1
|
Stratmann JA, Sebastian M. Polo-like kinase 1 inhibition in NSCLC: mechanism of action and emerging predictive biomarkers. LUNG CANCER-TARGETS AND THERAPY 2019; 10:67-80. [PMID: 31308774 PMCID: PMC6612950 DOI: 10.2147/lctt.s177618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 05/24/2019] [Indexed: 12/16/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer death worldwide. Due to often unspecific disease symptoms, locally advanced or metastatic disease is diagnosed in the majority of all cases. Palliative treatment options comprise of conventional cytotoxic agents, immunotherapy with checkpoint inhibitors and the use of specific small-molecule tyrosine kinase inhibitors (TKI). However, these TKIs are mainly restricted to a small proportion of patients with lung cancer that harbor activating driver mutations. Still, the effectiveness and favorable safety profile of these compounds have prompted a systematic search for specific driver mechanisms of tumorigenesis and moreover the development of corresponding kinase inhibitors. In recent years, the Polo-like kinase (PLK) family has emerged as a key regulator in mitotic regulation. Its role in cell proliferation and the frequently observed overexpression in various tumor entities have raised much interest in basic and clinical oncology aiming to attenuate tumor growth by targeting the PLK. In this review, we give a comprehensive summary on the (pre-) clinical development of the different types of PLK inhibitors in lung cancer and summarize their mechanisms of action, safety and efficacy data and give an overview on translational research aiming to identify predictive biomarkers for a rational use of PLK inhibitors.
Collapse
Affiliation(s)
- Jan A Stratmann
- Department of Internal Medicine II, University Clinic of Frankfurt, 60596 Frankfurt, Germany
| | - Martin Sebastian
- Department of Internal Medicine II, University Clinic of Frankfurt, 60596 Frankfurt, Germany
| |
Collapse
|
2
|
The clinical and prognostic value of polo-like kinase 1 in lung squamous cell carcinoma patients: immunohistochemical analysis. Biosci Rep 2017; 37:BSR20170852. [PMID: 28724602 PMCID: PMC5554781 DOI: 10.1042/bsr20170852] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/09/2017] [Accepted: 07/18/2017] [Indexed: 02/07/2023] Open
Abstract
Polo-like kinase 1 (PLK1) has been suggested to serve as an oncogene in most human cancers. The aim of our study is to present more evidence about the clinical and prognostic value of PLK1 in lung squamous cell carcinoma patients. The status of PLK1 was observed in lung adenocarcinoma, lung squamous cell carcinoma, and normal lung tissues through analyzing microarray dataset (GEO accession numbers: GSE1213 and GSE 3627). PLK1 mRNA and protein expressions were detected in lung squamous cell carcinoma and normal lung tissues by using quantitative real-time PCR (qRT-PCR) and immunohistochemistry. In our results, the levels of PLK1 in lung squamous cell carcinoma tissues were higher than that in lung adenocarcinoma tissues. Compared with paired adjacent normal lung tissues, the PLK1 expression was increased in lung squamous cell carcinoma tissues. Furthermore, high expression of PLK1 protein was correlated with differentiated degree, clinical stage, tumor size, lymph node metastasis, and distant metastasis. The univariate and multivariate analyses showed PLK1 protein high expression was an unfavorable prognostic biomarker for lung squamous cell carcinoma patients. In conclusion, high expression of PLK1 is associated with the aggressive progression and poor prognosis in lung squamous cell carcinoma patients.
Collapse
|
3
|
Weng Ng WT, Shin JS, Roberts TL, Wang B, Lee CS. Molecular interactions of polo-like kinase 1 in human cancers. J Clin Pathol 2016; 69:557-62. [PMID: 26941182 DOI: 10.1136/jclinpath-2016-203656] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 02/09/2016] [Indexed: 01/22/2023]
Abstract
Polo-like kinase 1 (PLK1) is an essential protein in communicating cell-cycle progression and DNA damage. Overexpression of PLK1 has been validated as a marker for poor prognosis in many cancers. PLK1 knockdown decreases the survival of cancer cells. PLK1 is therefore an attractive target for anticancer treatments. Several inhibitors have been developed, and some have been clinically tested to show additive effects with conventional therapies. Upstream regulation of PLK1 involves multiple interactions of proteins such as FoxM1, E2F and p21. Other cancer-related proteins such as pRB and p53 also indirectly influence PLK1 expression. With the high mutation rates of these genes seen in cancers, they may be associated with PLK1 deregulation. This raises the question of whether PLK1 overexpression is a cause or a consequence of oncogenesis. In addition, hypomethylation of the CpG island of the PLK1 promoter region contributes to its upregulation. PLK1 expression can be affected by many factors; thus, it is possible that PLK1 deregulation in each individual patient tumours could be due to different underlying mechanisms.
