1
|
Baidya AT, Dante D, Das B, Wang L, Darreh-Shori T, Kumar R. Discovery and characterization of novel pyridone and furan substituted ligands of choline acetyltransferase. Eur J Pharmacol 2025; 998:177638. [PMID: 40252901 DOI: 10.1016/j.ejphar.2025.177638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
The key to the management of two devastating diseases, namely Alzheimer's Disease (AD) and Amyotrophic Lateral Sclerosis (ALS) lies in an early diagnosis, which is difficult due to its multifactorial nature. However, a common hallmark of AD and ALS is degeneration of cholinergic system. Choline acetyltransferase (ChAT) has been proposed as a potential target for development of cholinergic-specific biomarker. However, lack of selective, potent, brain permeable molecular probes of ChAT hinder development of ChAT biomarkers. In this study, we have successfully utilised structure-based virtual screening approach and identified two ChAT inhibitors from a database of 1.4 million compounds. The compounds were then subjected to rigorous in vitro characterization. Compound V6 showed Ki value of 11 μM and IC50 value of 21.73 μM, while V15 showed Ki and IC50 values of 4.5 and 9.42 μM, respectively for ChAT enzyme. V6 and V15 showed good solubility of 0.21 mg/mL and 0.17 mg/mL respectively and cytotoxicity analysis indicated no toxicity. We also performed a 200 ns molecular dynamics simulation, which revealed the intricate interaction dynamics for V6 and V15 with ChAT binding pocket. Moreover, the Tanimoto similarity analysis indicated the novelty and structural diversity of the hits. In conclusion, these validated hits provide a platform to develop potent, selective, blood-brain barrier permeable small molecules as chemical probes of ChAT or as Positron Emission Tomography tracer for early diagnosis and/or in vivo monitoring of the effect of new therapeutic candidates in spectrum of neurodegenerative disorders, in which cholinergic deficit is one of the hallmarks.
Collapse
Affiliation(s)
- Anurag Tk Baidya
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi, 221005, U.P., India
| | - Davide Dante
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52, Stockholm, Sweden
| | - Bhanuranjan Das
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi, 221005, U.P., India
| | - Lisha Wang
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 17164, Solna, Sweden
| | - Taher Darreh-Shori
- Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 52, Stockholm, Sweden
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.), Varanasi, 221005, U.P., India.
| |
Collapse
|
2
|
Mehrnoosh F, Rezaei D, Pakmehr SA, Nataj PG, Sattar M, Shadi M, Ali-Khiavi P, Zare F, Hjazi A, Al-Aouadi RFA, Sapayev V, Zargari F, Alkhathami AG, Ahmadzadeh R, Khedmatgozar M, Hamzehzadeh S. The role of Panax ginseng in neurodegenerative disorders: mechanisms, benefits, and future directions. Metab Brain Dis 2025; 40:183. [PMID: 40232582 DOI: 10.1007/s11011-025-01610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 04/07/2025] [Indexed: 04/16/2025]
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), Multiple sclerosis (MS), and Huntington's disease (HD) represent a growing global health challenge, especially with aging populations. Characterized by progressive neuronal loss, these diseases lead to cognitive, motor, and behavioral impairments, significantly impacting patients' quality of life. Current therapies largely address symptoms without halting disease progression, underscoring the need for innovative, disease-modifying treatments. Ginseng, a traditional herbal medicine with well-known adaptogenic and neuroprotective properties, has gained attention as a potential therapeutic agent for neurodegeneration. Rich in bioactive compounds called ginsenosides, ginseng exhibits antioxidant, anti-inflammatory, and anti-apoptotic effects, making it a promising candidate for addressing the complex pathology of neurodegenerative diseases. Recent studies demonstrate that ginsenosides modulate disease-related processes such as oxidative stress, protein aggregation, mitochondrial dysfunction, and inflammation. In AD models, ginsenosides have been shown to reduce amyloid-beta accumulation and tau hyperphosphorylation, while in PD, they help protect dopaminergic neurons and mitigate motor symptoms. Ginseng's effects in ALS, MS, and HD models include improving motor function, extending neuronal survival, and reducing cellular toxicity. This review provides a comprehensive overview of the neuroprotective mechanisms of ginseng, emphasizing its therapeutic potential across various neurodegenerative diseases and discussing future research directions for its integration into clinical practice.
Collapse
Affiliation(s)
- Faranak Mehrnoosh
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran
| | | | | | | | - Mustafa Sattar
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Melina Shadi
- Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Payam Ali-Khiavi
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farshad Zare
- Student Research Committee, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | | | - Valisher Sapayev
- General Professional Science Department, Mamun University, Khiva, Uzbekistan
| | - Faranak Zargari
- Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, West Azerbaijan, Iran
| | - Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha, 9088, Saudi Arabia
| | - Roya Ahmadzadeh
- Medicine Faculty, Zahedan University of Medical Sciences, Zahedan, Iran.
| | | | | |
Collapse
|
3
|
Kikuchi A, Watanuki S, Watabe H, Tashiro M. Age-related sensitivity deterioration evaluation of positron emission tomography utilizing cross-calibration factor measurement data. Radiol Phys Technol 2025; 18:268-274. [PMID: 39907967 PMCID: PMC11876247 DOI: 10.1007/s12194-025-00882-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 02/06/2025]
Abstract
Age-related deterioration in positron emission tomography (PET) systems can be monitored using cross-calibration scans for scanner calibration. This study aimed to evaluate changes in the sensitivity of a PET system over time using routinely collected cross-calibration factor (CCF) measurement data and NEMA sensitivity measurement data acquired at our facility. We used CCF measurement data acquired over eight years, from 2016 to 2023. The count rates were calculated from raw data. The NEMA sensitivity measurements were also performed in 2017 and 2024 to compare with the sensitivities obtained from the CCF measurements. The PET images were reconstructed using the CCF data. A region of interest (ROI) was placed at the center of the PET images and count rates from the PET images were obtained. The sensitivity changes in the CCF data showed a linear decrease in sensitivity over eight years, with a mean annual reduction rate of approximately 2.0%. A comparison of the NEMA sensitivity measurements indicated a decrease in sensitivity, with a 12% reduction over eight eight years. The sensitivity was higher at the center of the axial field of view than at the edges. The ROI data also showed a linear decrease in sensitivity. This is consistent with the CCF data. Additionally, the coefficient of variation increased towards the edge of the slice. By utilizing the CCF measurement data, we obtained age-related changes in the PET system, suggesting that the PET system used in our facility may experience an annual sensitivity deterioration of approximately 2.0%.
