1
|
Ejima F, Fukukura Y, Kamimura K, Nakajo M, Ayukawa T, Kanzaki F, Yanazume S, Kobayashi H, Kitazono I, Imai H, Feiweier T, Yoshiura T. Oscillating Gradient Diffusion-Weighted MRI for Risk Stratification of Uterine Endometrial Cancer. J Magn Reson Imaging 2024; 60:67-77. [PMID: 37886909 DOI: 10.1002/jmri.29106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Oscillating gradient diffusion-weighted imaging (DWI) enables elucidation of microstructural characteristics in cancers; however, there are limited data to evaluate its utility in patients with endometrial cancer. PURPOSE To investigate the utility of oscillating gradient DWI for risk stratification in patients with uterine endometrial cancer compared with conventional pulsed gradient DWI. STUDY TYPE Retrospective. SUBJECTS Sixty-three women (mean age: 58 [range: 32-85] years) with endometrial cancer. FIELD STRENGTH/SEQUENCE 3 T MRI including DWI using oscillating gradient spin-echo (OGSE) and pulsed gradient spin-echo (PGSE) research sequences. ASSESSMENT Mean value of the apparent diffusion coefficient (ADC) values for OGSE (ADCOGSE) and PGSE (ADCPGSE) as well as the ADC ratio (ADCOGSE/ADCPGSE) within endometrial cancer were measured using regions of interest. Prognostic factors (histological grade, deep myometrial invasion, lymphovascular invasion, International Federation of Gynecology and Obstetrics [FIGO] stage, and prognostic risk classification) were tabulated. STATISTICAL TESTS Interobserver agreement was analyzed by calculating the intraclass correlation coefficient. The associations of ADCOGSE, ADCPGSE, and ADCOGSE/ADCPGSE with prognostic factors were examined using the Kendall rank correlation coefficient, Mann-Whitney U test, and receiver operating characteristic (ROC) curve. A P value of <0.05 was statistically significant. RESULTS Compared with ADCOGSE and ADCPGSE, ADCOGSE/ADCPGSE was significantly and strongly correlated with histological grade (observer 1, τ = 0.563; observer 2, τ = 0.456), FIGO stage (observer 1, τ = 0.354; observer 2, τ = 0.324), and prognostic risk classification (observer 1, τ = 0.456; observer 2, τ = 0.385). The area under the ROC curves of ADCOGSE/ADCPGSE for histological grade (observer 1, 0.92, 95% confidence intervals [CIs]: 0.83-0.98; observer 2, 0.84, 95% CI: 0.73-0.92) and prognostic risk (observer 1, 0.80, 95% CI: 0.68-0.89; observer 2, 0.76, 95% CI: 0.63-0.86) were significantly higher than that of ADCOGSE and ADCPGSE. DATA CONCLUSION The ADC ratio obtained via oscillating gradient and pulsed gradient DWIs might be useful imaging biomarkers for risk stratification in patients with endometrial cancer. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Fumitaka Ejima
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yoshihiko Fukukura
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kiyohisa Kamimura
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masatoyo Nakajo
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takuro Ayukawa
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Fumiko Kanzaki
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shintaro Yanazume
- Department of Obstetrics and Gynecology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiroaki Kobayashi
- Department of Obstetrics and Gynecology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ikumi Kitazono
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | | | | | - Takashi Yoshiura
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
2
|
Kamimura K, Kamimura Y, Nakano T, Hasegawa T, Nakajo M, Yamada C, Akune K, Ejima F, Ayukawa T, Ito S, Nagano H, Takumi K, Nakajo M, Uchida H, Tabata K, Iwanaga T, Imai H, Feiweier T, Yoshiura T. Differentiating brain metastasis from glioblastoma by time-dependent diffusion MRI. Cancer Imaging 2023; 23:75. [PMID: 37553578 PMCID: PMC10410879 DOI: 10.1186/s40644-023-00595-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND This study was designed to investigate the use of time-dependent diffusion magnetic resonance imaging (MRI) parameters in distinguishing between glioblastomas and brain metastases. METHODS A retrospective study was conducted involving 65 patients with glioblastomas and 27 patients with metastases using a diffusion-weighted imaging sequence with oscillating gradient spin-echo (OGSE, 50 Hz) and a conventional pulsed gradient spin-echo (PGSE, 0 Hz) sequence. In addition to apparent diffusion coefficient (ADC) maps from two sequences (ADC50Hz and ADC0Hz), we generated maps of the ADC change (cADC): ADC50Hz - ADC0Hz and the relative ADC change (rcADC): (ADC50Hz - ADC0Hz)/ ADC0Hz × 100 (%). RESULTS The mean and the fifth and 95th percentile values of each parameter in enhancing and peritumoral regions were compared between glioblastomas and metastases. The area under the receiver operating characteristic curve (AUC) values of the best discriminating indices were compared. In enhancing regions, none of the indices of ADC0Hz and ADC50Hz showed significant differences between metastases and glioblastomas. The mean cADC and rcADC values of metastases were significantly higher than those of glioblastomas (0.24 ± 0.12 × 10-3mm2/s vs. 0.14 ± 0.03 × 10-3mm2/s and 23.3 ± 9.4% vs. 14.0 ± 4.7%; all p < 0.01). In peritumoral regions, no significant difference in all ADC indices was observed between metastases and glioblastomas. The AUC values for the mean cADC (0.877) and rcADC (0.819) values in enhancing regions were significantly higher than those for ADC0Hz5th (0.595; all p < 0.001). CONCLUSIONS The time-dependent diffusion MRI parameters may be useful for differentiating brain metastases from glioblastomas.
