1
|
Riggs CL, Kedersha N, Amarsanaa M, Zubair SN, Ivanov P, Anderson P. UBAP2L contributes to formation of P-bodies and modulates their association with stress granules. J Cell Biol 2024; 223:e202307146. [PMID: 39007803 PMCID: PMC11248227 DOI: 10.1083/jcb.202307146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/06/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Stress triggers the formation of two distinct cytoplasmic biomolecular condensates: stress granules (SGs) and processing bodies (PBs), both of which may contribute to stress-responsive translation regulation. Though PBs can be present constitutively, stress can increase their number and size and lead to their interaction with stress-induced SGs. The mechanism of such interaction, however, is largely unknown. Formation of canonical SGs requires the RNA binding protein Ubiquitin-Associated Protein 2-Like (UBAP2L), which is a central SG node protein in the RNA-protein interaction network of SGs and PBs. UBAP2L binds to the essential SG and PB proteins G3BP and DDX6, respectively. Research on UBAP2L has mostly focused on its role in SGs, but not its connection to PBs. We find that UBAP2L is not solely an SG protein but also localizes to PBs in certain conditions, contributes to PB biogenesis and SG-PB interactions, and can nucleate hybrid granules containing SG and PB components in cells. These findings inform a new model for SG and PB formation in the context of UBAP2L's role.
Collapse
Affiliation(s)
- Claire L Riggs
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nancy Kedersha
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Misheel Amarsanaa
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Safiyah Noor Zubair
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Paul Anderson
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Huang S, Zhang Y, Shu H, Liu W, Zhou X, Zhou X. Advances of the MAPK pathway in the treatment of spinal cord injury. CNS Neurosci Ther 2024; 30:e14807. [PMID: 38887853 PMCID: PMC11183187 DOI: 10.1111/cns.14807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/23/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Spinal cord injury (SCI) represents a complex pathology within the central nervous system (CNS), leading to severe sensory and motor impairments. It activates various signaling pathways, notably the mitogen-activated protein kinase (MAPK) pathway. Present treatment approaches primarily focus on symptomatic relief, lacking efficacy in addressing the underlying pathophysiological mechanisms. Emerging research underscores the significance of the MAPK pathway in neuronal differentiation, growth, survival, axonal regeneration, and inflammatory responses post-SCI. Modulating this pathway post-injury has shown promise in attenuating inflammation, minimizing apoptosis, alleviating neuropathic pain, and fostering neural regeneration. Given its pivotal role, the MAPK pathway emerges as a potential therapeutic target in SCI management. This review synthesizes current knowledge on SCI pathology, delineates the MAPK pathway's characteristics, and explores its dual roles in SCI pathology and therapeutic interventions. Furthermore, it addresses the existing challenges in MAPK research in the context of SCI, proposing solutions to overcome these hurdles. Our aim is to offer a comprehensive reference for future research on the MAPK pathway and SCI, laying the groundwork for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Shixue Huang
- Department of Orthopedics, Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Yinuo Zhang
- Department of Orthopedics, Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Haoming Shu
- Department of Orthopedics, Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Wei Liu
- Department of Orthopedics, Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Xin Zhou
- Department of Orthopedics, Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
- Translational Research Centre of Orthopedics, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
3
|
Zhou H, He Y, Xiong W, Jing S, Duan X, Huang Z, Nahal GS, Peng Y, Li M, Zhu Y, Ye Q. MSC based gene delivery methods and strategies improve the therapeutic efficacy of neurological diseases. Bioact Mater 2023; 23:409-437. [PMCID: PMC9713256 DOI: 10.1016/j.bioactmat.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/08/2022] [Accepted: 11/13/2022] [Indexed: 12/05/2022] Open
|
4
|
Multiple strategies enhance the efficacy of MSCs transplantation for spinal cord injury. Biomed Pharmacother 2023; 157:114011. [PMID: 36410123 DOI: 10.1016/j.biopha.2022.114011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/05/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Spinal cord injury (SCI) is a serious complication of the central nervous system (CNS) after spine injury, often resulting in severe sensory, motor, and autonomic dysfunction below the level of injury. To date, there is no effective treatment strategy for SCI. Recently, stem cell therapy has brought hope to patients with neurological diseases. Mesenchymal stem cells (MSCs) are considered to be the most promising source of cellular therapy after SCI due to their immunomodulatory, neuroprotective and angiogenic potential. Considering the limited therapeutic effect of MSCs due to the complex pathophysiological environment following SCI, this paper not only reviews the specific mechanism of MSCs to facilitate SCI repair, but also further discusses the research status of these pluripotent stem cells combined with other therapeutic approaches to promote anatomical and functional recovery post-SCI.