Collapse
Affiliation(s)
- Asuka Kikuchi
- Nuclear Medicine Laboratory, Division of Short-lived Radioisotope Research, Research Center for Accelerator and Radioisotope Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Shoichi Watanuki
- Nuclear Medicine Laboratory, Division of Short-lived Radioisotope Research, Research Center for Accelerator and Radioisotope Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Hiroshi Watabe
- Radiation Protection & Safety Control Laboratory, Division of Radiation Protection and Nuclear Safety, Research Center for Accelerator and Radioisotope Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Manabu Tashiro
- Nuclear Medicine Laboratory, Division of Short-lived Radioisotope Research, Research Center for Accelerator and Radioisotope Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan.
| |
Collapse
|
4
|
Zheng T, Jiang T, Ma H, Zhu Y, Wang M. Targeting PI3K/Akt in Cerebral Ischemia Reperfusion Injury Alleviation: From Signaling Networks to Targeted Therapy. Mol Neurobiol 2024; 61:7930-7949. [PMID: 38441860 DOI: 10.1007/s12035-024-04039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/09/2024] [Indexed: 09/21/2024]
Abstract
Ischemia/reperfusion (I/R) injury is a pathological event that results in reperfusion due to low blood flow to an organ. Cerebral ischemia is a common cerebrovascular disease with high mortality, and reperfusion is the current standard intervention. However, reperfusion may further induce cellular damage and dysfunction known as cerebral ischemia/reperfusion injury (CIRI). Currently, strategies for the clinical management of CIRI are limited, necessitating the exploration of novel and efficacious treatment modalities for the benefit of patients. PI3K/Akt signaling pathway is an important cellular process associated with the disease. Stimulation of the PI3K/Akt pathway enhances I/R injury in multiple organs such as heart, brain, lung, and liver. It stands as a pivotal signaling pathway crucial for diminishing cerebral infarction size and safeguarding the functionality of brain tissue after CIRI. During CIRI, activation of the PI3K/Akt pathway exhibits a protective effect on CIRI. Furthermore, activation of the PI3K/Akt pathway has the potential to augment the activity of antioxidant enzymes, resulting in a decrease in reactive oxygen species (ROS) and the associated oxidative stress. Meanwhile, PI3K/Akt plays a neuroprotective role by inhibiting inflammatory responses and apoptosis. For example, PI3K/Akt interacts with NF-κB, Nrf2, and MAPK signaling pathways to mitigate CIRI. This article is aimed to explore the pivotal role and underlying mechanism of PI3K/Akt in ameliorating CIRI and investigate the influence of ischemic preconditioning and post-processing, as well as the impact of pertinent drugs or activators targeting the PI3K/Akt pathway on CIRI. The primary objective is to furnish compelling evidence supporting the activation of PI3K/Akt in the context of CIRI, elucidating its mechanistic intricacies. By doing so, the paper aims to underscore the critical contribution of PI3K/Akt in mitigating CIRI, providing a theoretical foundation for considering the PI3K/Akt pathway as a viable target for CIRI treatment.
Collapse
Affiliation(s)
- Ting Zheng
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Taotao Jiang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hongxiang Ma
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yanping Zhu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Manxia Wang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
5
|
Taoka T, Ito R, Nakamichi R, Nakane T, Kawai H, Naganawa S. Diffusion Tensor Image Analysis ALong the Perivascular Space (DTI-ALPS): Revisiting the Meaning and Significance of the Method. Magn Reson Med Sci 2024; 23:268-290. [PMID: 38569866 PMCID: PMC11234944 DOI: 10.2463/mrms.rev.2023-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
More than 5 years have passed since the Diffusion Tensor Image Analysis ALong the Perivascular Space (DTI-ALPS) method was proposed with the intention of evaluating the glymphatic system. This method is handy due to its noninvasiveness, provision of a simple index in a straightforward formula, and the possibility of retrospective analysis. Therefore, the ALPS method was adopted to evaluate the glymphatic system for many disorders in many studies. The purpose of this review is to look back and discuss the ALPS method at this moment.The ALPS-index was found to be an indicator of a number of conditions related to the glymphatic system. Thus, although this was expected in the original report, the results of the ALPS method are often interpreted as uniquely corresponding to the function of the glymphatic system. However, a number of subsequent studies have pointed out the problems on the data interpretation. As they rightly point out, a higher ALPS-index indicates predominant Brownian motion of water molecules in the radial direction at the lateral ventricular body level, no more and no less. Fortunately, the term "ALPS-index" has become common and is now known as a common term by many researchers. Therefore, the ALPS-index should simply be expressed as high or low, and whether it reflects a glymphatic system is better to be discussed carefully. In other words, when a decreased ALPS-index is observed, it should be expressed as "decreased ALPS-index" and not directly as "glymphatic dysfunction". Recently, various methods have been proposed to evaluate the glymphatic system. It has become clear that these methods also do not seem to reflect the entirety of the extremely complex glymphatic system. This means that it would be desirable to use various methods in combination to evaluate the glymphatic system in a comprehensive manner.
