1
|
Guo J, Ye M, Zhang W, Wu Z, Feng Z, Fang X, Li Q, Sang H, Shi Z, Shi W, He C, Gao X, Guo J, Tong Z, Gu Y, Guo L. Drug-Coated Balloon Angioplasty of Infrapopliteal Lesions in Chronic Limb-Threatening Ischemia: Six-month Outcomes of PRIME-WIFI. J Endovasc Ther 2023:15266028231208646. [PMID: 37919946 DOI: 10.1177/15266028231208646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
PURPOSE To evaluate 6-month outcomes of drug-coated balloon (DCB) angioplasty of infrapopliteal lesions in patients with chronic limb-threatening ischemia (CLTI). METHODS We analyzed 6-month follow-up data from the 10-center PRIME-WIFI prospective registry on 300 consecutive patients (33.000% female) with CLTI who underwent DCB angioplasty for infrapopliteal arterial lesions. The primary outcome was freedom from major adverse event (MAE), a composite of major amputation, all-cause death, and clinically-driven target limb reintervention (CD-TLR). Secondary outcomes included amputation-free survival (AFS), freedom from each primary outcome component, primary sustained clinical improvement, and quality of life (QOL) score. Independent risk factors of MAE were determined using Cox proportional hazards regression analysis. RESULTS A total of 409 infrapopliteal lesions in 312 limbs were treated with DCB, with 54.167% of the limbs being treated for isolated infrapopliteal lesions. By Kaplan-Meier analysis, at 6 months post- procedure (follow-up rate, 85.000%), freedom from MAE was 86.353%; AFS was 90.318%; and freedom from major amputation, all-cause death, and CD-TLR were 96.429%, 93.480%, and 95.079%, respectively. At 6-month follow-up, 83.590% of patients showed primary sustained clinical improvement, and QOL score (4.902±1.388) improved compared with that before procedure (2.327±1.109; p<0.001). Chronic renal insufficiency, chronic obstructive pulmonary disease, Rutherford grade, and postoperative infrapopliteal runoff score were independent risk factors for MAE within 6 months. CONCLUSION In CLTI, DCB angioplasty of infrapopliteal lesions yields acceptable early efficacy and safety. CLINICAL IMPACT This study evaluated the 6-month outcomes of DCB angioplasty in infrapopliteal lesions in CLTI patients by analyzing multicenter prospective data, showing that infrapopliteal DCB angioplasty can be performed with acceptable freedom from MAE rate, amputation-free survival rate, freedom from major amputation rate, survival rate, and freedom from CD-TLR rate. No patient experienced DCB-related intraoperative distal embolism. Chronic renal insufficiency, chronic obstructive pulmonary disease, Rutherford grade and postoperative infrapopliteal runoff score were independent risk factors for MAE within 6 months. Comparative real-world studies are needed.
Collapse
Affiliation(s)
- Julong Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Meng Ye
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei Zhang
- Biomedical Informatics & Statistics Center, School of Public Health, Fudan University, Shanghai, China
| | - Ziheng Wu
- Department of Vascular Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zibo Feng
- Department of Vascular Surgery, Liyuan Hospital of Tongji Medical College of Huazhong University of Science & Technology, Wuhan, China
| | - Xin Fang
- Department of Vascular Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Li
- Department of Vascular Surgery, The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, China
| | - Hongfei Sang
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhenyu Shi
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weihao Shi
- Department of Vascular Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Chunshui He
- Department of Vascular Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xixiang Gao
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jianming Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhu Tong
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lianrui Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Uruski P, Matuszewska J, Leśniewska A, Rychlewski D, Niklas A, Mikuła-Pietrasik J, Tykarski A, Książek K. An integrative review of nonobvious puzzles of cellular and molecular cardiooncology. Cell Mol Biol Lett 2023; 28:44. [PMID: 37221467 DOI: 10.1186/s11658-023-00451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023] Open
Abstract
Oncologic patients are subjected to four major treatment types: surgery, radiotherapy, chemotherapy, and immunotherapy. All nonsurgical forms of cancer management are known to potentially violate the structural and functional integrity of the cardiovascular system. The prevalence and severity of cardiotoxicity and vascular abnormalities led to the emergence of a clinical subdiscipline, called cardiooncology. This relatively new, but rapidly expanding area of knowledge, primarily focuses on clinical observations linking the adverse effects of cancer therapy with deteriorated quality of life of cancer survivors and their increased morbidity and mortality. Cellular and molecular determinants of these relations are far less understood, mainly because of several unsolved paths and contradicting findings in the literature. In this article, we provide a comprehensive view of the cellular and molecular etiology of cardiooncology. We pay particular attention to various intracellular processes that arise in cardiomyocytes, vascular endothelial cells, and smooth muscle cells treated in experimentally-controlled conditions in vitro and in vivo with ionizing radiation and drugs representing diverse modes of anti-cancer activity.
