1
|
La Rosa GRM, Loreto C, Pedullà E, Lombardo C. Association between estrogen receptors polymorphisms and temporomandibular joint disorders: A systematic review. Arch Oral Biol 2025; 170:106130. [PMID: 39561523 DOI: 10.1016/j.archoralbio.2024.106130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/20/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024]
Abstract
OBJECTIVES This systematic review aimed to investigate the association between genetic polymorphisms in estrogen receptor alpha (ERα) and beta (ERβ) and the presence and severity of temporomandibular disorders (TMDs). MATERIALS AND METHODS A comprehensive search was conducted in PubMed, Scopus and Web of Science on October 19, 2024, without language or time restrictions. Studies were included if they were cross-sectional, case-control, or cohort designs and reported data on ER-polymorphisms and TMDs, diagnosed using validated criteria. Two independent reviewers screened the results to identify eligible studies. Data were extracted and synthesized narratively due to high heterogeneity across included studies, with a subgroup analysis performed to evaluate the influence of sex. The risk of bias was assessed using the Joanna Briggs Institute's critical appraisal tools. RESULTS The search identified 277 articles, of which 8 studies met the inclusion criteria. Seven were case-control and two cross-sectional studies. The most commonly investigated ER polymorphisms were ESR1 (Pvu II and Xba I) and ESR2 (rs1676303). Some studies identified associations between specific polymorphisms and TMD-related pain or joint conditions, although results varied across different populations and subtypes of TMDs. CONCLUSIONS The findings suggest potential associations between specific ERα and ERβ polymorphisms and TMD risk, particularly in women. However, inconsistencies across studies underscore the need for prospective and larger studies to confirm these genetic links and clarify their clinical significance. SYSTEMATIC REVIEW REGISTRATION CRD42024581266.
Collapse
Affiliation(s)
- Giusy Rita Maria La Rosa
- Department of General Surgery and Surgical-Medical Specialties, University of Catania, Catania, Italy.
| | - Carla Loreto
- Section of Human Anatomy, Department of Biomedical and Biotechnology Sciences, University of Catania, Catania, Italy.
| | - Eugenio Pedullà
- Department of General Surgery and Surgical-Medical Specialties, University of Catania, Catania, Italy.
| | - Claudia Lombardo
- Section of Human Anatomy, Department of Biomedical and Biotechnology Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
2
|
Son H, Shannonhouse J, Zhang Y, Gomez R, Amarista F, Perez D, Ellis E, Chung MK, Kim YS. Elucidation of neuronal activity in mouse models of temporomandibular joint injury and inflammation by in vivo GCaMP Ca 2+ imaging of intact trigeminal ganglion neurons. Pain 2024; 165:2794-2803. [PMID: 39365648 PMCID: PMC11562762 DOI: 10.1097/j.pain.0000000000003421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 10/05/2024]
Abstract
ABSTRACT Patients with temporomandibular disorders (TMDs) typically experience facial pain and discomfort or tenderness in the temporomandibular joint (TMJ), causing disability in daily life. Unfortunately, existing treatments for TMD are not always effective, creating a need for more advanced, mechanism-based therapies. In this study, we used in vivo GCaMP3 Ca 2+ imaging of intact trigeminal ganglia (TG) to characterize functional activity of the TG neurons in vivo, specifically in mouse models of TMJ injury and inflammation. This system allows us to observe neuronal activity in intact anatomical, physiological, and clinical conditions and to assess neuronal function and response to various stimuli. We observed a significant increase in spontaneously and transiently activated neurons responding to mechanical, thermal, and chemical stimuli in the TG of mice with TMJ injection of complete Freund adjuvant or with forced mouth opening (FMO). An inhibitor of the calcitonin gene-related peptide receptor significantly attenuated FMO-induced facial hypersensitivity. In addition, we confirmed the attenuating effect of calcitonin gene-related peptide antagonist on FMO-induced sensitization by in vivo GCaMP3 Ca 2+ imaging of intact TG. Our results contribute to unraveling the role and activity of TG neurons in the TMJ pain, bringing us closer to understanding the pathophysiological processes underlying TMJ pain after TMJ injury. Our study also illustrates the utility of in vivo GCaMP3 Ca 2+ imaging of intact TG for studies aimed at developing more targeted and effective treatments for TMJ pain.