Collapse
Affiliation(s)
- Toshiaki Taoka
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Rintaro Ito
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Rei Nakamichi
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Toshiki Nakane
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| | - Hisashi Kawai
- Department of Radiology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
6
|
Triumbari EKA, Chiaravalloti A, Schillaci O, Mercuri NB, Liguori C. Positron Emission Tomography/Computed Tomography Imaging in Therapeutic Clinical Trials in Alzheimer's Disease: An Overview of the Current State of the Art of Research. J Alzheimers Dis 2024; 101:S603-S628. [PMID: 39422956 DOI: 10.3233/jad-240349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The integration of positron emission tomography/computed tomography (PET/CT) has revolutionized the landscape of Alzheimer's disease (AD) research and therapeutic interventions. By combining structural and functional imaging, PET/CT provides a comprehensive understanding of disease pathology and response to treatment assessment. PET/CT, particularly with 2-deoxy-2-[fluorine-18]fluoro-D-glucose (18F-FDG), facilitates the visualization of glucose metabolism in the brain, enabling early diagnosis, staging, and monitoring of neurodegenerative disease progression. The advent of amyloid and tau PET imaging has further propelled the field forward, offering invaluable tools for tracking pathological hallmarks, assessing treatment response, and predicting clinical outcomes. While some therapeutic interventions targeting amyloid plaque load showed promising results with the reduction of cerebral amyloid accumulation over time, others failed to demonstrate a significant impact of anti-amyloid agents for reducing the amyloid plaques burden in AD brains. Tau PET imaging has conversely fueled the advent of disease-modifying therapeutic strategies in AD by supporting the assessment of neurofibrillary tangles of tau pathology deposition over time. Looking ahead, PET imaging holds immense promise for studying additional targets such as neuroinflammation, cholinergic deficit, and synaptic dysfunction. Advances in radiotracer development, dedicated brain PET/CT scanners, and Artificial Intelligence-powered software are poised to enhance the quality, sensitivity, and diagnostic power of molecular neuroimaging. Consequently, PET/CT remains at the forefront of AD research, offering unparalleled opportunities for unravelling the complexities of the disease and advancing therapeutic interventions, although it is not yet enough alone to allow patients' recruitment in therapeutic clinical trials.
Collapse
Affiliation(s)
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Neurology Unit, University Hospital of Rome "Tor Vergata", Rome, Italy
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Neurology Unit, University Hospital of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
7
|
Zhao A, Balcer LJ, Himali JJ, O’Donnell A, Rahimpour Y, DeCarli C, Gonzales MM, Aparicio HJ, Ramos-Cejudo J, Kenney R, Beiser A, Seshadri S, Salinas J. Association of Loneliness with Functional Connectivity MRI, Amyloid-β PET, and Tau PET Neuroimaging Markers of Vulnerability for Alzheimer's Disease. J Alzheimers Dis 2024; 99:1473-1484. [PMID: 38820017 PMCID: PMC11191473 DOI: 10.3233/jad-231425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2024] [Indexed: 06/02/2024]
Abstract
Background Loneliness has been declared an "epidemic" associated with negative physical, mental, and cognitive health outcomes such as increased dementia risk. Less is known about the relationship between loneliness and advanced neuroimaging correlates of Alzheimer's disease (AD). Objective To assess whether loneliness was associated with advanced neuroimaging markers of AD using neuroimaging data from Framingham Heart Study (FHS) participants without dementia. Methods In this cross-sectional observational analysis, we used functional connectivity MRI (fcMRI), amyloid-β (Aβ) PET, and tau PET imaging data collected between 2016 and 2019 on eligible FHS cohort participants. Loneliness was defined as feeling lonely at least one day in the past week. The primary fcMRI marker was Default Mode Network intra-network connectivity. The primary PET imaging markers were Aβ deposition in precuneal and FLR (frontal, lateral parietal and lateral temporal, retrosplenial) regions, and tau deposition in the amygdala, entorhinal, and rhinal regions. Results Of 381 participants (mean age 58 [SD 10]) who met inclusion criteria for fcMRI analysis, 5% were classified as lonely (17/381). No association was observed between loneliness status and network changes. Of 424 participants (mean age 58 [SD = 10]) meeting inclusion criteria for PET analyses, 5% (21/424) were lonely; no associations were observed between loneliness and either Aβ or tau deposition in primary regions of interest. Conclusions In this cross-sectional study, there were no observable associations between loneliness and select fcMRI, Aβ PET, and tau PET neuroimaging markers of AD risk. These findings merit further investigation in prospective studies of community-based cohorts.
Collapse
Affiliation(s)
- Amanda Zhao
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Laura J. Balcer
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Population Health and Ophthalmology, New York University Grossman School of Medicine, New York, NY, USA
| | - Jayandra J. Himali
- The Framingham Study, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Adrienne O’Donnell
- The Framingham Study, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Yashar Rahimpour
- Department of Anatomy and Neurobiology, Center for Biomedical Imaging, Boston University School of Medicine, Boston, MA, USA
| | - Charles DeCarli
- Department of Neurology, University of California Davis, Davis, CA, USA
| | - Mitzi M. Gonzales
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Hugo J. Aparicio
- The Framingham Study, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Jaime Ramos-Cejudo
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Rachel Kenney
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Population Health and Ophthalmology, New York University Grossman School of Medicine, New York, NY, USA
| | - Alexa Beiser
- The Framingham Study, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Sudha Seshadri
- The Framingham Study, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Joel Salinas
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
- The Framingham Study, Boston, MA, USA
| |
Collapse
|
8
|
Matsuda H, Yamao T. Tau positron emission tomography in patients with cognitive impairment and suspected Alzheimer's disease. Fukushima J Med Sci 2023; 69:85-93. [PMID: 37302841 PMCID: PMC10480511 DOI: 10.5387/fms.2023-08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Alzheimer's disease (AD) is diagnosed by the presence of both amyloid β and tau proteins. Recent advances in molecular PET imaging have made it possible to assess the accumulation of these proteins in the living brain. PET ligands have been developed that bind to 3R/4R tau in AD, but not to 3R tau or 4R tau alone. Of the first-generation PET ligands, 18F-flortaucipir has recently been approved by the Food and Drug Administration. Several second-generation PET probes with less off-target binding have been developed and are being applied clinically. Visual interpretation of tau PET should be based on neuropathological neurofibrillary tangle staging instead of a simple positive or negative classification. Four visual read classifications have been proposed: "no uptake," "medial temporal lobe (MTL) only," "MTL AND," and "outside MTL." As an adjunct to visual interpretation, quantitative analysis has been proposed using MRI-based native space FreeSurfer parcellations. The standardized uptake value ratio of the target area is measured using the cerebellar gray matter as a reference region. In the near future, the Centiloid scale of tau PET is expected to be used as a harmonized value for standardizing each analytical method or PET ligand used, similar to amyloid PET.