Collapse
|
5
|
Gu J, Gao B, Zafar H, Chu B, Feng X, Ni Y, Xu L, Bao R. Thermo-sensitive hydrogel combined with SHH expressed RMSCs for rat spinal cord regeneration. Front Bioeng Biotechnol 2022; 10:1001396. [PMID: 36338109 PMCID: PMC9634076 DOI: 10.3389/fbioe.2022.1001396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2022] Open
Abstract
Purpose: Spinal cord injury (SCI) has a damaging impact on patients, amid being a worldwide problem with no effective treatment. Herein, we reported a method for functional therapy of SCI in rats, wherein we combined thermo-sensitive hydrogel with Sonic Hedgehog (SHH) expressed in rat bone-marrow derived mesenchymal stem cells (RMSCs). Methods: Bone marrow-derived mesenchymal stem cells (BMSCs) were isolated from Sprague-Dawley (SD) female rats. The SHH was optimized and transferred into RMSCs via cationic liposomes, while thermo-sensitive hydrogel was reformed with hyaluronate (HA) and Pluronic F127. Then, a rat model with SCI was established accordingly by male SD rats and randomized into sham, model, RMSCs with hydrogel and SHH-RMSCs with hydrogel. The evaluation of SCI repair based on Basso, Beattie Bresnahanlocomotor rating scale (BBB scale) and inclined plate score. Immunofluorescence, immunohistochemistry and hematoxylin-eosin were utilized to explore the expression of protein (GFAP, GAP43, NF200 and MBP) and histopathology. Results: It was demonstrated that transfection of SHH with cationic liposomes exhibited more effect in RMSCs than lipofectamine 2000. As shown in SEM, 3.5% HA-F127 demonstrated porous structure. In the MTT and dead/live assay, 3.5% HA-F127 showed good biocompatibility for RMSCs. Both RMSCs and SHH-RMSCs groups could significantly promote BBB and inclined plate scores (p < 0.01) compared with the model. Furthermore, the SHH-RMSC group was significantly improved than RMSC with the expression of related proteins, where NF200, MBP, and GAP43 were principally enhanced with the GFAP expression being virtually down-regulated. Conclusion: All in all, the results suggested that transplantation of RMSCs with SHH could improve the function of SCI and promote nerve regeneration.
Collapse
Affiliation(s)
- Jun Gu
- School of Medicine, Yangzhou University, Yangzhou, China
- Department of Orthopedics, Xishan People’s Hospital, Wuxi, China
- *Correspondence: Jun Gu, ; Hajra Zafar,
| | - Biao Gao
- School of Medicine, Yangzhou University, Yangzhou, China
- Wuxi Xishan District Ehu Town Health Center, Wuxi, China
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Jun Gu, ; Hajra Zafar,
| | - Bo Chu
- Department of Orthopedics, Xishan People’s Hospital, Wuxi, China
| | - Xiaojun Feng
- Department of Orthopedics, Xishan People’s Hospital, Wuxi, China
| | - Yinjie Ni
- Department of Orthopedics, Xishan People’s Hospital, Wuxi, China
| | - Lin Xu
- Department of Orthopedics, Xishan People’s Hospital, Wuxi, China
| | - Rui Bao
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
Hu X, Liu Z, Zhou X, Jin Q, Xu W, Zhai X, Fu Q, Qian H. Small extracellular vesicles derived from mesenchymal stem cell facilitate functional recovery in spinal cord injury by activating neural stem cells via the ERK1/2 pathway. Front Cell Neurosci 2022; 16:954597. [PMID: 36106012 PMCID: PMC9464810 DOI: 10.3389/fncel.2022.954597] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) causes severe neurological dysfunction leading to a devastating disease of the central nervous system that is associated with high rates of disability and mortality. Small extracellular vesicles (sEVs) derived from human umbilical cord mesenchymal stem cells (hucMSC-sEVs) have been explored as a promising strategy for treating SCI. In this study, we investigated the therapeutic effects of the intralesional administration of hucMSC-sEVs after SCI and determined the potential mechanisms of successful repair by hucMSC-sEVs. In vivo, we established the rat model of SCI. The Basso, Beattie, Bresnahan (BBB) scores showed that hucMSC-sEVs dramatically promoted the recovery of spinal cord function. The results of the hematoxylin–eosin (HE) staining, Enzyme-Linked Immunosorbent Assay (ELISA), and immunohistochemistry showed that hucMSC-sEVs inhibited inflammation and the activation of glia, and promoted neurogenesis. Furthermore, we studied the effect of hucMSC-sEVs on neural stem cells(NSCs) in vitro. We found that hucMSC-sEVs did not improve the migration ability of NSCs, but promoted NSCs to proliferate and differentiate via the ERK1/2 signaling pathway. Collectively, these findings suggested that hucMSC-sEVs promoted the functional recovery of SCI by activating neural stem cells via the ERK1/2 pathway and may provide a new perspective and therapeutic strategy for the clinical application of hucMSC-sEVs in SCI treatment.