Collapse
Affiliation(s)
- Hyeonwi Son
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - John Shannonhouse
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Yan Zhang
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Ruben Gomez
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Felix Amarista
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Daniel Perez
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Edward Ellis
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, University of Maryland at Baltimore, Baltimore, MD, United States
| | - Yu Shin Kim
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Programs in Integrated Biomedical Sciences, Translational Sciences, Biomedical Engineering, Radiological Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
3
|
Wang X, Liu F, Wang T, He Y, Guo Y. Applications of hydrogels in tissue-engineered repairing of temporomandibular joint diseases. Biomater Sci 2024; 12:2579-2598. [PMID: 38679944 DOI: 10.1039/d3bm01687k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Epidemiological studies reveal that symptoms of temporomandibular joint disorders (TMDs) occur in 60-70% of adults. The inflammatory damage caused by TMDs can easily lead to defects in the articular disc, condylar cartilage, subchondral bone and muscle of the temporomandibular joint (TMJ) and cause pain. Despite the availability of various methods for treating TMDs, few existing treatment schemes can achieve permanent recovery. This necessity drives the search for new approaches. Hydrogels, polymers with high water content, have found widespread use in tissue engineering and regeneration due to their excellent biocompatibility and mechanical properties, which resemble those of human tissues. In the context of TMD therapy, numerous experiments have demonstrated that hydrogels show favorable effects in aspects such as articular disc repair, cartilage regeneration, muscle repair, pain relief, and drug delivery. This review aims to summarize the application of hydrogels in the therapy of TMDs based on recent research findings. It also highlights deficiencies in current hydrogel research related to TMD therapy and outlines the broad potential of hydrogel applications in treating TMJ diseases in the future.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fushuang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tianyi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yikai He
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
4
|
Wang J, Liu X, Gou J, Deng J, Li M, Zhu Y, Wu Z. Role of neuropeptides in orofacial pain: A literature review. J Oral Rehabil 2024; 51:898-908. [PMID: 38213060 DOI: 10.1111/joor.13656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/19/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND Neuropeptides play a critical role in regulating pain and inflammation. Despite accumulating evidence has further uncovered the novel functions and mechanisms of different neuropeptides in orofacial pain sensation and transmission, there is deficient systematic description of neuropeptides' pain modulation in the orofacial region, especially in the trigeminal system. OBJECTIVES The present review aims to summarise several key neuropeptides and gain a better understanding of their major regulatory roles in orofacial inflammation and pain. METHODS We review and summarise current studies related to calcitonin gene-related peptide (CGRP), substance P (SP), opioid peptide (OP), galanin (GAL) and other neuropeptides' functions and mechanisms as well as promising targets for orofacial pain control. RESULTS A number of neuropeptides are clearly expressed in the trigeminal sensory system and have critical functions in the transduction and pathogenesis of orofacial pain. The functions, possible cellular and molecular mechanisms have been introduced and discussed. Neuropeptides and their agonists or antagonists which are widely studied to be potential treatment options of orofacial pain has been evaluated. CONCLUSIONS Various neuropeptides play important but distinct (pro-nociceptive or analgesic) roles in orofacial pain with different mechanisms. In summary, CGRP, SP, NPY, NKA, HK-1, VIP mainly play proinflammatory and pro-nociceptive effects while OP, GAL, OXT, OrxA mainly have inhibitory effects on orofacial pain.
Collapse
Affiliation(s)
- Jian Wang
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Xiangtao Liu
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Junzhuo Gou
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Jing Deng
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Mujia Li
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yafen Zhu
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Zhifang Wu
- Department of Pediatric Dentistry, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| |
Collapse
|
5
|
Son H, Shannonhouse J, Zhang Y, Gomez R, Chung MK, Kim YS. Elucidation of neuronal activity in mouse models of TMJ injury by in vivo GCaMP Ca 2+ imaging of intact trigeminal ganglion neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575919. [PMID: 38293055 PMCID: PMC10827170 DOI: 10.1101/2024.01.16.575919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Patients with temporomandibular disorders (TMD) typically experience facial pain and discomfort or tenderness in the temporomandibular joint (TMJ), causing disability in daily life. Unfortunately, existing treatments for TMD are not always effective, creating a need for more advanced, mechanism-based therapies. In this study, we used in vivo GCaMP3 Ca 2+ imaging of intact trigeminal ganglia (TG) to characterize functional activity of the TG neurons in vivo , specifically in TMJ animal models. This system allows us to observe neuronal activity in intact anatomical, physiological, and clinical conditions and to assess neuronal function and response to various stimuli. We observed a significant increase in spontaneously and transiently activated neurons responding to mechanical, thermal, and chemical stimuli in the TG of forced mouth open (FMO) mice. An inhibitor of the CGRP receptor significantly attenuated FMO-induced facial hypersensitivity. In addition, we confirmed the attenuating effect of CGRP antagonist on FMO-induced sensitization by in vivo GCaMP3 Ca 2+ imaging of intact TG. Our results contribute to unraveling the role and activity of TG neurons in the TMJ pain animal models of TMD, bringing us closer understanding the pathophysiological processes underlying TMD. Our study also illustrates the utility of in vivo GCaMP3 Ca 2+ imaging of intact TG for studies aimed at developing more targeted and effective treatments for TMD.