Collapse
Affiliation(s)
- Hiroshi Matsuda
- Department of Biofunctional Imaging, Fukushima Medical University
| | - Tensho Yamao
- Department of Radiological Sciences, School of Health Sciences, Fukushima Medical University
| |
Collapse
|
9
|
Yosypyshyn D, Kučikienė D, Ramakers I, Schulz JB, Reetz K, Costa AS. Clinical characteristics of patients with suspected Alzheimer's disease within a CSF Aß-ratio grey zone. Neurol Res Pract 2023; 5:40. [PMID: 37533121 PMCID: PMC10398972 DOI: 10.1186/s42466-023-00262-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND The AT(N) research framework for Alzheimer's disease (AD) remains unclear on how to best deal with borderline cases. Our aim was to characterise patients with suspected AD with a borderline Aß1-42/Aß1-40 ratio in cerebrospinal fluid. METHODS We analysed retrospective data from two cohorts (memory clinic cohort and ADNI) of patients (n = 63) with an Aß1-42/Aß1-40 ratio within a predefined borderline area-Q1 above the validated cut-off value(grey zone). We compared demographic, clinical, neuropsychological and neuroimaging features between grey zone patients and patients with low Aß1-42 (normal Aß ratio but pathological Aß1-42, n = 42) and patients with AD (pathological Aß, P-Tau, und T-Tau, n = 80). RESULTS Patients had mild cognitive impairment or mild dementia and a median age of 72 years. Demographic and general clinical characteristics did not differ between the groups. Patients in the grey zone group were the least impaired in cognition. However, they overlapped with the low Aß1-42 group in verbal episodic memory performance, especially in delayed recall and recognition. The grey zone group had less severe medial temporal atrophy, but mild posterior atrophy and mild white matter hyperintensities, similar to the low Aß1-42 group. CONCLUSIONS Patients in the Aß ratio grey zone were less impaired, but showed clinical overlap with patients on the AD continuum. These borderline patients may be at an earlier disease stage. Assuming an increased risk of AD and progressive cognitive decline, careful consideration of clinical follow-up is recommended when using dichotomous approaches to classify Aß status.
Collapse
Affiliation(s)
- Dariia Yosypyshyn
- Department of Neurology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Domantė Kučikienė
- Department of Neurology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Inez Ramakers
- Department of Neurology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Center Limburg, Maastricht University, Maastricht, The Netherlands
| | - Jörg B Schulz
- Department of Neurology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
- JARA Institute Molecular Neuroscience and Neuroimaging, RWTH Aachen & Forschungszentrum Jülich, Aachen, Germany
| | - Kathrin Reetz
- Department of Neurology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.
- JARA Institute Molecular Neuroscience and Neuroimaging, RWTH Aachen & Forschungszentrum Jülich, Aachen, Germany.
| | - Ana Sofia Costa
- Department of Neurology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
- JARA Institute Molecular Neuroscience and Neuroimaging, RWTH Aachen & Forschungszentrum Jülich, Aachen, Germany
| |
Collapse
|
10
|
Nakaya M, Sato N, Matsuda H, Maikusa N, Shigemoto Y, Sone D, Yamao T, Ogawa M, Kimura Y, Chiba E, Ohnishi M, Kato K, Okita K, Tsukamoto T, Yokoi Y, Sakata M, Abe O. Free water derived by multi-shell diffusion MRI reflects tau/neuroinflammatory pathology in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12356. [PMID: 36304723 PMCID: PMC9594557 DOI: 10.1002/trc2.12356] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/03/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022]
Abstract
Introduction Free-water (FW) imaging, a new analysis method for diffusion magnetic resonance imaging (MRI), can indicate neuroinflammation and degeneration. We evaluated FW in Alzheimer's disease (AD) using tau/inflammatory and amyloid positron emission tomography (PET). Methods Seventy-one participants underwent multi-shell diffusion MRI, 18F-THK5351 PET, 11C-Pittsburgh compound B PET, and neuropsychological assessments. They were categorized into two groups: healthy controls (HCs) (n = 40) and AD-spectrum group (AD-S) (n = 31) using the Centiloid scale with amyloid PET and cognitive function. We analyzed group comparisons in FW and PET, correlations between FW and PET, and correlation analysis with neuropsychological scores. Results In AD-S group, there was a significant positive correlation between FW and 18F-THK5351 in the temporal lobes. In addition, there were negative correlations between FW and cognitive function in the temporal lobe and cingulate gyrus, and negative correlations between 18F-THK5351 and cognitive function in the same regions. Discussion FW imaging could be a biomarker for tau in AD alongside clinical correlations.