Collapse
Affiliation(s)
- Paweł Uruski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Julia Matuszewska
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Aleksandra Leśniewska
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Daniel Rychlewski
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Arkadiusz Niklas
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland.
| |
Collapse
|
3
|
Long Term Outcomes After Revascularisations Below the Knee with Paclitaxel Coated Devices: A Propensity Score Matched Cohort Analysis. Eur J Vasc Endovasc Surg 2020; 60:549-558. [PMID: 32807674 DOI: 10.1016/j.ejvs.2020.06.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/06/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
|
4
|
Zhao J, Yang M, Wu X, Yang Z, Jia P, Sun Y, Li G, Xie L, Liu B, Liu H. Effects of paclitaxel intervention on pulmonary vascular remodeling in rats with pulmonary hypertension. Exp Ther Med 2019; 17:1163-1170. [PMID: 30679989 PMCID: PMC6327549 DOI: 10.3892/etm.2018.7045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 03/23/2018] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to investigate the effects of paclitaxel (PTX), at a non-cytotoxic concentration, on pulmonary vascular remodeling (PVR) in rats with pulmonary hypertension (PAH), and to explore the mechanisms underlying the PTX-mediated reversal of PVR in PAH. A total of 36 rats were divided into control group (n=12), model group (n=12) receiving a subcutaneous injection of monocrotaline (60 mg/kg) in the back on day 7 following left pneumonectomy and PTX group (n=12) with PTX (2 mg/kg) injection via the caudal vein 3 weeks following establishing the model. The degree of PVR among all groups, as well as the expression levels of Ki67, p27Kip1 and cyclin B1, were compared. The mean pulmonary artery pressure, right ventricular hypertrophy index [right ventricle/(left ventricle + septum) ratio] and the thickness of the pulmonary arterial tunica media in the model group were 58.34±2.01 mmHg, 0.64±0.046 and 65.3±3.3%, respectively, which were significantly higher when compared with 23.30±1.14 mmHg, 0.32±0.028 and 16.2±1.3% in the control group, respectively (P<0.01). The mean pulmonary artery pressure, right ventricular hypertrophy index and thickness of the pulmonary arterial tunica media in the PTX group were 42.35±1.53 mmHg, 0.44±0.029 and 40.5±2.6%, respectively, which were significantly lower when compared with the model group (P<0.01). Compared with the control group, the expression levels of Ki67 and cyclin B1 in the model group were significantly increased (P<0.01), while p27Kip1 expression was significantly reduced (P<0.01). Following PTX intervention, the expression levels of Ki67 and cyclin B1 were significantly reduced when compared with the model group (P<0.01), while p27Kip1 expression was significantly increased (P<0.01). The results of the present study suggest that PTX, administered at a non-cytotoxic concentration, may reduce PAH in rats, and prevent the effects of PVR in PAH. These effects of PTX may be associated with increased expression of p27Kip1 and decreased expression of cyclin B1.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Pediatric Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Meifang Yang
- School of Nursing, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xindan Wu
- Department of Pediatrics, Chengdu Women and Children's Central Hospital, Chengdu, Sichuan 610091, P.R. China
| | - Zhangya Yang
- Department of Pediatrics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Peng Jia
- Department of Pediatric Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yuqin Sun
- Department of Pediatric Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Gang Li
- Department of Pediatric Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Liang Xie
- Department of Pediatric Cardiology, West China Second University Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Bin Liu
- Department of Pediatric Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Hanmin Liu
- Department of Pediatric Cardiology, West China Second University Hospital, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
5
|
Shi JH, Cui NP, Wang S, Zhao MZ, Wang B, Wang YN, Chen BP. Overexpression of YB1 C-terminal domain inhibits proliferation, angiogenesis and tumorigenicity in a SK-BR-3 breast cancer xenograft mouse model. FEBS Open Bio 2016; 6:33-42. [PMID: 27047740 PMCID: PMC4794790 DOI: 10.1002/2211-5463.12004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/27/2015] [Accepted: 11/29/2015] [Indexed: 12/12/2022] Open
Abstract
Y-box-binding protein 1 (YB1) is a multifunctional transcription factor with vital roles in proliferation, differentiation and apoptosis. In this study, we have examined the role of its C-terminal domain (YB1 CTD) in proliferation, angiogenesis and tumorigenicity in breast cancer. Breast cancer cell line SK-BR-3 was infected with GFP-tagged YB1 CTD adenovirus expression vector. An 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) proliferation assay showed that YB1 CTD decreased SK-BR-3 cell proliferation, and down-regulated cyclin B1 and up-regulated p21 levels in SK-BR-3 cells. YB1 CTD overexpression changed the cytoskeletal organization and slightly inhibited the migration of SK-BR-3 cells. YB1 CTD also inhibited secreted VEGF expression in SK-BR-3 cells, which decreased SK-BR-3-induced EA.hy926 endothelial cell angiogenesis in vitro. YB1 CTD overexpression attenuated the ability of SK-BR-3 cells to form tumours in nude mice, and decreased in vivo VEGF levels and angiogenesis in the xenografts in SK-BR-3 tumour-bearing mice. Taken together, our findings demonstrate the vital role of YB1 CTD overexpression in inhibiting proliferation, angiogenesis and tumorigenicity of breast cancer cell line SK-BR-3.
