunicación de la Universidad de Málaga (TELMA), Universidad de Málaga, 29071 Malaga, Spain
| | - Ricardo Ron-Angevin
- Departamento de Tecnología Electrónica, Instituto Universitario de Investigación en Telecomunicación de la Universidad de Málaga (TELMA), Universidad de Málaga, 29071 Malaga, Spain
| | - Francisco Velasco-Álvarez
- Departamento de Tecnología Electrónica, Instituto Universitario de Investigación en Telecomunicación de la Universidad de Málaga (TELMA), Universidad de Málaga, 29071 Malaga, Spain
| | | | - Théodore Letouzé
- Laboratoire IMS, CNRS UMR 5218, Cognitive Team, Bordeaux INP-ENSC, 33400 Talence, France
| | - Jean-Marc André
- Laboratoire IMS, CNRS UMR 5218, Cognitive Team, Bordeaux INP-ENSC, 33400 Talence, France
| |
Collapse
|
5
|
Park S, Ha J, Ahn W, Kim L. Measurement of craving among gamers with internet gaming disorder using repeated presentations of game videos: a resting-state electroencephalography study. BMC Public Health 2023; 23:816. [PMID: 37143023 PMCID: PMC10158347 DOI: 10.1186/s12889-023-15750-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Internet gaming disorder (IGD) is receiving increasing attention owing to its effects on daily living and psychological function. METHODS In this study, electroencephalography was used to compare neural activity triggered by repeated presentation of a stimulus in healthy controls (HCs) and those with IGD. A total of 42 adult men were categorized into two groups (IGD, n = 21) based on Y-IAT-K scores. Participants were required to watch repeated presentations of video games while wearing a head-mounted display, and the delta (D), theta (T), alpha (A), beta (B), and gamma (G) activities in the prefrontal (PF), central (C), and parieto-occipital (PO) regions were analyzed. RESULTS The IGD group exhibited higher absolute powers of DC, DPO, TC, TPO, BC, and BPO than HCs. Among the IGD classification models, a neural network achieves the highest average accuracy of 93% (5-fold cross validation) and 84% (test). CONCLUSIONS These findings may significantly contribute to a more comprehensive understanding of the neurological features associated with IGD and provide potential neurological markers that can be used to distinguish between individuals with IGD and HCs.
Collapse
Affiliation(s)
- Sangin Park
- Industry-Academy Cooperation Team, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| | - Jihyeon Ha
- Center for Bionics, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil Seongbuk-gu, Seoul, 02792, South Korea
| | - Wonbin Ahn
- Applied AI Research Lab, LG AI Research, 128, Yeoui-daero, Yeongdeungpo-gu, Seoul, 07796, South Korea
| | - Laehyun Kim
- Center for Bionics, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil Seongbuk-gu, Seoul, 02792, South Korea.
- Department of HY-KIST Bio-convergence, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea.
| |
Collapse
|
6
|
Cui Z, Li Y, Huang S, Wu X, Fu X, Liu F, Wan X, Wang X, Zhang Y, Qiu H, Chen F, Yang P, Zhu S, Li J, Chen W. BCI system with lower-limb robot improves rehabilitation in spinal cord injury patients through short-term training: a pilot study. Cogn Neurodyn 2022; 16:1283-1301. [PMID: 36408074 PMCID: PMC9666612 DOI: 10.1007/s11571-022-09801-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/27/2021] [Accepted: 11/04/2021] [Indexed: 12/27/2022] Open
Abstract
In the recent years, the increasing applications of brain-computer interface (BCI) in rehabilitation programs have enhanced the chances of functional recovery for patients with neurological disorders. We presented and validated a BCI system with a lower-limb robot for short-term training of patients with spinal cord injury (SCI). The cores of this system included: (1) electroencephalogram (EEG) features related to motor intention reported through experiments and used to drive the robot; (2) a decision tree to determine the training mode provided for patients with different degrees of injuries. Seven SCI patients (one American Spinal Injury Association Impairment Scale (AIS) A, three AIS B, and three AIS C) participated in the short-term training with this system. All patients could learn to use the system rapidly and maintained a high intensity during the training program. The strength of the lower limb key muscles of the patients was improved. Four AIS A/B patients were elevated to AIS C. The cumulative results indicate that clinical application of the BCI system with lower-limb robot is feasible and safe, and has potentially positive effects on SCI patients. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09801-6.