Collapse
Affiliation(s)
- Kiyohisa Kamimura
- Department of Advanced Radiological Imaging, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - Yoshiki Kamimura
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Tsubasa Nakano
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Tomohito Hasegawa
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Masanori Nakajo
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Chihiro Yamada
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Kentaro Akune
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Fumitaka Ejima
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takuro Ayukawa
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Soichiro Ito
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Hiroaki Nagano
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Koji Takumi
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Masatoyo Nakajo
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Hiroyuki Uchida
- Department of Neurosurgery, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Kazuhiro Tabata
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takashi Iwanaga
- Department of Radiological Technology, Kagoshima University Hospital, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Hiroshi Imai
- Siemens Healthcare K.K., Gate City Osaki West Tower, 1-11-1 Osaki, Shinagawa-Ku, Tokyo, 141-8644, Japan
| | | | - Takashi Yoshiura
- Department of Advanced Radiological Imaging, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| |
Collapse
|
3
|
Maekawa T, Hori M, Murata K, Feiweier T, Kamiya K, Andica C, Hagiwara A, Fujita S, Kamagata K, Wada A, Abe O, Aoki S. Investigation of time-dependent diffusion in extra-axial brain tumors using oscillating-gradient spin-echo. Magn Reson Imaging 2023; 96:67-74. [PMID: 36423796 DOI: 10.1016/j.mri.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
Oscillating gradient spin-echo (OGSE) sequences provide access to short diffusion times and may provide insight into micro-scale internal structures of pathologic lesions based on an analysis of changes in diffusivity with differing diffusion times. We hypothesized that changes in diffusivity acquired with a shorter diffusion time may permit elucidation of properties related to the internal structure of extra-axial brain tumors. This study aimed to investigate the utility of changes in diffusivity between short and long diffusion times for characterizing extra-axial brain tumors. In total, 12 patients with meningothelial meningiomas, 13 patients with acoustic neuromas, and 11 patients with pituitary adenomas were scanned with a 3 T magnetic resonance imaging (MRI) scanner with diffusion-weighted imaging (DWI) using OGSE and pulsed gradient spin-echo (PGSE) (effective diffusion times [Δeff]: 6.5 ms and 35.2 ms) with b-values of 0 and 1000 s/mm2. Relative percentage changes between shorter and longer diffusion times were calculated using region-of-interest (ROI) analysis of brain tumors on λ1, λ2, λ3, and mean diffusivity (MD) maps. The diffusivities of PGSE, OGSE, and relative percentage changes were compared among each tumor type using a multiple comparisons Steel-Dwass test. The mean (standard deviation) MD at Δeff of 6.5 ms was 1.07 ± 0.23 10-3 mm2/s, 1.19 ± 0.18 10-3 mm2/s, 1.19 ± 0.21 10-3 mm2/s for meningothelial meningiomas, acoustic neuromas, and pituitary adenomas, respectively. The mean (standard deviation) MD at Δeff of 35.2 ms was 0.93 ± 0.22 10-3 mm2/s, 1.07 ± 0.19 10-3 mm2/s, 0.82 ± 0.21 10-3 mm2/s for meningothelial meningiomas, acoustic neuromas, and pituitary adenomas, respectively. The mean (standard deviation) of the relative percentage change was 15.7 ± 4.4%, 12.4 ± 8.2%, 46.8 ± 11.3% for meningothelial meningiomas, acoustic neuromas, and pituitary adenomas, respectively. Compared to meningiomas and acoustic neuromas, pituitary adenoma exhibited stronger diffusion time-dependence with diffusion times between 6.5 ms and 35.2 ms (P < 0.05). In conclusion, differences in diffusion time-dependence may be attributed to differences in the internal structures of brain tumors. DWI with a short diffusion time may provide additional information on the microstructure of each tumor and contribute to tumor diagnosis.