Collapse
Affiliation(s)
- Wayne Tiong Weng Ng
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, Australia Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Sydney, Australia Cancer Pathology and Cell Biology Laboratory, Ingham Institute for Applied Medical Research, Sydney, Australia
| | - Joo-Shik Shin
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, Australia Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Sydney, Australia Cancer Pathology and Cell Biology Laboratory, Ingham Institute for Applied Medical Research, Sydney, Australia Molecular Medicine Research Group, School of Medicine, Western Sydney University, Sydney, Australia Department of Anatomical Pathology, Liverpool Hospital, Sydney, Australia
| | - Tara Laurine Roberts
- Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Sydney, Australia Molecular Medicine Research Group, School of Medicine, Western Sydney University, Sydney, Australia
| | - Bin Wang
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, Australia Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Sydney, Australia South Western Sydney Clinical School, University of New South Wales, Sydney, Australia
| | - Cheok Soon Lee
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, Australia Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Sydney, Australia Cancer Pathology and Cell Biology Laboratory, Ingham Institute for Applied Medical Research, Sydney, Australia Molecular Medicine Research Group, School of Medicine, Western Sydney University, Sydney, Australia Department of Anatomical Pathology, Liverpool Hospital, Sydney, Australia South Western Sydney Clinical School, University of New South Wales, Sydney, Australia Cancer Pathology, Bosch Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
4
|
Chauhan V, Howland M, Mendenhall A, O'Hara S, Stocki TJ, McNamee JP, Wilkins RC. Effects of alpha particle radiation on gene expression in human pulmonary epithelial cells. Int J Hyg Environ Health 2012; 215:522-35. [PMID: 22608759 DOI: 10.1016/j.ijheh.2012.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 03/27/2012] [Accepted: 04/15/2012] [Indexed: 01/11/2023]
Abstract
The general public receives approximately half of its exposure to natural radiation through alpha (α)-particles from radon ((222)Rn) gas and its decay progeny. Epidemiological studies have found a positive correlation between exposure to (222)Rn and lung carcinogenesis. An understanding of the transcriptional responses involved in these effects remains limited. In this study, genomic technology was employed to mine for subtle changes in gene expression that may be representative of an altered physiological state. Human lung epithelial cells were exposed to 0, 0.03, 0.3 and 0.9Gy of α-particle radiation. Microarray analysis was employed to determine transcript expression levels 4h and 24h after exposure. A total of 590 genes were shown to be differentially expressed in the α-particle radiated samples (false discovery rate (FDR)≤0.05). Sub-set of these transcripts were time-responsive, dose-responsive and both time- and dose-responsive. Pathway analysis showed functions related to cell cycle arrest, and DNA replication, recombination and repair (FDR≤0.05). The canonical pathways associated with these genes were in relation to pyrimidine metabolism, G2/M damage checkpoint regulation and p53 signaling (FDR≤0.05). Overall, this gene expression profile suggests that α-particle radiation inhibits DNA synthesis and subsequent mitosis, and causes cell cycle arrest.
Collapse
Affiliation(s)
- Vinita Chauhan
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada K1A 0K9. Vinita
| | | | | | | | | | | | | |
Collapse
|
5
|
Yano K. Lipid metabolic pathways as lung cancer therapeutic targets: a computational study. Int J Mol Med 2011; 29:519-29. [PMID: 22211244 PMCID: PMC3573709 DOI: 10.3892/ijmm.2011.876] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 12/13/2011] [Indexed: 12/20/2022] Open
Abstract
Inhibitors of lipid metabolic pathways, particularly drugs targeting the mevalonate pathway, have been suggested to be valuable in enhancing the effectiveness of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) and these compounds may also be effective in patients with inherent or acquired resistance to EGFR-TKIs. The present study examined gene expression profiles in lung adenocarcinoma to characterize the interaction between growth factor signals and lipid metabolic pathways at the transcriptional level. Gene expression correlation analysis showed that genes involved in the mevalonate pathway and unsaturated fatty acid synthesis were negatively correlated with the expression of EGFR, MET and other growth factor receptor genes, as well as with the expression of genes involved in cell migration and adhesion. On the other hand, the expression of genes related to cell cycle progression, DNA repair and DNA replication were positively correlated with the metabolic pathway genes mentioned above, and a significant number of such genes had promoter domains for nuclear factor Y (NFY). Genes whose expression showed a positive correlation with NFY expression and mevalonate pathway genes were found to exhibit protein-protein interactions with several 'hub' genes, including BRCA1, that have been associated with both lung cancer and cell division. These results support the idea that inhibition of lipid metabolic pathways may be valuable as an alternative therapeutic option for the treatment of lung adenocarcinoma, and suggest that NFY is a possible molecular target for such efforts.