Collapse
Affiliation(s)
- Zhengzhe Cui
- School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Yongqiang Li
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sisi Huang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xixi Wu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangxiang Fu
- School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Fei Liu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaojiao Wan
- School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Xue Wang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuting Zhang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huaide Qiu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fang Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Peijin Yang
- School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Shiqiang Zhu
- School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Jianan Li
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weidong Chen
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Apicella A, Arpaia P, Frosolone M, Improta G, Moccaldi N, Pollastro A. EEG-based measurement system for monitoring student engagement in learning 4.0. Sci Rep 2022; 12:5857. [PMID: 35393470 PMCID: PMC8987513 DOI: 10.1038/s41598-022-09578-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/11/2022] [Indexed: 11/09/2022] Open
Abstract
A wearable system for the personalized EEG-based detection of engagement in learning 4.0 is proposed. In particular, the effectiveness of the proposed solution is assessed by means of the classification accuracy in predicting engagement. The system can be used to make an automated teaching platform adaptable to the user, by managing eventual drops in the cognitive and emotional engagement. The effectiveness of the learning process mainly depends on the engagement level of the learner. In case of distraction, lack of interest or superficial participation, the teaching strategy could be personalized by an automatic modulation of contents and communication strategies. The system is validated by an experimental case study on twenty-one students. The experimental task was to learn how a specific human-machine interface works. Both the cognitive and motor skills of participants were involved. De facto standard stimuli, namely (1) cognitive task (Continuous Performance Test), (2) music background (Music Emotion Recognition-MER database), and (3) social feedback (Hermans and De Houwer database), were employed to guarantee a metrologically founded reference. In within-subject approach, the proposed signal processing pipeline (Filter bank, Common Spatial Pattern, and Support Vector Machine), reaches almost 77% average accuracy, in detecting both cognitive and emotional engagement.
Collapse
Affiliation(s)
- Andrea Apicella
- Department of Electrical Engineering and Information Technology, University of Napoli Federico II, Naples, Italy
| | - Pasquale Arpaia
- Department of Electrical Engineering and Information Technology, University of Napoli Federico II, Naples, Italy.
| | - Mirco Frosolone
- Department of Electrical Engineering and Information Technology, University of Napoli Federico II, Naples, Italy.,Department of Public Health and Preventive Medicine, University of Naples Federico II, Naples, Italy
| | - Giovanni Improta
- Department of Public Health and Preventive Medicine, University of Naples Federico II, Naples, Italy
| | - Nicola Moccaldi
- Department of Electrical Engineering and Information Technology, University of Napoli Federico II, Naples, Italy
| | - Andrea Pollastro
- Department of Electrical Engineering and Information Technology, University of Napoli Federico II, Naples, Italy
| |
Collapse
|
8
|
LEDPatNet19: Automated Emotion Recognition Model based on Nonlinear LED Pattern Feature Extraction Function using EEG Signals. Cogn Neurodyn 2021; 16:779-790. [PMID: 35847545 PMCID: PMC9279545 DOI: 10.1007/s11571-021-09748-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/23/2021] [Accepted: 11/03/2021] [Indexed: 11/20/2022] Open
Abstract