Collapse
Affiliation(s)
- Tomoko Maekawa
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Masaaki Hori
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Diagnostic Radiology, Toho University Omori Medical Center, 6-11-1, Omori-Nishi, Ota-Ku, Tokyo, Japan
| | - Katsutoshi Murata
- Siemens Healthcare Japan KK, Gate City Osaki West Tower, 11-1 Osaki 1-Chome, Shinagawa-ku, Tokyo 141-8644, Japan
| | | | - Kouhei Kamiya
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Diagnostic Radiology, Toho University Omori Medical Center, 6-11-1, Omori-Nishi, Ota-Ku, Tokyo, Japan
| | - Christina Andica
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Faculty of Health Data Science, Juntendo University, 6-8-1 Hinode, Urayasu, Chiba 279-0013, Japan
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Shohei Fujita
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Radiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Akihiko Wada
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
4
|
Impact of tissue properties on time-dependent alterations in apparent diffusion coefficient: a phantom study using oscillating-gradient spin-echo and pulsed-gradient spin-echo sequences. Jpn J Radiol 2022; 40:970-978. [PMID: 35523921 PMCID: PMC9441423 DOI: 10.1007/s11604-022-01281-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/07/2022] [Indexed: 11/16/2022]
Abstract
Purpose The purpose of this study was to investigate whether the changes in apparent diffusion coefficients (ADCs) due to differences in diffusion time reflect tissue properties in actual measurements of phantoms. Materials and methods Various n-alkane phantoms and sucrose/collagen phantoms with various collagen densities were set up with and without polyvinyl alcohol (PVA) foam with an average pore diameter of 300 μm. Thus, n-alkanes or sucrose/collagen represented substrate viscosity and the presence of PVA foam represented tissue structure with septum. Diffusion-weighted images with various diffusion times (7.71–60 ms) were acquired using pulsed-gradient spin-echo (PGSE) and oscillating-gradient spin-echo (OGSE) sequences. The ADCs of the phantoms with and without PVA foam were calculated. Results The ADCs of some of the phantoms without PVA decreased with diffusion times decreased. In the n-alkane phantoms, only C8H18 showed significantly different ADCs depending on the use of PVA foam in the OGSE sequence. On the other hand, sucrose/collagen phantoms showed significant differences according to diffusion time. The ADCs of the phantoms decreased as the molecular size of the n-alkanes or collagen density of the sucrose/collagen phantom increased. Compared to phantoms without PVA foam, the ADC of the phantoms with PVA foam decreased as the diffusion time increased. Conclusion Changes in ADCs due to differences in diffusion time reflect tissue properties in actual measurements of phantoms. These changes in ADCs can be used for tissue characterization in vivo.
Collapse
|
5
|
Taoka T, Ito R, Nakamichi R, Kamagata K, Sakai M, Kawai H, Nakane T, Abe T, Ichikawa K, Kikuta J, Aoki S, Naganawa S. Reproducibility of diffusion tensor image analysis along the perivascular space (DTI-ALPS) for evaluating interstitial fluid diffusivity and glymphatic function: CHanges in Alps index on Multiple conditiON acquIsition eXperiment (CHAMONIX) study. Jpn J Radiol 2022; 40:147-158. [PMID: 34390452 PMCID: PMC8803717 DOI: 10.1007/s11604-021-01187-5] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/29/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE The diffusion tensor image analysis along the perivascular space (DTI-ALPS) method was developed to evaluate the brain's glymphatic function or interstitial fluid dynamics. This study aimed to evaluate the reproducibility of the DTI-ALPS method and the effect of modifications in the imaging method and data evaluation. MATERIALS AND METHODS Seven healthy volunteers were enrolled in this study. Image acquisition was performed for this test-retest study using a fixed imaging sequence and modified imaging methods which included the placement of region of interest (ROI), imaging plane, head position, averaging, number of motion-proving gradients, echo time (TE), and a different scanner. The ALPS-index values were evaluated for the change of conditions listed above. RESULTS This test-retest study by a fixed imaging sequence showed very high reproducibility (intraclass coefficient = 0.828) for the ALPS-index value. The bilateral ROI placement showed higher reproducibility. The number of averaging and the difference of the scanner did not influence the ALPS-index values. However, modification of the imaging plane and head position impaired reproducibility, and the number of motion-proving gradients affected the ALPS-index value. The ALPS-index values from 12-axis DTI and 3-axis diffusion-weighted image (DWI) showed good correlation (r = 0.86). Also, a shorter TE resulted in a larger value of the ALPS-index. CONCLUSION ALPS index was robust under the fixed imaging method even when different scanners were used. ALPS index was influenced by the imaging plane, the number of motion-proving gradient axes, and TE in the imaging sequence. These factors should be uniformed in the planning ALPS method studies. The possibility to develop a 3-axis DWI-ALPS method using three axes of the motion-proving gradient was also suggested.