Collapse
Affiliation(s)
- Kojiro Yano
- Faculty of Information Science and Technology, Osaka Institute of Technology, Hirakata-City, Osaka, Japan.
| |
Collapse
|
6
|
Sun W, Liu BL, Chen AS, Cao XK, Su Q. Small interfering RNA-mediated knockdown of polo-like kinase 1 promotes apoptosis in human hepatocellular carcinoma cell line BCL-7402. Shijie Huaren Xiaohua Zazhi 2011; 19:2822-2828. [DOI: 10.11569/wcjd.v19.i27.2822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of small interfering RNA (siRNA)-mediated Polo-like kinase 1 (Plk1) gene silencing on p53 expression and cell apoptosis in human hepatocellular carcinoma cell line BCL-7402, and to explore the feasibility of targeting the human Plk1 gene as a therapeutic strategy for hepatocellular carcinoma.
METHODS: Two siRNA sequences (siRNA1 and siRNA2) targeting the human Plk1 gene were designed and synthesized. BCL-7402 cells were transfected with blank control, negative control, siRNA1 or siRNA2 via lipofection. After transfection, reverse transcription-polymerase chain reaction (RT- PCR) was used to examine the expression of Plk1 mRNA , and Western blot was used to examine the expression of Plk1 and P53 proteins in transfected BCL-7402 cells. Cell cycle distribution and apoptosis of transfected cells were monitored by flow cytometry (FCM). The ultrastructural changes of transfected BCL-7402 cells were observed by transmission electron microscopy (TEM).
RESULTS: BCL-7402 cells transfected with low doses of siRNAs targeting the Plk1 gene showed greatly decreased levels of Plk1 mRNA and protein. In the siRNA1 group, Plk1 mRNA expression was reduced by 51% and 62% and Plk1 protein expression by 65% and 81% 24 and 48 h after transfection (all P < 0.01). In the siRNA2 group, Plk1 mRNA expression was reduced by 42% and 56% and Plk1 protein expression by 51% and 65% 24 and 48 h after transfection (all P < 0.01). P53 protein levels increased obviously with the decrease in Plk1 protein levels (P < 0.01). The percentage of cells at G2/M phase increased obviously 24 h after transfection (P < 0.01). Apoptosis rate increased remarkably and apoptotic phenotypes could be seen by TEM. in cells 48 h after transfection.
CONCLUSION: SiRNAs targeting the human Plk1 gene remarkably inhibited Plk1 expression, increased p53 gene expression, and promoted apoptosis, suggesting that the Plk1 gene plays important roles in cell cycle control and apoptosis of BCL-7402 cells.
Collapse
|
7
|
Berretta R, Moscato P. Cancer biomarker discovery: the entropic hallmark. PLoS One 2010; 5:e12262. [PMID: 20805891 PMCID: PMC2923618 DOI: 10.1371/journal.pone.0012262] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Accepted: 06/26/2010] [Indexed: 12/29/2022] Open
Abstract
Background It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-througput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases.