Collapse
|
6
|
Suttle A, Wang P, Dias FC, Zhang Q, Luo Y, Simmons L, Bortsov A, Tchivileva IE, Nackley AG, Chen Y. Sensory Neuron-TRPV4 Modulates Temporomandibular Disorder Pain Via CGRP in Mice. THE JOURNAL OF PAIN 2023; 24:782-795. [PMID: 36509176 PMCID: PMC10164682 DOI: 10.1016/j.jpain.2022.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
Temporomandibular disorder (TMD) pain that involves inflammation and injury in the temporomandibular joint (TMJ) and/or masticatory muscle is the most common form of orofacial pain. We recently found that transient receptor potential vanilloid-4 (TRPV4) in trigeminal ganglion (TG) neurons is upregulated after TMJ inflammation, and TRPV4 coexpresses with calcitonin gene-related peptide (CGRP) in TMJ-innervating TG neurons. Here, we extended these findings to determine the specific contribution of TRPV4 in TG neurons to TMD pain, and examine whether sensory neuron-TRPV4 modulates TMD pain via CGRP. In mouse models of TMJ inflammation or masseter muscle injury, sensory neuron-Trpv4 conditional knockout (cKO) mice displayed reduced pain. Coexpression of TRPV4 and CGRP in TMJ- or masseter muscle-innervating TG neurons was increased after TMJ inflammation and masseter muscle injury, respectively. Activation of TRPV4-expressing TG neurons triggered secretion of CGRP, which was associated with increased levels of CGRP in peri-TMJ tissues, masseter muscle, spinal trigeminal nucleus, and plasma in both models. Local injection of CGRP into the TMJ or masseter muscle evoked acute pain in naïve mice, while blockade of CGRP receptor attenuated pain in mouse models of TMD. These results suggest that TRPV4 in TG neurons contributes to TMD pain by potentiating CGRP secretion. PERSPECTIVE: This study demonstrates that activation of TRPV4 in TG sensory neurons drives pain by potentiating the release of pain mediator CGRP in mouse models of TMJ inflammation and masseter muscle injury. Targeting TRPV4 and CGRP may be of clinical potential in alleviating TMD pain.
Collapse
Affiliation(s)
- Abbie Suttle
- Department of Neurology, Duke University, Durham, North Carolina
| | - Peng Wang
- Department of Neurology, Duke University, Durham, North Carolina
| | - Fabiana C Dias
- Department of Neurology, Duke University, Durham, North Carolina
| | - Qiaojuan Zhang
- Department of Neurology, Duke University, Durham, North Carolina
| | - Yuhui Luo
- Department of Neurology, Duke University, Durham, North Carolina
| | - Lauren Simmons
- Department of Neurology, Duke University, Durham, North Carolina
| | - Andrey Bortsov
- Department of Endodontics, Center for Translational Pain Medicine, Department of Anesthesiology, Duke University, Durham, North Carolina
| | - Inna E Tchivileva
- Center for Pain Research and Innovation, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Andrea G Nackley
- Department of Endodontics, Center for Translational Pain Medicine, Department of Anesthesiology, Duke University, Durham, North Carolina; Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - Yong Chen
- Department of Neurology, Duke University, Durham, North Carolina; Department of Endodontics, Center for Translational Pain Medicine, Department of Anesthesiology, Duke University, Durham, North Carolina; Department of Pathology, Duke University, Durham, North Carolina.