Electroencephalography (EEG) signals collected from human brains have generally been used to diagnose diseases. Moreover, EEG signals can be used in several areas such as emotion recognition, driving fatigue detection. This work presents a new emotion recognition model by using EEG signals. The primary aim of this model is to present a highly accurate emotion recognition framework by using both a hand-crafted feature generation and a deep classifier. The presented framework uses a multilevel fused feature generation network. This network has three primary phases, which are tunable Q-factor wavelet transform (TQWT), statistical feature generation, and nonlinear textural feature generation phases. TQWT is applied to the EEG data for decomposing signals into different sub-bands and create a multilevel feature generation network. In the nonlinear feature generation, an S-box of the LED block cipher is utilized to create a pattern, which is named as Led-Pattern. Moreover, statistical feature extraction is processed using the widely used statistical moments. The proposed LED pattern and statistical feature extraction functions are applied to 18 TQWT sub-bands and an original EEG signal. Therefore, the proposed hand-crafted learning model is named LEDPatNet19. To select the most informative features, ReliefF and iterative Chi2 (RFIChi2) feature selector is deployed. The proposed model has been developed on the two EEG emotion datasets, which are GAMEEMO and DREAMER datasets. Our proposed hand-crafted learning network achieved 94.58%, 92.86%, and 94.44% classification accuracies for arousal, dominance, and valance cases of the DREAMER dataset. Furthermore, the best classification accuracy of the proposed model for the GAMEEMO dataset is equal to 99.29%. These results clearly illustrate the success of the proposed LEDPatNet19.
Collapse
|
9
|
EEG based cognitive task classification using multifractal detrended fluctuation analysis. Cogn Neurodyn 2021; 15:999-1013. [PMID: 34790267 DOI: 10.1007/s11571-021-09684-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/24/2021] [Accepted: 05/12/2021] [Indexed: 10/20/2022] Open
Abstract
Locating cognitive task states by measuring changes in electrocortical activity due to various attentional and sensory-motor changes, has been in research interest since last few decades. In this paper, different cognitive states while performing various attentional and visuo-motor coordination tasks, are classified using electroencephalogram (EEG) signal. A non-linear time-series method, multifractal detrended fluctuation analysis (MFDFA) , is applied on respective EEG signal for features. Using MFDFA based features a multinomial classification is achieved. Nine channel EEG signal was recorded for 38 young volunteers (age: 25 ± 5 years, 30 male and 8 female), during six consecutive tasks. First three tasks are related to increasing levels of selective focus vision; next three are reflex and response based computer tasks. Total of 90 features (ten features from each of nine channel) were extracted from Hurst and singularity exponents of MFDFA on EEG signals. After feature selection, a multinomial classifier of six classes using two methods: support vector machine (SVM) and decision tree classifier (DTC). An accuracy of 96.84% using SVM and 92.49% using DTC was achieved.
Collapse
|
10
|
Zhang S, Yan X, Wang Y, Liu B, Gao X. Modulation of brain states on fractal and oscillatory power of EEG in brain-computer interfaces. J Neural Eng 2021; 18. [PMID: 34517346 DOI: 10.1088/1741-2552/ac2628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/13/2021] [Indexed: 11/11/2022]
Abstract
Objective. Electroencephalogram (EEG) is an objective reflection of the brain activities, which provides potential possibilities for brain state estimation based on EEG characteristics. However, how to mine the effective EEG characteristics is still a distressing problem in brain state monitoring.Approach. The phase-scrambled method was used to generate images with different noise levels. Images were encoded into a rapid serial visual presentation paradigm. N-back working memory method was employed to induce and assess fatigue state. The irregular-resampling auto-spectral analysis method was adopted to extract and parameterize (exponent and offset) the characteristics of EEG fractal components, which were analyzed in the four dimensions: fatigue, sustained attention, visual noise and experimental tasks.Main results. The degree of fatigue and visual noise level had positive effects on exponent and offset in the prefrontal lobe, and the ability of sustained attention negatively affected exponent and offset. Compared with visual stimuli task, rest task induced even larger values of exponent and offset and statistically significant in the most cerebral cortex. In addition, the steady-state visual evoked potential amplitudes were negatively and positively affected by the degree of fatigue and noise levels, respectively.Significance. The conclusions of this study provide insights into the relationship between brain states and EEG characteristics. In addition, this study has the potential to provide objective methods for brain states monitoring and EEG modeling.