Collapse
Affiliation(s)
- Moto Nakaya
- Departmentof RadiologyNational Center Hospital of Neurology and PsychiatryOgawa‐HigashiKodairaTokyoJapan
- Department of RadiologyGraduate School of MedicineUniversity of TokyoHongoBunkyo‐kuTokyoJapan
| | - Noriko Sato
- Departmentof RadiologyNational Center Hospital of Neurology and PsychiatryOgawa‐HigashiKodairaTokyoJapan
| | - Hiroshi Matsuda
- Departmentof RadiologyNational Center Hospital of Neurology and PsychiatryOgawa‐HigashiKodairaTokyoJapan
- Drug Discovery and Cyclotron Research CenterSouthern TOHOKU Research Institute for NeuroscienceKoriyamaJapan
| | - Norihide Maikusa
- Departmentof RadiologyNational Center Hospital of Neurology and PsychiatryOgawa‐HigashiKodairaTokyoJapan
| | - Yoko Shigemoto
- Departmentof RadiologyNational Center Hospital of Neurology and PsychiatryOgawa‐HigashiKodairaTokyoJapan
| | - Daichi Sone
- Department of PsychiatryThe Jikei University School of MedicineTokyoJapan
- Integrative Brain Imaging CenterNational Center of Neurology and PsychiatryTokyoJapan
| | - Tensho Yamao
- Department of Radiological SciencesSchool of Health SciencesFukushima Medical UniversityFukushimaJapan
| | - Masayo Ogawa
- Integrative Brain Imaging CenterNational Center of Neurology and PsychiatryTokyoJapan
| | - Yukio Kimura
- Departmentof RadiologyNational Center Hospital of Neurology and PsychiatryOgawa‐HigashiKodairaTokyoJapan
| | - Emiko Chiba
- Departmentof RadiologyNational Center Hospital of Neurology and PsychiatryOgawa‐HigashiKodairaTokyoJapan
| | - Masahiro Ohnishi
- Departmentof RadiologyNational Center Hospital of Neurology and PsychiatryOgawa‐HigashiKodairaTokyoJapan
| | - Koichi Kato
- Integrative Brain Imaging CenterNational Center of Neurology and PsychiatryTokyoJapan
| | - Kyoji Okita
- Integrative Brain Imaging CenterNational Center of Neurology and PsychiatryTokyoJapan
| | - Tadashi Tsukamoto
- Department of NeurologyNational Center of Neurology and PsychiatryKodairaTokyoJapan
| | - Yuma Yokoi
- Department of PsychiatryNational Center of Neurology and PsychiatryKodairaTokyoJapan
| | - Masuhiro Sakata
- Department of PsychiatryNational Center of Neurology and PsychiatryKodairaTokyoJapan
| | - Osamu Abe
- Department of RadiologyGraduate School of MedicineUniversity of TokyoHongoBunkyo‐kuTokyoJapan
| |
Collapse
|
11
|
Gonzales MM, Wiedner C, Wang C, Liu Q, Bis JC, Li Z, Himali JJ, Ghosh S, Thomas EA, Parent DM, Kautz TF, Pase MP, Aparicio HJ, Djoussé L, Mukamal KJ, Psaty BM, Longstreth WT, Mosley TH, Gudnason V, Mbangdadji D, Lopez OL, Yaffe K, Sidney S, Bryan RN, Nasrallah IM, DeCarli CS, Beiser AS, Launer LJ, Fornage M, Tracy RP, Seshadri S, Satizabal CL. A population-based meta-analysis of circulating GFAP for cognition and dementia risk. Ann Clin Transl Neurol 2022; 9:1574-1585. [PMID: 36056631 PMCID: PMC9539381 DOI: 10.1002/acn3.51652] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Expression of glial fibrillary acidic protein (GFAP), a marker of reactive astrocytosis, colocalizes with neuropathology in the brain. Blood levels of GFAP have been associated with cognitive decline and dementia status. However, further examinations at a population-based level are necessary to broaden generalizability to community settings. METHODS Circulating GFAP levels were assayed using a Simoa HD-1 analyzer in 4338 adults without prevalent dementia from four longitudinal community-based cohort studies. The associations between GFAP levels with general cognition, total brain volume, and hippocampal volume were evaluated with separate linear regression models in each cohort with adjustment for age, sex, education, race, diabetes, systolic blood pressure, antihypertensive medication, body mass index, apolipoprotein E ε4 status, site, and time between GFAP blood draw and the outcome. Associations with incident all-cause and Alzheimer's disease dementia were evaluated with adjusted Cox proportional hazard models. Meta-analysis was performed on the estimates derived from each cohort using random-effects models. RESULTS Meta-analyses indicated that higher circulating GFAP associated with lower general cognition (ß = -0.09, [95% confidence interval [CI]: -0.15 to -0.03], p = 0.005), but not with total brain or hippocampal volume (p > 0.05). However, each standard deviation unit increase in log-transformed GFAP levels was significantly associated with a 2.5-fold higher risk of incident all-cause dementia (Hazard Ratio [HR]: 2.47 (95% CI: 1.52-4.01)) and Alzheimer's disease dementia (HR: 2.54 [95% CI: 1.42-4.53]) over up to 15-years of follow-up. INTERPRETATION Results support the potential role of circulating GFAP levels for aiding dementia risk prediction and improving clinical trial stratification in community settings.
Collapse
Affiliation(s)
- Mitzi M. Gonzales
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- Department of NeurologyUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Crystal Wiedner
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Chen‐Pin Wang
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- Department of Population Health SciencesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- South Texas Veterans Health Care System, Geriatric ResearchEducation & Clinical CenterSan AntonioTexasUSA
| | - Qianqian Liu
- Department of Population Health SciencesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Joshua C. Bis
- Cardiovascular Health Research UnitUniversity of WashingtonSeattleWashingtonUSA
| | - Zhiguang Li
- Laboratory of Epidemiology and Population Sciences, Intramural Research ProgramNational Institute on AgingBethesdaMarylandUSA
| | - Jayandra J. Himali
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- Department of Population Health SciencesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
- Department of BiostatisticsBoston University School of MedicineBostonMassachusettsUSA
| | - Saptaparni Ghosh
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
| | - Emy A. Thomas
- Brown Foundation of Molecular Medicine, McGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Danielle M. Parent
- Department of Pathology and Laboratory Medicine, and Biochemistry, Larner College of MedicineUniversity of VermontBurlingtonVermontUSA
| | - Tiffany F. Kautz
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
| | - Matthew P. Pase
- The Framingham Heart StudyFraminghamMassachusettsUSA
- School of Psychological Sciences, Turner Institute for Brain and Mental HealthMonash UniversityClaytonVictoriaAustralia
- Harvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Hugo J. Aparicio
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
| | - Luc Djoussé
- Department of MedicineBrigham and Women's HospitalBostonMassachusettsUSA
- Boston Veterans Affairs Healthcare SystemBostonMassachusettsUSA
| | - Kenneth J. Mukamal
- Department of MedicineBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Bruce M. Psaty
- Cardiovascular Health Research UnitUniversity of WashingtonSeattleWashingtonUSA
- Department of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
- Department of Health Systems and Population HealthUniversity of WashingtonSeattleWashingtonUSA
| | - William T. Longstreth
- Department of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
- Department of NeurologyUniversity of WashingtonSeattleWashingtonUSA
| | - Thomas H. Mosley
- The MIND CenterUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Vilmundur Gudnason
- Icelandic Heart Association Research InstituteKópavogurIceland
- Department of CardiologyUniversity of IcelandReykjavikIceland
| | - Djass Mbangdadji