Collapse
Affiliation(s)
- Xinyuan Hu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
- Department of Clinical Laboratory, Qingdao Municipal Hospital, Qingdao, China
| | - Zhong Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinru Zhou
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
- Department of Laboratory Diagnostics, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qian Jin
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wenrong Xu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiao Zhai
- Department of Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, China
- Xiao Zhai,
| | - Qiang Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Qiang Fu,
| | - Hui Qian
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
- *Correspondence: Hui Qian,
| |
Collapse
|
7
|
Guerber L, Pangou E, Sumara I. Ubiquitin Binding Protein 2-Like (UBAP2L): is it so NICE After All? Front Cell Dev Biol 2022; 10:931115. [PMID: 35794863 PMCID: PMC9250975 DOI: 10.3389/fcell.2022.931115] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/01/2022] [Indexed: 12/30/2022] Open
Abstract
Ubiquitin Binding Protein 2-like (UBAP2L, also known as NICE-4) is a ubiquitin- and RNA-binding protein, highly conserved in metazoans. Despite its abundance, its functions have only recently started to be characterized. Several studies have demonstrated the crucial involvement of UBAP2L in various cellular processes such as cell cycle regulation, stem cell activity and stress-response signaling. In addition, UBAP2L has recently emerged as a master regulator of growth and proliferation in several human cancers, where it is suggested to display oncogenic properties. Given that this versatile protein is involved in the regulation of multiple and distinct cellular pathways, actively contributing to the maintenance of cell homeostasis and survival, UBAP2L might represent a good candidate for future therapeutic studies. In this review, we discuss the current knowledge and latest advances on elucidating UBAP2L cellular functions, with an aim to highlight the importance of targeting UBAP2L for future therapies.
Collapse
Affiliation(s)
- Lucile Guerber
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Evanthia Pangou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Izabela Sumara
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- *Correspondence: Izabela Sumara,
| |
Collapse
|
8
|
Genetic Modification of Mesenchymal Stem Cells for Neurological Disease Therapy: What Effects Does it Have on Phenotype/Cell Behavior, Determining Their Effectiveness? Mol Diagn Ther 2021; 24:683-702. [PMID: 32926348 DOI: 10.1007/s40291-020-00491-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cells are a promising tool in regenerative medicine, and their functions can be enhanced through genetic modification. Recent advances in genetic engineering provide several methods that enable gene delivery to mesenchymal stem cells. However, it remains to be decided whether genetic modification of mesenchymal stem cells by vectors carrying reporter or therapeutic genes leads to adverse effects on morphology, phenotypic profiles, and viability of transplanted cells. In this regard, we focus on the description of genetic modification methods of mesenchymal stem cells, their effectiveness, and the impact on phenotype/cell behavior/proliferation and the differentiation ability of these cells in vitro and in vivo. Furthermore, we compare the main effects of genetically modified mesenchymal stem cells with native mesenchymal stem cells when applied in the therapy of neurological diseases.