Collapse
Affiliation(s)
- Shangen Zhang
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Xinyi Yan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yijun Wang
- China State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, People's Republic of China
| | - Baolin Liu
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Xiaorong Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
11
|
Mridha MF, Das SC, Kabir MM, Lima AA, Islam MR, Watanobe Y. Brain-Computer Interface: Advancement and Challenges. SENSORS 2021; 21:s21175746. [PMID: 34502636 PMCID: PMC8433803 DOI: 10.3390/s21175746] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/15/2021] [Accepted: 08/20/2021] [Indexed: 02/04/2023]
Abstract
Brain-Computer Interface (BCI) is an advanced and multidisciplinary active research domain based on neuroscience, signal processing, biomedical sensors, hardware, etc. Since the last decades, several groundbreaking research has been conducted in this domain. Still, no comprehensive review that covers the BCI domain completely has been conducted yet. Hence, a comprehensive overview of the BCI domain is presented in this study. This study covers several applications of BCI and upholds the significance of this domain. Then, each element of BCI systems, including techniques, datasets, feature extraction methods, evaluation measurement matrices, existing BCI algorithms, and classifiers, are explained concisely. In addition, a brief overview of the technologies or hardware, mostly sensors used in BCI, is appended. Finally, the paper investigates several unsolved challenges of the BCI and explains them with possible solutions.
Collapse
Affiliation(s)
- M. F. Mridha
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh; (M.F.M.); (S.C.D.); (M.M.K.); (A.A.L.)
| | - Sujoy Chandra Das
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh; (M.F.M.); (S.C.D.); (M.M.K.); (A.A.L.)
| | - Muhammad Mohsin Kabir
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh; (M.F.M.); (S.C.D.); (M.M.K.); (A.A.L.)
| | - Aklima Akter Lima
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh; (M.F.M.); (S.C.D.); (M.M.K.); (A.A.L.)
| | - Md. Rashedul Islam
- Department of Computer Science and Engineering, University of Asia Pacific, Dhaka 1216, Bangladesh
- Correspondence:
| | - Yutaka Watanobe
- Department of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu 965-8580, Japan;
| |
Collapse
|
12
|
Xu L, Xu M, Jung TP, Ming D. Review of brain encoding and decoding mechanisms for EEG-based brain-computer interface. Cogn Neurodyn 2021; 15:569-584. [PMID: 34367361 PMCID: PMC8286913 DOI: 10.1007/s11571-021-09676-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/10/2021] [Accepted: 03/26/2021] [Indexed: 01/04/2023] Open
Abstract
A brain-computer interface (BCI) can connect humans and machines directly and has achieved successful applications in the past few decades. Many new BCI paradigms and algorithms have been developed in recent years. Therefore, it is necessary to review new progress in BCIs. This paper summarizes progress for EEG-based BCIs from the perspective of encoding paradigms and decoding algorithms, which are two key elements of BCI systems. Encoding paradigms are grouped by their underlying neural meachanisms, namely sensory- and motor-related, vision-related, cognition-related and hybrid paradigms. Decoding algorithms are reviewed in four categories, namely decomposition algorithms, Riemannian geometry, deep learning and transfer learning. This review will provide a comprehensive overview of both modern primary paradigms and algorithms, making it helpful for those who are developing BCI systems.