- Laboratory of Epidemiology and Population Sciences, Intramural Research ProgramNational Institute on AgingBethesdaMarylandUSA
| | - Oscar L. Lopez
- Department of NeurologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Kristine Yaffe
- Department of PsychiatryUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of NeurologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
- San Francisco VA Medical CenterSan FranciscoCaliforniaUSA
| | - Stephen Sidney
- Kaiser Permanente Medical Center ProgramOaklandCaliforniaUSA
| | - R. Nick Bryan
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ilya M. Nasrallah
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Alexa S. Beiser
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
- Department of BiostatisticsBoston University School of MedicineBostonMassachusettsUSA
| | - Lenore J. Launer
- Laboratory of Epidemiology and Population Sciences, Intramural Research ProgramNational Institute on AgingBethesdaMarylandUSA
| | - Myriam Fornage
- Brown Foundation of Molecular Medicine, McGovern Medical SchoolUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Russell P. Tracy
- Department of Pathology and Laboratory Medicine, and Biochemistry, Larner College of MedicineUniversity of VermontBurlingtonVermontUSA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- Department of NeurologyUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
| | - Claudia L. Satizabal
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative DiseasesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- Department of Population Health SciencesUniversity of Texas Health Science Center at San AntonioSan AntonioTexasUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
| |
Collapse
|
12
|
Ota M, Sato N, Nakaya M, Shigemoto Y, Kimura Y, Chiba E, Yokoi Y, Tsukamoto T, Matsuda H. Relationships Between the Deposition of Amyloid-β and Tau Protein and Glymphatic System Activity in Alzheimer’s Disease: Diffusion Tensor Image Study. J Alzheimers Dis 2022; 90:295-303. [DOI: 10.3233/jad-220534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Amyloid-β (Aβ) and tau protein accumulation in the brain is thought to be one of the causes of Alzheimer’s disease (AD). Recent study found that the glymphatic system was waste drainage system in the brain and promoting the elimination of Aβ and tau protein. Objective: Objective: We evaluated the relationships between the glymphatic system activity and Aβ and tau protein deposition. Methods: Subjects were 21 patients with AD and 36 healthy subjects who underwent diffusion tensor imaging (DTI) scan and the positron emission tomography using with the Aβ tracer: 11C-PiB and the tau/inflammatory tracer: 18F-THK5351. We computed diffusion tensor image analysis along the perivascular space (DTI-ALPS) index as the proxy of glymphatic system activity and estimated the relationships between the DTI-ALPS index and Aβ and tau protein/inflammatory deposition. Results: We found significant negative correlations between DTI-ALPS index and the standard uptake value ratio (SUVR) of 11C-PiB in the bilateral temporal and left parietal cortices and left posterior cingulate gyrus in all subjects. Further, we detected significant negative correlations between DTI-ALPS index and the SUVR of 18F-THK5351 in the bilateral temporal cortices and right parietal cortex in all participants, too. Conclusion: Our data suggested that DTI-ALPS index was a good biomarker for the evaluation of Aβ and tau deposition and neuroinflammation, and this marker might be effective to estimate the glymphatic system activity.
Collapse
Affiliation(s)
- Miho Ota
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- Department of Neuropsychiatry, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Noriko Sato
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Moto Nakaya
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yoko Shigemoto
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yukio Kimura
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Emiko Chiba
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yuma Yokoi
- Department of Psychiatry, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- Department of Educational Promotion, Clinical Research & Education Promotion Division, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Tadashi Tsukamoto
- Department of Neurology, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Hiroshi Matsuda
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- Department of Biofunctional Imaging, Fukushima Medical University, Fukushima City, Fukushima, Japan
| |
Collapse
|
13
|
Schilling LP, Balthazar MLF, Radanovic M, Forlenza OV, Silagi ML, Smid J, Barbosa BJAP, Frota NAF, Souza LCD, Vale FAC, Caramelli P, Bertolucci PHF, Chaves MLF, Brucki SMD, Damasceno BP, Nitrini R. Diagnosis of Alzheimer’s disease: recommendations of the Scientific Department of Cognitive Neurology and Aging of the Brazilian Academy of Neurology. Dement Neuropsychol 2022. [DOI: 10.1590/1980-5764-dn-2022-s102en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
ABSTRACT This paper presents the consensus of the Scientific Department of Cognitive Neurology and Aging from the Brazilian Academy of Neurology on the diagnostic criteria for Alzheimer’s disease (AD) in Brazil. The authors conducted a literature review regarding clinical and research criteria for AD diagnosis and proposed protocols for use at primary, secondary, and tertiary care levels. Within this clinical scenario, the diagnostic criteria for typical and atypical AD are presented as well as clinical, cognitive, and functional assessment tools and complementary propaedeutics with laboratory and neuroimaging tests. The use of biomarkers is also discussed for both clinical diagnosis (in specific conditions) and research.
Collapse
Affiliation(s)
- Lucas Porcello Schilling
- Pontifícia Universidade do Rio Grande do Sul, Brasil; Pontifícia Universidade do Rio Grande do Sul, Brasil; Pontifícia Universidade do Rio Grande do Sul, Brasil
| | | | | | | | - Marcela Lima Silagi
- Universidade Federal de São Paulo, Brasil; Universidade de São Paulo, Brasil
| | | | - Breno José Alencar Pires Barbosa
- Universidade de São Paulo, Brasil; Universidade Federal de Pernambuco, Brasil; Instituto de Medicina Integral Prof. Fernando Figueira, Brasil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Schilling LP, Balthazar MLF, Radanovic M, Forlenza OV, Silagi ML, Smid J, Barbosa BJAP, Frota NAF, de Souza LC, Vale FAC, Caramelli P, Bertolucci PHF, Chaves MLF, Brucki SMD, Damasceno BP, Nitrini R. Diagnosis of Alzheimer's disease: recommendations of the Scientific Department of Cognitive Neurology and Aging of the Brazilian Academy of Neurology. Dement Neuropsychol 2022; 16:25-39. [PMID: 36533157 PMCID: PMC9745995 DOI: 10.1590/1980-5764-dn-2022-s102pt] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/22/2021] [Accepted: 04/27/2022] [Indexed: 01/25/2023] Open
Abstract
This paper presents the consensus of the Scientific Department of Cognitive Neurology and Aging from the Brazilian Academy of Neurology on the diagnostic criteria for Alzheimer's disease (AD) in Brazil. The authors conducted a literature review regarding clinical and research criteria for AD diagnosis and proposed protocols for use at primary, secondary, and tertiary care levels. Within this clinical scenario, the diagnostic criteria for typical and atypical AD are presented as well as clinical, cognitive, and functional assessment tools and complementary propaedeutics with laboratory and neuroimaging tests. The use of biomarkers is also discussed for both clinical diagnosis (in specific conditions) and research.