Collapse
Affiliation(s)
- Toshiaki Taoka
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan.
| | - Rintaro Ito
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Rei Nakamichi
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Mayuko Sakai
- Canon Medical Systems Corporation, Otawara, Japan
| | - Hisashi Kawai
- Department of Radiology, Aichi Medical University, Nagakute, Japan
| | - Toshiki Nakane
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Takashi Abe
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Kazushige Ichikawa
- Department of Radiological Technology, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Junko Kikuta
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
6
|
Abstract
This article discusses new diffusion-weighted imaging (DWI) sequences, diffusion tensor imaging (DTI), and fiber tractography (FT), as well as more advanced diffusion imaging in pediatric brain and spine. Underlying disorder and pathophysiology causing diffusion abnormalities are discussed. Multishot echo planar imaging (EPI) DWI and non-EPI DWI provide higher spatial resolution with less susceptibility artifact and distortion, which are replacing conventional single-shot EPI DWI. DTI and FT have established clinical significance in pediatric brain and spine. This article discusses advanced diffusion imaging, including diffusion kurtosis imaging, neurite orientation dispersion and density imaging, diffusion spectrum imaging, intravoxel incoherent motion, and oscillating-gradient spin-echo.
Collapse
Affiliation(s)
- Toshio Moritani
- Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 East Medical Center Drive, UH B2 A209K, Ann Arbor, MI 48109, USA.
| |
Collapse
|
7
|
Maekawa T, Hori M, Murata K, Feiweier T, Kamiya K, Andica C, Hagiwara A, Fujita S, Kamagata K, Wada A, Abe O, Aoki S. Time-dependent Diffusion in Brain Abscesses Investigated with Oscillating-gradient Spin-echo. Magn Reson Med Sci 2021; 21:525-530. [PMID: 34511577 PMCID: PMC9618933 DOI: 10.2463/mrms.ici.2021-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Oscillating-gradient spin-echo sequences enable the measurement of diffusion weighting with a short diffusion time and can provide indications of internal structures. We report two cases of brain abscess in which the apparent diffusion coefficient (ADC) values appear higher at short diffusion times in comparison with those at long diffusion times. Diffusion time dependence of the ADC in brain abscesses suggests not only substrate viscosity but also restricted diffusion due to the structure within the lesions.
Collapse
Affiliation(s)
- Tomoko Maekawa
- Department of Radiology, Juntendo University School of Medicine
| | - Masaaki Hori
- Department of Radiology, Juntendo University School of Medicine.,Department of Diagnostic Radiology Toho University Omori Medical Center
| | | | | | - Kouhei Kamiya
- Department of Radiology, Juntendo University School of Medicine.,Department of Diagnostic Radiology Toho University Omori Medical Center
| | | | | | - Shohei Fujita
- Department of Radiology, Juntendo University School of Medicine.,Department of Radiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine
| | - Akihiko Wada
- Department of Radiology, Juntendo University School of Medicine
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine
| |
Collapse
|
8
|
Abstract
Diffusion-weighted images provide a unique contrast that shows the ability to assess tissue structure and condition on a micrometer scale. Notably, these equations are necessary to understand diffusion MR imaging as a theory but not for real imaging, particularly in clinical practice. The diffusion phenomenon can be observed only through MR measurements. One of the emerging fields of diffusion MRI is to probe the tissue microstructure by altering the diffusion time t, the time interval over which spin displacements are sampled. However, the diffusion time is, in a sense, more important than the b-value for diffusion-weighted images and their quantitative metrics.