Collapse
Affiliation(s)
- Lichao Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Minpeng Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Tzyy-Ping Jung
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Swartz Center for Computational Neuroscience, University of California, San Diego, USA
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
13
|
Gao X, Wang Y, Chen X, Gao S. Interface, interaction, and intelligence in generalized brain-computer interfaces. Trends Cogn Sci 2021; 25:671-684. [PMID: 34116918 DOI: 10.1016/j.tics.2021.04.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/07/2021] [Accepted: 04/05/2021] [Indexed: 11/16/2022]
Abstract
A brain-computer interface (BCI) establishes a direct communication channel between a brain and an external device. With recent advances in neurotechnology and artificial intelligence (AI), the brain signals in BCI communication have been advanced from sensation and perception to higher-level cognition activities. While the field of BCI has grown rapidly in the past decades, the core technologies and innovative ideas behind seemingly unrelated BCI systems have never been summarized from an evolutionary point of view. Here, we review various BCI paradigms and present an evolutionary model of generalized BCI technology which comprises three stages: interface, interaction, and intelligence (I3). We also highlight challenges, opportunities, and future perspectives in the development of new BCI technology.
Collapse
Affiliation(s)
- Xiaorong Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Yijun Wang
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
| | - Xiaogang Chen
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Tianjin, China
| | - Shangkai Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
14
|
Wan W, Cui X, Gao Z, Gu Z. Frontal EEG-Based Multi-Level Attention States Recognition Using Dynamical Complexity and Extreme Gradient Boosting. Front Hum Neurosci 2021; 15:673955. [PMID: 34140885 PMCID: PMC8204057 DOI: 10.3389/fnhum.2021.673955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/26/2021] [Indexed: 01/25/2023] Open
Abstract
Measuring and identifying the specific level of sustained attention during continuous tasks is essential in many applications, especially for avoiding the terrible consequences caused by reduced attention of people with special tasks. To this end, we recorded EEG signals from 42 subjects during the performance of a sustained attention task and obtained resting state and three levels of attentional states using the calibrated response time. EEG-based dynamical complexity features and Extreme Gradient Boosting (XGBoost) classifier were proposed as the classification model, Complexity-XGBoost, to distinguish multi-level attention states with improved accuracy. The maximum average accuracy of Complexity-XGBoost were 81.39 ± 1.47% for four attention levels, 80.42 ± 0.84% for three attention levels, and 95.36 ± 2.31% for two attention levels in 5-fold cross-validation. The proposed method is compared with other models of traditional EEG features and different classification algorithms, the results confirmed the effectiveness of the proposed method. We also found that the frontal EEG dynamical complexity measures were related to the changing process of response during sustained attention task. The proposed dynamical complexity approach could be helpful to recognize attention status during important tasks to improve safety and efficiency, and be useful for further brain-computer interaction research in clinical research or daily practice, such as the cognitive assessment or neural feedback treatment of individuals with attention deficit hyperactivity disorders, Alzheimer’s disease, and other diseases which affect the sustained attention function.
Collapse
Affiliation(s)
- Wang Wan
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Xingran Cui
- Key Laboratory of Child Development and Learning Science, Ministry of Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing, China.,Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou, China
| | - Zhilin Gao
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, China.,Institute of Biomedical Devices (Suzhou), Southeast University, Suzhou, China
| |
Collapse
|
15
|
Torkamani-Azar M, Jafarifarmand A, Cetin M. Prediction of Motor Imagery Performance based on Pre-Trial Spatio-Spectral Alertness Features. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3062-3065. [PMID: 33018651 DOI: 10.1109/embc44109.2020.9175929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Electroencephalogram (EEG) based brain-computer interfaces (BCIs) enable communication by interpreting the user intent based on measured brain electrical activity. Such interpretation is usually performed by supervised classifiers constructed in training sessions. However, changes in cognitive states of the user, such as alertness and vigilance, during test sessions lead to variations in EEG patterns, causing classification performance decline in BCI systems. This research focuses on effects of alertness on the performance of motor imagery (MI) BCI as a common mental control paradigm. It proposes a new protocol to predict MI performance decline by alertness-related pre-trial spatio-spectral EEG features. The proposed protocol can be used for adapting the classifier or restoring alertness based on the cognitive state of the user during BCI applications.