Collapse
|
9
|
The Aqueous Extract of Eucommia Leaves Promotes Proliferation, Differentiation, and Mineralization of Osteoblast-Like MC3T3-E1 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3641317. [PMID: 34249129 PMCID: PMC8238580 DOI: 10.1155/2021/3641317] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 01/01/2023]
Abstract
Eucommia leaves are dry leaves of Eucommia ulmoides which have long been considered as a functional health food for the treatment of hypertension, hypercholesterolemia, fatty liver, and osteoporosis. With the recent development of Chinese medicine, Eucommia leaves are widely used for tonifying the kidneys and strengthening bone. However, the specific molecular mechanism of Eucommia leaves for strengthening bone remains largely unknown. Osteoblasts are the main functional cells of bone formation; thus, it is essential to study the effect of Eucommia leaves on osteoblasts to better understand their mechanism of action. In the present study, we prepared an aqueous extract of Eucommia leaves (ELAE) and determined its content by high-performance liquid chromatography (HPLC). The effects of ELAE on MC3T3-E1 cells were investigated by CCK-8 assay, alkaline phosphatase (ALP), and Alizarin red S staining assays, combined with RNA sequencing (RNA-seq) and qRT-PCR validation. We demonstrated that ELAE had a significant promoting effect on the proliferation of MC3T3-E1 cells and significantly enhanced extracellular matrix synthesis and mineralization, which were achieved by regulating various functional genes and related signaling pathways. ELAE significantly increased the expression level of genes promoting cell proliferation, such as Rpl10a, Adnp, Pex1, Inpp4a, Frat2, and Pcdhga1, and reduced the expression level of genes inhibiting cell proliferation, such as Npm1, Eif3e, Cbx3, Psmc6, Fgf7, Fxr1, Ddx3x, Mbnl1, and Cdc27. In addition, ELAE increased the expression level of gene markers in osteoblasts, such as Col5a2, Ubap2l, Dkk3, Foxm1, Col16a1, Col12a1, Usp7, Col4a6, Runx2, Sox4, and Bmp4. Taken together, our results suggest that ELAE could promote osteoblast proliferation, differentiation, and mineralization and prevent osteoblast apoptosis. These findings not only increase our understanding of ELAE on the regulation of bone development but also provide a possible strategy to further study the prevention and treatment of osteogenic related diseases by ELAE.
Collapse
|
10
|
Qin B, Zhang Q, Chen D, Yu HY, Luo AX, Suo LP, Cai Y, Cai DY, Luo J, Huang JF, Xiong K. Extracellular vesicles derived from mesenchymal stem cells: A platform that can be engineered. Histol Histopathol 2021; 36:615-632. [PMID: 33398872 DOI: 10.14670/hh-18-297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells play an important role in tissue damage and repair. This role is mainly due to a paracrine mechanism, and extracellular vesicles (EVs) are an important part of the paracrine function. EVs play a vital role in many aspects of cell homeostasis, physiology, and pathology, and EVs can be used as clinical biomarkers, vaccines, or drug delivery vehicles. A large number of studies have shown that EVs derived from mesenchymal stem cells (MSC-EVs) play an important role in the treatment of various diseases. However, the problems of low production, low retention rate, and poor targeting of MSC-EVs are obstacles to current clinical applications. The engineering transformation of MSC-EVs can make up for those shortcomings, thereby improving treatment efficiency. This review summarizes the latest research progress of MSC-EV direct and indirect engineering transformation from the aspects of improving MSC-EV retention rate, yield, targeting, and MSC-EV visualization research, and proposes some feasible MSC-EV engineering methods of transformation.
Collapse
Affiliation(s)
- Bo Qin
- Hubei Polytechnic University School of Medicine, Huangshi, Hubei, China
| | - Qi Zhang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Dan Chen
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hai-Yang Yu
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ai-Xiang Luo
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Liang-Peng Suo
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yan Cai
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - De-Yang Cai
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jia Luo
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ju-Fang Huang
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China.
| | - Kun Xiong
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China.