Collapse
Affiliation(s)
- Jian-Hong Shi
- Central Laboratory Hebei Laboratory of Mechanism and Procedure of Cancer Radiotherapy and Chemotherapy Affiliated Hospital of Hebei University Baoding China
| | - Nai-Peng Cui
- Department of Oncology Affiliated Hospital of Hebei University Baoding China
| | - Shuo Wang
- Central Laboratory Hebei Laboratory of Mechanism and Procedure of Cancer Radiotherapy and Chemotherapy Affiliated Hospital of Hebei University Baoding China
| | - Ming-Zhi Zhao
- Department of Oncology Affiliated Hospital of Hebei University Baoding China
| | - Bing Wang
- Department of Oncology Affiliated Hospital of Hebei University Baoding China
| | - Ya-Nan Wang
- Department of Pathology Affiliated Hospital of Hebei University Baoding China
| | - Bao-Ping Chen
- Department of Oncology Affiliated Hospital of Hebei University Baoding China
| |
Collapse
|
6
|
Adesina SE, Kang BY, Bijli KM, Ma J, Cheng J, Murphy TC, Michael Hart C, Sutliff RL. Targeting mitochondrial reactive oxygen species to modulate hypoxia-induced pulmonary hypertension. Free Radic Biol Med 2015; 87:36-47. [PMID: 26073127 PMCID: PMC4615392 DOI: 10.1016/j.freeradbiomed.2015.05.042] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 05/08/2015] [Accepted: 05/28/2015] [Indexed: 12/11/2022]
Abstract
Pulmonary hypertension (PH) is characterized by increased pulmonary vascular remodeling, resistance, and pressures. Reactive oxygen species (ROS) contribute to PH-associated vascular dysfunction. NADPH oxidases (Nox) and mitochondria are major sources of superoxide (O(2)(•-)) and hydrogen peroxide (H(2)O(2)) in pulmonary vascular cells. Hypoxia, a common stimulus of PH, increases Nox expression and mitochondrial ROS (mtROS) production. The interactions between these two sources of ROS generation continue to be defined. We hypothesized that mitochondria-derived O(2)(•-) (mtO(2)(•-)) and H(2)O(2) (mtH(2)O(2)) increase Nox expression to promote PH pathogenesis and that mitochondria-targeted antioxidants can reduce mtROS, Nox expression, and hypoxia-induced PH. Exposure of human pulmonary artery endothelial cells to hypoxia for 72 h increased mtO(2)(•-) and mtH(2)O(2). To assess the contribution of mtO(2)(•-) and mtH(2)O(2) to hypoxia-induced PH, mice that overexpress superoxide dismutase 2 (Tg(hSOD2)) or mitochondria-targeted catalase (MCAT) were exposed to normoxia (21% O(2)) or hypoxia (10% O(2)) for three weeks. Compared with hypoxic control mice, MCAT mice developed smaller hypoxia-induced increases in RVSP, α-SMA staining, extracellular H(2)O(2) (Amplex Red), Nox2 and Nox4 (qRT-PCR and Western blot), or cyclinD1 and PCNA (Western blot). In contrast, Tg(hSOD2) mice experienced exacerbated responses to hypoxia. These studies demonstrate that hypoxia increases mtO(2)(•-) and mtH(2)O(2). Targeting mtH(2)O(2) attenuates PH pathogenesis, whereas targeting mtO(2)(•-) exacerbates PH. These differences in PH pathogenesis were mirrored by RVSP, vessel muscularization, levels of Nox2 and Nox4, proliferation, and H(2)O(2) release. These studies suggest that targeted reductions in mtH(2)O(2) generation may be particularly effective in preventing hypoxia-induced PH.
Collapse
Affiliation(s)
- Sherry E Adesina
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, GA 30033, USA
| | - Bum-Yong Kang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, GA 30033, USA
| | - Kaiser M Bijli
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, GA 30033, USA
| | - Jing Ma
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, GA 30033, USA
| | - Juan Cheng
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, GA 30033, USA
| | - Tamara C Murphy
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, GA 30033, USA
| | - C Michael Hart
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, GA 30033, USA
| | - Roy L Sutliff
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Atlanta Veterans Affairs and Emory University Medical Centers, Atlanta, GA 30033, USA.
| |
Collapse
|