Collapse
|
16
|
Balanced difficulty task finder: an adaptive recommendation method for learning tasks based on the concept of state of flow. Cogn Neurodyn 2020; 14:675-687. [PMID: 33014180 PMCID: PMC7501397 DOI: 10.1007/s11571-020-09624-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/24/2020] [Accepted: 06/01/2020] [Indexed: 11/04/2022] Open
Abstract
An adaptive task difficulty assignment method which we reckon as balanced difficulty task finder (BDTF) is proposed in this paper. The aim is to recommend tasks to a learner using a trade-off between skills of the learner and difficulty of the tasks such that the learner experiences a state of flow during the learning. Flow is a mental state that psychologists refer to when someone is completely immersed in an activity. Flow state is a multidisciplinary field of research and has been studied not only in psychology, but also neuroscience, education, sport, and games. The idea behind this paper is to try to achieve a flow state in a similar way as Elo’s chess skill rating (Glickman in Am Chess J 3:59–102) and TrueSkill (Herbrich et al. in Advances in neural information processing systems, 2006) for matching game players, where “matched players” should possess similar capabilities and skills in order to maintain the level of motivation and involvement in the game. The BDTF draws analogy between choosing an appropriate opponent or appropriate game level and automatically choosing an appropriate difficulty level of a learning task. This method, as an intelligent tutoring system, could be used in a wide range of applications from online learning environments and e-learning, to learning and remembering techniques in traditional methods such as adjusting delayed matching to sample and spaced retrieval training that can be used for people with memory problems such as people with dementia.
Collapse
|
17
|
Torkamani-Azar M, Kanik SD, Aydin S, Cetin M. Prediction of Reaction Time and Vigilance Variability From Spatio-Spectral Features of Resting-State EEG in a Long Sustained Attention Task. IEEE J Biomed Health Inform 2020; 24:2550-2558. [DOI: 10.1109/jbhi.2020.2980056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Gupta SS, Manthalkar RR. Classification of visual cognitive workload using analytic wavelet transform. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.101961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Kurisu K, Tsurutani Y, Inoue K, Hoshino Y, Saiki F, Yoshiuchi K. Intra-individual association between C-reactive protein and insulin administration in postoperative lumbar spinal canal stenosis patients: A retrospective cohort study. J Diabetes Investig 2020; 11:980-984. [PMID: 31912618 PMCID: PMC7378432 DOI: 10.1111/jdi.13210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/24/2019] [Accepted: 01/06/2020] [Indexed: 12/05/2022] Open
Abstract
The association of intra-individual variability in insulin requirements with C-reactive protein levels among acute phase patients remains unclear. This retrospective cohort study aimed to evaluate this association. Patients with type 2 diabetes undergoing surgery for lumbar spinal canal stenosis were included in the study. We analyzed 286 records of 49 patients using the linear mixed effects model. The model showed C-reactive protein levels to be significantly associated with insulin requirements, with an effect size of 0.60 U/day for an elevation of 1 mg/dL. The effect size was increased in patients with higher hemoglobin A1c levels. Our findings imply that C-reactive protein levels could be a useful clinical biomarker when blood glucose levels are controlled in acute phase patients.