| |
Collapse
|
11
|
Matsumoto Y, Shiozaki A, Kosuga T, Kudou M, Shimizu H, Arita T, Konishi H, Komatsu S, Kubota T, Fujiwara H, Okamoto K, Kishimoto M, Konishi E, Otsuji E. Expression and Role of CFTR in Human Esophageal Squamous Cell Carcinoma. Ann Surg Oncol 2021; 28:6424-6436. [PMID: 33710504 DOI: 10.1245/s10434-021-09752-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/05/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-dependent chloride (Cl-) anion conducting channel, and its role in esophageal squamous cell carcinoma (ESCC) was examined in the present study. METHODS Overexpression experiments were conducted on human ESCC cell lines following the transfection of a CFTR plasmid, and changes in cell proliferation, the cell cycle, apoptosis, migration, and invasion were assessed. A microarray analysis was performed to examine gene expression profiles. Fifty-three primary tumor samples collected from ESCC patients during esophagectomy were subjected to an immunohistochemical analysis. RESULTS Transfection of the CFTR plasmid into the ESCC KYSE 170 and KYSE 70 cell lines suppressed cell proliferation, migration, and invasion and induced apoptosis. The microarray analysis showed the up-regulated expression of genes involved in the p38 signaling pathway in CFTR plasmid-transfected KYSE 170 cells. Immunohistochemical staining revealed a relationship between the CFTR expression pattern at the invasive front and the pN category. A relationship was also observed between the weak expression of CFTR at the invasive front and a shorter postoperative survival in a prognostic analysis. CONCLUSIONS The overexpression of CFTR in ESCC activated the p38 signaling pathway and was associated with a good patient prognosis. These results indicate the potential of CFTR as a mediator of and/or a biomarker for ESCC.
Collapse
Affiliation(s)
- Yoshihisa Matsumoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michihiro Kudou
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroki Shimizu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mitsuo Kishimoto
- Department of Pathology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Eiichi Konishi
- Department of Pathology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
12
|
Morena F, Argentati C, Soccio M, Bicchi I, Luzi F, Torre L, Munari A, Emiliani C, Gigli M, Lotti N, Armentano I, Martino S. Unpatterned Bioactive Poly(Butylene 1,4-Cyclohexanedicarboxylate)-Based Film Fast Induced Neuronal-Like Differentiation of Human Bone Marrow-Mesenchymal Stem Cells. Int J Mol Sci 2020; 21:E9274. [PMID: 33291757 PMCID: PMC7729499 DOI: 10.3390/ijms21239274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/19/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Herein, we present poly(butylene 1,4-cyclohexanedicarboxylate) (PBCE) films characterized by an unpatterned microstructure and a specific hydrophobicity, capable of boosting a drastic cytoskeleton architecture remodeling, culminating with the neuronal-like differentiation of human bone marrow-mesenchymal stem cells (hBM-MSCs). We have used two different filming procedures to prepare the films, solvent casting (PBCE) and compression-moulding (PBCE*). PBCE film had a rough and porous surface with spherulite-like aggregations (Ø = 10-20 μm) and was characterized by a water contact angle = 100°. PBCE* showed a smooth and continuous surface without voids and visible spherulite-like aggregations and was more hydrophobic (WCA = 110°). Both surface characteristics were modulated through the copolymerization of different amounts of ether-oxygen-containing co-units into PBCE chemical structure. We showed that only the surface characteristics of PBCE-solvent-casted films steered hBM-MSCs toward a neuronal-like differentiation. hBM-MSCs lost their canonical mesenchymal morphology, acquired a neuronal polarized shape with a long cell protrusion (≥150 μm), expressed neuron-specific class III β-tubulin and microtubule-associated protein 2 neuronal markers, while nestin, a marker of uncommitted stem cells, was drastically silenced. These events were observed as early as 2-days after cell seeding. Of note, the phenomenon was totally absent on PBCE* film, as hBM-MSCs maintained the mesenchymal shape and behavior and did not express neuronal/glial markers.
Collapse
Affiliation(s)
- Francesco Morena
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (F.M.); (C.A.); (I.B.); (C.E.)
| | - Chiara Argentati
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (F.M.); (C.A.); (I.B.); (C.E.)
| | - Michelina Soccio
- Department of Civil, Chemical, Environmental, and Materials Engineering–DICAM, University of Bologna, 40136 Bologna, Italy; (M.S.); (A.M.)
| | - Ilaria Bicchi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (F.M.); (C.A.); (I.B.); (C.E.)
| | - Francesca Luzi
- Civil and Environmental Engineering Department, UdR INSTM, University of Perugia, 05100 Terni, Italy; (F.L.); (L.T.)
| | - Luigi Torre
- Civil and Environmental Engineering Department, UdR INSTM, University of Perugia, 05100 Terni, Italy; (F.L.); (L.T.)
| | - Andrea Munari
- Department of Civil, Chemical, Environmental, and Materials Engineering–DICAM, University of Bologna, 40136 Bologna, Italy; (M.S.); (A.M.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (F.M.); (C.A.); (I.B.); (C.E.)