| |
Collapse
|
7
|
Wang Y, Bao M, Hou C, Wang Y, Zheng L, Peng Y. The Role of TNF-α in the Pathogenesis of Temporomandibular Disorders. Biol Pharm Bull 2021; 44:1801-1809. [PMID: 34853262 DOI: 10.1248/bpb.b21-00154] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Temporomandibular disorder (TMD) is an oral dentofacial disease that is related to multiple factors such as disordered dental occlusion, emotional stress, and immune responses. In the past decades, tumor necrosis factor-alpha (TNF-α), a pleiotropic cytokine, has provided valuable insight into the pathogenesis of TMD, particularly in settings associated with inflammation. It is thought that TNF-α participates in the pathogenesis of TMD by triggering immune responses, deteriorating bone and cartilage, and mediating pain in the temporomandibular joint (TMJ). Initially, TNF-α plays the role of "master regulator" in the complex immune network by increasing or decreasing the production of other inflammatory cytokines. Then, the effects of TNF-α on cells, particularly on chondrocytes and synovial fibroblasts, result in pathologic cartilage degradation in TMD. Additionally, multiple downstream cytokines induced by TNF-α and neuropeptides can regulate central sensitization and inflammatory pain in TMD. Previous studies have also found some therapies target TMD by reducing the production of TNF-α or blocking TNF-α-induced pathways. All this evidence highlights the numerous associations between TNF-α and TMD; however, they are currently not fully understood and further investigations are still required for specific mechanisms and treatments targeting specific pathways. Therefore, in this review, we explored general mechanisms of TNF-α, with a focus on molecules in TNF-α-mediated pathways and their potential roles in TMD treatment. In view of the high clinical prevalence rate of TMD and damage to patients' QOL, this review provides adequate evidence for studying links between inflammation and TMD in further research and investigation.
Collapse
Affiliation(s)
- Yuru Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School/Hospital of Stomatology, Sichuan University.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University
| | - Minyue Bao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School/Hospital of Stomatology, Sichuan University
| | - Chuping Hou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School/Hospital of Stomatology, Sichuan University
| | - Yue Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School/Hospital of Stomatology, Sichuan University
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School/Hospital of Stomatology, Sichuan University.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University
| | - Yiran Peng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School/Hospital of Stomatology, Sichuan University.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University
| |
Collapse
|
8
|
Quinelato V, Bonato LL, Vieira AR, Granjeiro JM, Tesch R, Casado PL. Association Between Polymorphisms in the Genes of Estrogen Receptors and the Presence of Temporomandibular Disorders and Chronic Arthralgia. J Oral Maxillofac Surg 2017; 76:314.e1-314.e9. [PMID: 29175417 DOI: 10.1016/j.joms.2017.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/08/2017] [Accepted: 10/10/2017] [Indexed: 02/06/2023]
Abstract
PURPOSE The high prevalence of painful temporomandibular disorders (TMDs) in women suggests that estrogen and its receptors play a fundamental etiologic role in the development of this joint pathology through complex action mechanisms. The aim of this study was to evaluate the possible association between polymorphisms in the ESR1 (estrogen receptor-1) and ESRRB (estrogen-related receptor-β) genes and the risk of simultaneous development of TMDs and pain in other joints in the body. MATERIALS AND METHODS All participants were clinically evaluated for the presence of TMD (Research Diagnostic Criteria for TMD) and asked about the presence of chronic joint pain. The control group consisted of 72 patients without TMD and without pain. Participants with arthralgia were divided into 3 groups: with muscular TMD (n = 42), with articular TMD (n = 16), and without TMD and with systemic arthralgia (n = 82). Eight single-nucleotide polymorphisms in the ESR1 (rs12154178, rs1884051, rs2273206, rs7774230) and ESRRB (rs1676303, rs4903399, rs10132091, rs7151924) genes were investigated. The χ2 test and Student t and Mann-Whitney tests were used to assess the relevance of nominal and continuous variables, respectively. A P value less than .05 was considered significant. RESULTS The TT (timin/timin) genotype for the ESR1 (rs2273206) gene was strongly associated with the risk of developing muscle TMDs and temporomandibular joint pain (P = .04). For the ESRRB (rs1676303) gene, an association was observed between the CC (cytosine/cytosine) genotype and the presence of articular TMDs associated with other chronic arthralgia (P = .02). These results were confirmed by the increased risk of developing articular TMDs associated with the C allele (P = .04). CONCLUSIONS This study supports the hypothesis that changes in the ESR1 and ESRRB genes influence the presence of TMDs associated with chronic joint pain.
Collapse
Affiliation(s)
- Valquiria Quinelato
- Doctoral Student of Dentistry, Fluminense Federal University, Niterói, RJ, Brazil.