Collapse
Affiliation(s)
- Ken Kurisu
- Department of Endocrinology and Diabetes CenterYokohama Rosai HospitalYokohamaJapan
- Department of Psychosomatic MedicineYokohama Rosai HospitalYokohamaJapan
- Department of Stress Sciences and Psychosomatic MedicineGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Yuya Tsurutani
- Department of Endocrinology and Diabetes CenterYokohama Rosai HospitalYokohamaJapan
| | - Kosuke Inoue
- Department of EpidemiologyUCLA Fielding School of Public HealthLos AngelesCaliforniaUSA
| | - Yoshitomo Hoshino
- Department of Endocrinology and Diabetes CenterYokohama Rosai HospitalYokohamaJapan
| | - Fumiko Saiki
- Department of Orthopedic SurgeryYokohama Rosai HospitalYokohamaJapan
| | - Kazuhiro Yoshiuchi
- Department of Stress Sciences and Psychosomatic MedicineGraduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
20
|
Novel channel selection method based on position priori weighted permutation entropy and binary gravity search algorithm. Cogn Neurodyn 2020; 15:141-156. [PMID: 33786085 DOI: 10.1007/s11571-020-09608-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/09/2020] [Accepted: 06/13/2020] [Indexed: 11/27/2022] Open
Abstract
Brain-computer interface (BCI) system based on motor imagery (MI) usually adopts multichannel Electroencephalograph (EEG) signal recording method. However, EEG signals recorded in multi-channel mode usually contain many redundant and artifact information. Therefore, selecting a few effective channels from whole channels may be a means to improve the performance of MI-based BCI systems. We proposed a channel evaluation parameter called position priori weight-permutation entropy (PPWPE), which include amplitude information and position information of a channel. According to the order of PPWPE values, we initially selected half of the channels with large PPWPE value from all sampling electrode channels. Then, the binary gravitational search algorithm (BGSA) was used in searching a channel combination that will be used in determining an optimal channel combination. The features were extracted by common spatial pattern (CSP) method from the final selected channels, and the classifier was trained by support vector machine. The PPWPE + BGSA + CSP channel selection method is validated on two data sets. Results showed that the PPWPE + BGSA + CSP method obtained better mean classification accuracy (88.0% vs. 57.5% for Data set 1 and 91.1% vs. 79.4% for Data set 2) than All-C + CSP method. The PPWPE + BGSA + CSP method can achieve higher classification in fewer channels selected. This method has great potential to improve the performance of MI-based BCI systems.
Collapse
|
21
|
Mora-Sánchez A, Pulini AA, Gaume A, Dreyfus G, Vialatte FB. A brain-computer interface for the continuous, real-time monitoring of working memory load in real-world environments. Cogn Neurodyn 2020; 14:301-321. [PMID: 32399073 PMCID: PMC7203264 DOI: 10.1007/s11571-020-09573-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 01/31/2020] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
We developed a brain-computer interface (BCI) able to continuously monitor working memory (WM) load in real-time (considering the last 2.5 s of brain activity). The BCI is based on biomarkers derived from spectral properties of non-invasive electroencephalography (EEG), subsequently classified by a linear discriminant analysis classifier. The BCI was trained on a visual WM task, tested in a real-time visual WM task, and further validated in a real-time cross task (mental arithmetic). Throughout each trial of the cross task, subjects were given real or sham feedback about their WM load. At the end of the trial, subjects were asked whether the feedback provided was real or sham. The high rate of correct answers provided by the subjects validated not only the global behaviour of the WM-load feedback, but also its real-time dynamics. On average, subjects were able to provide a correct answer 82% of the time, with one subject having 100% accuracy. Possible cognitive and motor confounding factors were disentangled to support the claim that our EEG-based markers correspond indeed to WM.
Collapse
Affiliation(s)
- Aldo Mora-Sánchez
- Brain Plasticity Unit, CNRS, UMR8249, Paris, 75005 France
- ESPCI Paris, PSL Research University, Paris, 75005 France
| | - Alfredo-Aram Pulini
- Brain Plasticity Unit, CNRS, UMR8249, Paris, 75005 France
- ESPCI Paris, PSL Research University, Paris, 75005 France
| | - Antoine Gaume
- Brain Plasticity Unit, CNRS, UMR8249, Paris, 75005 France
- ESPCI Paris, PSL Research University, Paris, 75005 France
| | - Gérard Dreyfus
- ESPCI Paris, PSL Research University, Paris, 75005 France
| | - François-Benoît Vialatte
- Brain Plasticity Unit, CNRS, UMR8249, Paris, 75005 France
- ESPCI Paris, PSL Research University, Paris, 75005 France
| |
Collapse
|
22
|
Zhong H, Wang R. Neural mechanism of visual information degradation from retina to V1 area. Cogn Neurodyn 2020; 15:299-313. [PMID: 33854646 DOI: 10.1007/s11571-020-09599-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/23/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022] Open
Abstract
The information processing mechanism of the visual nervous system is an unresolved scientific problem that has long puzzled neuroscientists. The amount of visual information is significantly degraded when it reaches the V1 after entering the retina; nevertheless, this does not affect our visual perception of the outside world. Currently, the mechanisms of visual information degradation from retina to V1 are still unclear. For this purpose, the current study used the experimental data summarized by Marcus E. Raichle to investigate the neural mechanisms underlying the degradation of the large amount of data from topological mapping from retina to V1, drawing on the photoreceptor model first. The obtained results showed that the image edge features of visual information were extracted by the convolution algorithm with respect to the function of synaptic plasticity when visual signals were hierarchically processed from low-level to high-level. The visual processing was characterized by the visual information degradation, and this compensatory mechanism embodied the principles of energy minimization and transmission efficiency maximization of brain activity, which matched the experimental data summarized by Marcus E. Raichle. Our results further the understanding of the information processing mechanism of the visual nervous system.