- CEMIN, University of Perugia, 06123 Perugia, Italy
| | - Matteo Gigli
- Department of Molecular Sciences and Nanosystems, Ca’Foscari University of Venice, 30170 Venezia Mestre, Italy;
| | - Nadia Lotti
- Department of Civil, Chemical, Environmental, and Materials Engineering–DICAM, University of Bologna, 40136 Bologna, Italy; (M.S.); (A.M.)
| | - Ilaria Armentano
- Department of Economics, Engineering, Society and Business Organization (DEIM), University of Tuscia, 01100 Viterbo, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy; (F.M.); (C.A.); (I.B.); (C.E.)
- CEMIN, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
13
|
Alizadeh A, Moradi L, Katebi M, Ai J, Azami M, Moradveisi B, Ostad SN. Delivery of injectable thermo-sensitive hydrogel releasing nerve growth factor for spinal cord regeneration in rat animal model. J Tissue Viability 2020; 29:359-366. [PMID: 32839065 DOI: 10.1016/j.jtv.2020.06.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 06/06/2020] [Accepted: 06/24/2020] [Indexed: 01/11/2023]
Abstract
The main goal of this study was to explore the beneficial effect of nerve growth factor (NGF)-overexpressing of human adipose-derived mesenchymal stem cells (hADSCs) encapsulated in injectable chitosan/β-glycerophosphate/hydroxyethylcellulose (CS/β-GP/HEC) hydrogel for spinal cord regeneration. The CS/β-GP/HEC hydrogel and genetically transduced hADSCs using pseudo-lentiviruses-NGF were prepared. The mechanical properties, morphology and cytotoxicity of the hydrogel were investigated by rheometry, scanning electron microscope (SEM), and MTT assay, respectively. Rats animals were undergone spinal cord injury (SCI), then one-week post-injury, CS/β-GP/HEC hydrogel, transduced hADSCs and transduced hADSCs/CS/β-GP/HEC hydrogel injected into the site of the lesion. Animals with SCI and animals with laminectomy without SCI were considered as negative control and sham groups, respectively. Positive control group received no surgical intervention. At eight weeks post-injection, histological studies indicated a significant increase in cell proliferation, a smaller cavity in size at the SCI site as well as better locomotor functions for transduced hADSCs/CS/β-GP/HEC hydrogel group (P ≤ 0.05) compared to other experimental groups. Our results showed that CS/β-GP/HEC hydrogel in combination with transduced-hADSCs is able to successfully regenerate SCI. These results may be applicable in the selection of the best therapeutic strategy based on gene therapy and tissue engineering for SCI treatment.
Collapse
Affiliation(s)
- Akram Alizadeh
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Lida Moradi
- Department of Dermatology, School of Medicine, New York University, USA
| | - Majid Katebi
- Department of Anatomy, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Borhan Moradveisi
- Cancer and Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Seyed Nasser Ostad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Poisoning and Toxicology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Yoshida K, Kajiyama H, Inami E, Tamauchi S, Ikeda Y, Yoshikawa N, Nishino K, Utsumi F, Niimi K, Suzuki S, Shibata K, Nawa A, Kikkawa F. Clinical Significance of Ubiquitin-associated Protein 2-like in Patients With Uterine Cervical Cancer. In Vivo 2020; 34:109-116. [PMID: 31882469 DOI: 10.21873/invivo.11751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Ubiquitin-associated protein 2-like (UBAP2L) has been demonstrated to be associated with the progression of multiple types of cancer. However, the function of UBAP2L in uterine cervical cancer remains unclear. MATERIALS AND METHODS Between 2005 and 2015, 84 patients who underwent surgery were included in this study. The patients were stratified into two groups on the basis of immunohistochemical staining for UBAP2L, and survival analysis was performed. Moreover, loss-of-function analysis was performed using the cervical cancer cell lines CaSki and SiHa. RESULTS Based on immunohistochemistry, the overall survival in patients with low UBAP2L expression was significantly longer than that of those with high UBAP2L expression (p=0.045). The in vitro experiment revealed that knockdown of UBAP2L remarkably inhibited cell proliferation in both live cell imaging and the MTS assay. CONCLUSION Patients with high UBAP2L expression had unfavorable prognosis and UBAP2L appears to play an important role in proliferation.