Collapse
Affiliation(s)
- Regina Berretta
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
- Information Based Medicine Program, Hunter Medical Research Institute, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Pablo Moscato
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
- Information Based Medicine Program, Hunter Medical Research Institute, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
- Australian Research Council Centre of Excellence in Bioinformatics, Callaghan, New South Wales, Australia
- * E-mail:
| |
Collapse
|
8
|
Gleixner KV, Ferenc V, Peter B, Gruze A, Meyer RA, Hadzijusufovic E, Cerny-Reiterer S, Mayerhofer M, Pickl WF, Sillaber C, Valent P. Polo-like kinase 1 (Plk1) as a novel drug target in chronic myeloid leukemia: overriding imatinib resistance with the Plk1 inhibitor BI 2536. Cancer Res 2010; 70:1513-23. [PMID: 20145140 DOI: 10.1158/0008-5472.can-09-2181] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In most patients with chronic myeloid leukemia (CML), the disease can be kept under control using the BCR/ABL kinase inhibitor imatinib. Nevertheless, resistance or intolerance to imatinib and other BCR/ABL inhibitors may occur during therapy. Therefore, CML research is focusing on novel targets and targeted drugs. Polo-like kinase 1 (Plk1) is a serine/threonine kinase that plays an essential role in mitosis. In this study, we examined the expression of Plk1 in CML cells and its potential role as a therapeutic target. Plk1 was found to be expressed in phosphorylated form in the CML cell line K562 as well as in primary CML cells in all patients tested. Inhibition of BCR/ABL by imatinib or nilotinib (AMN107) led to decreased expression of the Plk1 protein in CML cells, suggesting that BCR/ABL promotes Plk1 generation. Silencing of Plk1 in CML cells by a small interfering RNA approach was followed by cell cycle arrest and apoptosis. Furthermore, the Plk1-targeting drug BI 2536 was found to inhibit proliferation of imatinib-sensitive and imatinib-resistant CML cells, including leukemic cells, carrying the T315 mutation of BCR/ABL with reasonable IC(50) values (1-50 nmol/L). The growth-inhibitory effects of BI 2536 on CML cells were found to be associated with cell cycle arrest and apoptosis. Moreover, BI 2536 was found to synergize with imatinib and nilotinib in producing growth inhibition in CML cells. In conclusion, Plk1 is expressed in CML cells and may represent a novel, interesting target in imatinib-sensitive and imatinib-resistant CML.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Benzamides
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/physiology
- Drug Delivery Systems/methods
- Drug Evaluation, Preclinical
- Drug Resistance, Neoplasm/drug effects
- Female
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/physiology
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Leukemic
- Humans
- Imatinib Mesylate
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Male
- Middle Aged
- Piperazines/therapeutic use
- Protein Kinase Inhibitors/therapeutic use
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/physiology
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- Pteridines/administration & dosage
- Pteridines/therapeutic use
- Pyrimidines/therapeutic use
- Polo-Like Kinase 1
Collapse
Affiliation(s)
- Karoline V Gleixner
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Institute of Immunology, Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chopra P, Sethi G, Dastidar SG, Ray A. Polo-like kinase inhibitors: an emerging opportunity for cancer therapeutics. Expert Opin Investig Drugs 2010; 19:27-43. [PMID: 20001553 DOI: 10.1517/13543780903483191] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD The Polo-like kinase (Plk) family has emerged as an important regulator in cell cycle progression. Plks belong to a family of serine/threonine kinases and exist in four isoforms Plk1- 4. However, only one of these isoforms, Plk1, is shown to be involved in the activation of Cdc2, chromosome segregation, centrosome maturation, bipolar spindle formation and execution of cytokinesis. The activity of Plk1 is elevated in tissues and cells with a high mitotic index. In patients, Plk1 is overexpressed in tumors including those derived from lung, breast, colon, pancreas, prostate and ovary. Plk1 depletion is associated with the decrease in cell viability and induction of apoptosis in various cancerous cells. Several Plk1 inhibitors are in different phases of clinical development for anticancer therapy. AREAS COVERED IN THIS REVIEW The focus of present review is to highlight Plk1 as a promising therapeutic approach for the treatment of cancer. The review discusses the role of Plk1 in cancer and the current status of Plk1 inhibitors, as well as highlighting the possible beneficial effect of inhibition of Plk1 as compared to other mitotic targets. WHAT THE READER WILL GAIN Readers will get a comprehensive overview of Plk1 as a novel anticancer drug target. This review will also update readers about the progress made in the field of Plk1 inhibitors. TAKE HOME MESSAGE The current literature about Plk1 inhibitors and knockout studies favor Plk1 inhibition as a potential antitumor therapy.
Collapse
Affiliation(s)
- Puneet Chopra
- New Drug Discovery Research, Department of Pharmacology, Ranbaxy Research Laboratories, Gurgaon-122001-Haryana, India.
| | | | | | | |
Collapse
|