Collapse
Affiliation(s)
- Haixin Zhong
- Institute for Cognitive Neurodynamics, East China University of Science and Technology, 130 Meilong Road, Shanghai, People's Republic of China
| | - Rubin Wang
- Institute for Cognitive Neurodynamics, East China University of Science and Technology, 130 Meilong Road, Shanghai, People's Republic of China
| |
Collapse
|
23
|
Zuo C, Jin J, Yin E, Saab R, Miao Y, Wang X, Hu D, Cichocki A. Novel hybrid brain-computer interface system based on motor imagery and P300. Cogn Neurodyn 2019; 14:253-265. [PMID: 32226566 DOI: 10.1007/s11571-019-09560-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/19/2019] [Accepted: 10/08/2019] [Indexed: 01/08/2023] Open
Abstract
Motor imagery (MI) is a mental representation of motor behavior and has been widely used in electroencephalogram based brain-computer interfaces (BCIs). Several studies have demonstrated the efficacy of MI-based BCI-feedback training in post-stroke rehabilitation. However, in the earliest stage of the training, calibration data typically contain insufficient discriminability, resulting in unreliable feedback, which may decrease subjects' motivation and even hinder their training. To improve the performance in the early stages of MI training, a novel hybrid BCI paradigm based on MI and P300 is proposed in this study. In this paradigm, subjects are instructed to imagine writing the Chinese character following the flash order of the desired Chinese character displayed on the screen. The event-related desynchronization/synchronization (ERD/ERS) phenomenon is produced with writing based on one's imagination. Simultaneously, the P300 potential is evoked by the flash of each stroke. Moreover, a fusion method of P300 and MI classification is proposed, in which unreliable P300 classifications are corrected by reliable MI classifications. Twelve healthy naïve MI subjects participated in this study. Results demonstrated that the proposed hybrid BCI paradigm yielded significantly better performance than the single-modality BCI paradigm. The recognition accuracy of the fusion method is significantly higher than that of P300 (p < 0.05) and MI (p < 0.01). Moreover, the training data size can be reduced through fusion of these two modalities.
Collapse
Affiliation(s)
- Cili Zuo
- 1Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Jing Jin
- 1Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Erwei Yin
- Unmanned Systems Research Center, National Institute of Defense Technology Innovation, Academy of Military Sciences China, Beijing, 100081 People's Republic of China.,Tianjin Artificial Intelligence Innovation Center (TAIIC), Tianjin, People's Republic of China
| | - Rami Saab
- 4Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Yangyang Miao
- 1Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Xingyu Wang
- 1Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Dewen Hu
- 5College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha, 410073 Hunan People's Republic of China
| | - Andrzej Cichocki
- 6Skolkovo Institute of Science and Technology (SKOLTECH), Moscow, Russia 143026.,7Systems Research Institute PAS, Warsaw, Poland.,8Nicolaus Copernicus University (UMK), Torun, Poland
| |
Collapse
|