Collapse
Affiliation(s)
- Lucas Porcello Schilling
- Pontifícia Universidade do Rio Grande do Sul, Escola de Medicina, Serviço de Neurologia, Porto Alegre RS, Brasil
- Pontifícia Universidade do Rio Grande do Sul, Instituto do Cérebro do Rio Grande do Sul, Porto Alegre RS, Brasil
- Pontifícia Universidade do Rio Grande do Sul, Programa de Pós-Graduação em Gerontologia Biomédica, Porto Alegre RS, Brasil
| | | | - Márcia Radanovic
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Instituto de Psiquiatria, Laboratório de Neurociências, São Paulo SP, Brasil
| | - Orestes Vicente Forlenza
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Instituto de Psiquiatria, Laboratório de Neurociências, São Paulo SP, Brasil
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Psiquiatria, São Paulo SP, Brasil
| | - Marcela Lima Silagi
- Universidade Federal de São Paulo, Departamento de Fonoaudiologia, São Paulo SP, Brasil
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Grupo de Neurologia Cognitiva e do Comportamento, São Paulo SP, Brasil
| | - Jerusa Smid
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Grupo de Neurologia Cognitiva e do Comportamento, São Paulo SP, Brasil
| | - Breno José Alencar Pires Barbosa
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Grupo de Neurologia Cognitiva e do Comportamento, São Paulo SP, Brasil
- Universidade Federal de Pernambuco, Centro de Ciências Médicas, Área Acadêmica de Neuropsiquiatria, Recife PE, Brasil
- Instituto de Medicina Integral Prof. Fernando Figueira, Recife PE, Brasil
| | | | - Leonardo Cruz de Souza
- Universidade Federal de Minas Gerais, Departamento de Clínica Médica, Belo Horizonte MG, Brasil
| | - Francisco Assis Carvalho Vale
- Universidade Federal de São Carlos, Centro de Ciências Biológicas e da Saúde, Departamento de Medicina, São Carlos SP, Brasil
| | - Paulo Caramelli
- Universidade Federal de Minas Gerais, Departamento de Clínica Médica, Belo Horizonte MG, Brasil
| | | | - Márcia Lorena Fagundes Chaves
- Hospital de Clínicas de Porto Alegre, Serviço de Neurologia, Porto Alegre RS, Brasil
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Medicina Interna, Porto Alegre RS, Brasil
| | - Sonia Maria Dozzi Brucki
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Grupo de Neurologia Cognitiva e do Comportamento, São Paulo SP, Brasil
| | - Benito Pereira Damasceno
- Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Departamento de Neurologia, Campinas SP, Brasil
| | - Ricardo Nitrini
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Grupo de Neurologia Cognitiva e do Comportamento, São Paulo SP, Brasil
| |
Collapse
|
15
|
Ma JP, Robbins CB, Lee JM, Soundararajan S, Stinnett SS, Agrawal R, Plassman BL, Lad EM, Whitson H, Grewal DS, Fekrat S. Longitudinal Analysis of the Retina and Choroid in Cognitively Normal Individuals at Higher Genetic Risk of Alzheimer Disease. Ophthalmol Retina 2022; 6:607-619. [PMID: 35283324 PMCID: PMC9271592 DOI: 10.1016/j.oret.2022.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE To assess the baseline differences and longitudinal rate of change in retinal and choroidal imaging parameters between apolipoprotein ε4 (APOE ε4) carriers and noncarriers with normal cognition. DESIGN Prospective study. SUBJECTS Four hundred thirteen eyes of 218 individuals with normal cognition aged ≥ 55 years with known APOE status (98 APOE ε4 carriers and 120 noncarriers). The exclusion criteria included diabetes mellitus, uncontrolled hypertension, glaucoma, and vitreoretinal or neurodegenerative disease. METHODS OCT and OCT angiography (OCTA) were performed at baseline and 2 years (Zeiss Cirrus HD-OCT 5000 with AngioPlex; Zeiss Meditec). The groups were compared using sex- and age-adjusted generalized estimating equations. MAIN OUTCOME MEASURES OCT parameters: retinal nerve fiber layer thickness, macular ganglion cell-inner plexiform layer thickness, central subfield thickness (CST), and choroidal vascularity index. OCT angiography parameters: foveal avascular zone area, perfusion density (PD), vessel density, peripapillary capillary PD (CPD), and capillary flux index (CFI). The rate of change per year was calculated. RESULTS At the baseline, the APOE ε4 carriers had lower CST (P = 0.018), PD in the 6-mm ETDRS circle (P = 0.049), and temporal CFI (P = 0.047). Seventy-one APOE ε4 carriers and 78 noncarriers returned at 2 years; at follow-up, the 6-mm ETDRS circle (P = 0.05) and outer ring (P = 0.049) showed lower PD in the APOE ε4 carriers, with no differences in the rates of change between the groups (all P > 0.05). CONCLUSIONS There was exploratory evidence of differences in the CST, PD, and peripapillary CFI between the APOE ε4 carriers and noncarriers with normal cognition. Larger and longer-term studies may help further elucidate the potential prognostic value of these findings.