Collapse
|
9
|
Hagiwara A, Fujita S, Ohno Y, Aoki S. Variability and Standardization of Quantitative Imaging: Monoparametric to Multiparametric Quantification, Radiomics, and Artificial Intelligence. Invest Radiol 2020; 55:601-616. [PMID: 32209816 PMCID: PMC7413678 DOI: 10.1097/rli.0000000000000666] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/19/2022]
Abstract
Radiological images have been assessed qualitatively in most clinical settings by the expert eyes of radiologists and other clinicians. On the other hand, quantification of radiological images has the potential to detect early disease that may be difficult to detect with human eyes, complement or replace biopsy, and provide clear differentiation of disease stage. Further, objective assessment by quantification is a prerequisite of personalized/precision medicine. This review article aims to summarize and discuss how the variability of quantitative values derived from radiological images are induced by a number of factors and how these variabilities are mitigated and standardization of the quantitative values are achieved. We discuss the variabilities of specific biomarkers derived from magnetic resonance imaging and computed tomography, and focus on diffusion-weighted imaging, relaxometry, lung density evaluation, and computer-aided computed tomography volumetry. We also review the sources of variability and current efforts of standardization of the rapidly evolving techniques, which include radiomics and artificial intelligence.
Collapse
Affiliation(s)
- Akifumi Hagiwara
- From the Department of Radiology, Juntendo University School of Medicine, Tokyo
| | | | - Yoshiharu Ohno
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Shigeki Aoki
- From the Department of Radiology, Juntendo University School of Medicine, Tokyo
| |
Collapse
|
10
|
Differentiation of high-grade and low-grade intra-axial brain tumors by time-dependent diffusion MRI. Magn Reson Imaging 2020; 72:34-41. [PMID: 32599021 DOI: 10.1016/j.mri.2020.06.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/27/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Oscillating gradient spin-echo (OGSE) sequences enable acquisitions with shorter diffusion times. There is growing interest in the effect of diffusion time on apparent diffusion coefficient (ADC) values in patients with cancer. However, little evidence exists regarding its usefulness for differentiating between high-grade and low-grade brain tumors. The purpose of this study is to investigate the utility of changes in the ADC value between short and long diffusion times in distinguishing low-grade and high-grade brain tumors. MATERIAL AND METHODS Eleven patients with high-grade brain tumors and ten patients with low-grade brain tumors were scanned using a 3 T magnetic resonance imaging with diffusion-weighted imaging (DWI) using OGSE and PGSE (effective diffusion time [Δeff]: 6.5 ms and 35.2 ms) and b-values of 0 and 1000 s/mm2. Using a region of interest (ROI) analysis of the brain tumors, we measured the ADC for two Δeff (ADCΔeff) values and computed the subtraction ADC (ΔADC = ADC6.5 ms - ADC35.2 ms) and the relative ADC (ΔADC = (ADC6.5 ms - ADC35.2 ms) / ADC35.2 ms × 100). The maximum values for the subtraction ADC (ΔADCmax) and the relative ADC (rADCmax) on the ROI were compared between low-grade and high-grade tumors using the Wilcoxon rank-sum test. A P-value <.05 was considered significant. The ROIs were also placed in the normal white matter of patients with high- and low-grade brain tumors, and ΔADCmax values were determined. RESULTS High-grade tumors had significantly higher ΔADCmax and rADCmax than low-grade tumors. The ΔADCmax values of the normal white matter were lower than the ΔADCmax of high- and low-grade brain tumors. CONCLUSION The dependence of ADC values on diffusion time between 6.5 ms and 35.2 ms was stronger in high-grade tumors than in low-grade tumors, suggesting differences in internal tissue structure. This finding highlights the importance of reporting diffusion times in ADC evaluations and might contribute to the grading of brain tumors using DWI.
Collapse
|
11
|
Choroid plexus cysts analyzed using diffusion-weighted imaging with short diffusion-time. Magn Reson Imaging 2019; 57:323-327. [DOI: 10.1016/j.mri.2018.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/11/2018] [Accepted: 12/30/2018] [Indexed: 12/21/2022]
|
12
|
Boonrod A, Hagiwara A, Hori M, Fukunaga I, Andica C, Maekawa T, Aoki S. Reduced visualization of cerebral infarction on diffusion-weighted images with short diffusion times. Neuroradiology 2018; 60:979-982. [DOI: 10.1007/s00234-018-2065-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/18/2018] [Indexed: 11/28/2022]
|