Collapse
Affiliation(s)
- Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Eri Inami
- Bell Research Center for Reproductive Health and Cancer, Nagoya, Japan
| | - Satoshi Tamauchi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiki Ikeda
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuhisa Yoshikawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kimihiro Nishino
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumi Utsumi
- Department of Obstetrics and Gynecology, Fujita Health University Bantane Hospital, Nagoya, Japan
| | - Kaoru Niimi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shiro Suzuki
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kiyosumi Shibata
- Department of Obstetrics and Gynecology, Fujita Health University Bantane Hospital, Nagoya, Japan
| | - Akihiro Nawa
- Bell Research Center for Reproductive Health and Cancer, Nagoya, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
15
|
Lv C, Zhang T, Li K, Gao K. Bone marrow mesenchymal stem cells improve spinal function of spinal cord injury in rats via TGF-β/Smads signaling pathway. Exp Ther Med 2020; 19:3657-3663. [PMID: 32346429 PMCID: PMC7185179 DOI: 10.3892/etm.2020.8640] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/13/2019] [Indexed: 12/23/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) on the repair of spinal cord injury (SCI) in rats as well as the role of transforming growth factor-β (TGF-β)/Smads signaling pathway in the repair were investigated. Rat BMSCs and astrocyte-spinal cords (ASCs) were isolated and cultured in vitro, and the cell purity was detected by flow cytometry. ASCs were co-cultured with TGF-β1, BMSCs and BMSCs + TGF-β1, respectively, and grouped accordingly, and ASCs cultured conventionally were included into control group. 3-(4,5)-Dimethylthiahiazo(-z-y1)-3,5-diphenyltetrazoliumbromide (MTT) assay was conducted to detect the proliferation ability of ASCs in each group. Western blotting (WB) was utilized to examine the expression of TGF-β/Smads signaling pathway-related proteins [TGF-β1, Smad2 and phosphorylated (p)-Smad2] in ASCs and ASCs co-cultured with BMSCs. A rat model of SCI was established, and BMSCs were injected locally. Then (BBB) score was used to evaluate spinal cord repair, and WB was adopted to detect the expression of TGF-β1, Smad2 and p-Smad2 at the injured site. BMSCs and ASCs isolated in vitro grew well. According to MTT assay results, TGF-β1 significantly promoted the proliferation of ASCs (P<0.05), and co-culture of ASCs and BMSCs remarkably reduced the proliferation of ASCs (P<0.05). The detection of protein expression at the SCI site via WB demonstrated that the expression of TGF-β1, Smad2 and p-Smad2 in SCI group were obviously upregulated compared with those in Sham group at 1 week (P<0.05), and the injection of BMSCs could markedly downregulate the expression (P<0.05). After 3 week, there were no significant differences in the expression of TGF-β1, Smad2 and p-Smad2 among groups (P>0.05). The transplantation of BMSCs can improve the spinal function of SCI rats probably by inhibiting the TGF-β/Smads signaling pathway and reducing the proliferation of ASCs.
Collapse
Affiliation(s)
- Chaoliang Lv
- Department of Spine Surgery, Jining No. 1 People's Hospital, Affiliated Jining No. 1 People's Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272011, P.R. China
| | - Tao Zhang
- Department of Spine Surgery, Jining No. 1 People's Hospital, Affiliated Jining No. 1 People's Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272011, P.R. China
| | - Kang Li
- Department of Spine Surgery, Jining No. 1 People's Hospital, Affiliated Jining No. 1 People's Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272011, P.R. China
| | - Kai Gao
- Department of Spine Surgery, Jining No. 1 People's Hospital, Affiliated Jining No. 1 People's Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272011, P.R. China
| |
Collapse
|