| | - Letícia Ladeira Bonato
- Doctor in Dentistry, Fluminense Federal University, Niterói; Specialist in Temporomandibular Disorders and Orofacial Pain, School of Medicine, Petrópolis, RJ, Brazil
| | - Alexandre Rezende Vieira
- Doctor in Oral Biology, Departments of Oral Biology and Pediatric Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA
| | - José Mauro Granjeiro
- Doctor in Chemistry and Cell Therapy Center, Clinical Research Unit and Biology Institute, Fluminense Federal University, Niterói; National Institute of Metrology, Quality and Technology, Rio de Janeiro, RJ, Brazil
| | - Ricardo Tesch
- Master of Health Sciences and Assistant Professor and Specialist in Temporomandibular Disorders and Orofacial Pain, School of Medicine, Petrópolis, RJ, Brazil; Professor of Specialization Courses in Orthodontics, Brazilian Dental Association, Petrópolis and Duque de Caxias, RJ, Brazil; Professor of Orthodontics of the Specialization Course, Pontificia Universidad Católica Madre y Maestra, Santiago de los Caballeros, Dominican Republic
| | - Priscila Ladeira Casado
- Doctor in Morphology and Adjunct Professor of Periodontics, Fluminense Federal University, Niterói, RJ, Brazil
| |
Collapse
|
9
|
A novel gene mutation of Runx2 in cleidocranial dysplasia. Curr Med Sci 2017; 37:772-776. [PMID: 29058294 DOI: 10.1007/s11596-017-1803-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 06/24/2017] [Indexed: 10/18/2022]
Abstract
Haploinsufficiency of the runt-related transcription factor 2 (Runx2) gene is widely known to be responsible for cleidocranial dysplasia (CCD). To date, more than 190 mutations in Runx2 gene have been reported to be related to CCD. In this study, a novel mutation of Runx2 gene was observed in a female with CCD. Genomic DNA was extracted from peripheral venous blood of the proband and eleven members of her family. Genetic testing on these twelve people identified a novel missense mutation (c.895 T>C, Y299H) in exon 5 of the RUNX2 gene in the proband. This mutation results in an amino acid change at codon 895 (P.Tyr 299 His.) from a tryptophan codon (TAT) to a histidine codon (CAT). Our finding may further extend the known mutation spectrum of the RUNX2 gene, and facilitate prenatal genetic diagnosis of CCD in the future.
Collapse
|
10
|
de Araújo JCB, Gondim DV, Cavalcante ALC, Lisboa MRP, de Castro Brito GA, Vale ML. Inflammatory pain assessment in the arthritis of the temporomandibular joint in rats: A comparison between two phlogistic agents. J Pharmacol Toxicol Methods 2017; 88:100-108. [PMID: 28797764 DOI: 10.1016/j.vascn.2017.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 07/21/2017] [Accepted: 08/05/2017] [Indexed: 12/01/2022]
Abstract
Temporomandibular joint (TMJ) disorders are a group of conditions that result in TMJ pain, which frequently limits basic daily activities. Experimental models that allow the study of the mechanisms underlying these inflammatory and pain conditions are of great clinical relevance. The aim of this study was to evaluate nociception, inflammation and participation of the macrophage/microglia cells in the arthritis of the TMJ induced by two phlogistic agents. 84 rats were divided into 2 groups: Zy, which received zymosan intra-articularly, or Cg, which received carrageenan intra-articularly. Mechanical nociception, total leukocyte influx to the synovial fluid and histopathological analyses were evaluated in the TMJ. The participation of macrophage/microglia located in trigeminal ganglia (TG) and in the subnucleus caudalis (V-SnC) was assessed immunohistochemically. Both agents induced mechanical hyperalgesia 6h after the induction, but a more persistent algesic state was perceived in the Cg group, which lasted for 120h. Even though both groups presented increased leukocyte influx, the Zy-group presented a more intense influx. Zymosan recruited resident macrophage in the trigeminal ganglia 24h after the injection. In the V-SnC, the group Cg presented a more prolonged immunolabeling pattern in comparison with the group Zy. It can be concluded that zymosan induced a more intense infiltrate and peripheral nervous changes, while Cg lead to a moderate TMJ inflammation with prominent changes in the V-SnC.
Collapse
Affiliation(s)
| | - Delane Viana Gondim
- Morphofunctional Sciences Post Graduation Program, Department of Morphology, Federal University of Ceará, Brazil
| | - André Luiz Cunha Cavalcante
- Medical Sciences Post Graduation Program, Department of Clinical Medicine, Federal University of Ceará, Brazil
| | - Mario Roberto Pontes Lisboa
- Morphofunctional Sciences Post Graduation Program, Department of Morphology, Federal University of Ceará, Brazil
| | - Gerly Anne de Castro Brito
- Morphofunctional Sciences Post Graduation Program, Department of Morphology, Federal University of Ceará, Brazil
| | - Mariana Lima Vale
- Pharmacology Post Graduation Program, Department of Physiology and Pharmacology, Federal University of Ceará, Brazil; Morphofunctional Sciences Post Graduation Program, Department of Morphology, Federal University of Ceará, Brazil.
| |
Collapse
|