Collapse
Affiliation(s)
- Justin P Ma
- iMIND Research Group, Duke University School of Medicine, Durham, North Carolina; Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Cason B Robbins
- iMIND Research Group, Duke University School of Medicine, Durham, North Carolina; Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Jia Min Lee
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore
| | - Srinath Soundararajan
- iMIND Research Group, Duke University School of Medicine, Durham, North Carolina; Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Sandra S Stinnett
- iMIND Research Group, Duke University School of Medicine, Durham, North Carolina; Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Rupesh Agrawal
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; Singapore Eye Research Institute, Singapore, Singapore; Duke NUS Medical School, Singapore, Singapore
| | - Brenda L Plassman
- iMIND Research Group, Duke University School of Medicine, Durham, North Carolina; Departments of Psychiatry and Neurology, Duke University School of Medicine, Durham, North Carolina
| | - Eleonora M Lad
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Heather Whitson
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Dilraj S Grewal
- iMIND Research Group, Duke University School of Medicine, Durham, North Carolina; Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Sharon Fekrat
- iMIND Research Group, Duke University School of Medicine, Durham, North Carolina; Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina.
| |
Collapse
|
16
|
Qu C, Zou Y, Ma Y, Chen Q, Luo J, Fan H, Jia Z, Gong Q, Chen T. Diagnostic Performance of Generative Adversarial Network-Based Deep Learning Methods for Alzheimer's Disease: A Systematic Review and Meta-Analysis. Front Aging Neurosci 2022; 14:841696. [PMID: 35527734 PMCID: PMC9068970 DOI: 10.3389/fnagi.2022.841696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/03/2022] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Currently, only symptomatic management is available, and early diagnosis and intervention are crucial for AD treatment. As a recent deep learning strategy, generative adversarial networks (GANs) are expected to benefit AD diagnosis, but their performance remains to be verified. This study provided a systematic review on the application of the GAN-based deep learning method in the diagnosis of AD and conducted a meta-analysis to evaluate its diagnostic performance. A search of the following electronic databases was performed by two researchers independently in August 2021: MEDLINE (PubMed), Cochrane Library, EMBASE, and Web of Science. The Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool was applied to assess the quality of the included studies. The accuracy of the model applied in the diagnosis of AD was determined by calculating odds ratios (ORs) with 95% confidence intervals (CIs). A bivariate random-effects model was used to calculate the pooled sensitivity and specificity with their 95% CIs. Fourteen studies were included, 11 of which were included in the meta-analysis. The overall quality of the included studies was high according to the QUADAS-2 assessment. For the AD vs. cognitively normal (CN) classification, the GAN-based deep learning method exhibited better performance than the non-GAN method, with significantly higher accuracy (OR 1.425, 95% CI: 1.150-1.766, P = 0.001), pooled sensitivity (0.88 vs. 0.83), pooled specificity (0.93 vs. 0.89), and area under the curve (AUC) of the summary receiver operating characteristic curve (SROC) (0.96 vs. 0.93). For the progressing MCI (pMCI) vs. stable MCI (sMCI) classification, the GAN method exhibited no significant increase in the accuracy (OR 1.149, 95% CI: 0.878-1.505, P = 0.310) or the pooled sensitivity (0.66 vs. 0.66). The pooled specificity and AUC of the SROC in the GAN group were slightly higher than those in the non-GAN group (0.81 vs. 0.78 and 0.81 vs. 0.80, respectively). The present results suggested that the GAN-based deep learning method performed well in the task of AD vs. CN classification. However, the diagnostic performance of GAN in the task of pMCI vs. sMCI classification needs to be improved. Systematic Review Registration: [PROSPERO], Identifier: [CRD42021275294].
Collapse
Affiliation(s)
- Changxing Qu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yinxi Zou
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Yingqiao Ma
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Qin Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiawei Luo
- West China Biomedical Big Data Center, West China Clinical Medical College of Sichuan University, Chengdu, China
| | - Huiyong Fan
- College of Education Science, Bohai University, Jinzhou, China
| | - Zhiyun Jia
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, China
| | - Taolin Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Chen F, Xie X, Wang L. Research Progress on Intracranial Lymphatic Circulation and Its Involvement in Disorders. Front Neurol 2022; 13:865714. [PMID: 35359624 PMCID: PMC8963982 DOI: 10.3389/fneur.2022.865714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 12/14/2022] Open
Abstract
The lymphatic system is an important part of the circulatory system, as an auxiliary system of the vein, which has the functions of immune defense, maintaining the stability of the internal environment, and regulating the pressure of the tissue. It has long been thought that there are no typical lymphatic vessels consisting of endothelial cells in the central nervous system (CNS). In recent years, studies have confirmed the presence of lymphatic vessels lined with endothelial cells in the meninges. The periventricular meninges of the CNS host different populations of immune cells that affect the immune response associated with the CNS, and the continuous drainage of interstitial and cerebrospinal fluid produced in the CNS also proceeds mainly by the lymphatic system. This fluid process mobilizes to a large extent the transfer of antigens produced by the CNS to the meningeal immune cells and subsequently to the peripheral immune system through the lymphatic network, with clinically important implications for infectious diseases, autoimmunity, and tumor immunology. In our review, we discussed recent research advances in intracranial lymphatic circulation and the pathogenesis of its associated diseases, especially the discovery of meningeal lymphatic vessels, which has led to new therapeutic targets for the treatment of diseases associated with the intracranial lymphatic system.
Collapse
|
18
|
Talwar P, Kushwaha S, Chaturvedi M, Mahajan V. Systematic Review of Different Neuroimaging Correlates in Mild Cognitive Impairment and Alzheimer's Disease. Clin Neuroradiol 2021; 31:953-967. [PMID: 34297137 DOI: 10.1007/s00062-021-01057-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/18/2021] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD) is a heterogeneous progressive neurocognitive disorder. Although different neuroimaging modalities have been used for the identification of early diagnostic and prognostic factors of AD, there is no consolidated view of the findings from the literature. Here, we aim to provide a comprehensive account of different neural correlates of cognitive dysfunction via magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), functional MRI (fMRI) (resting-state and task-related), positron emission tomography (PET) and magnetic resonance spectroscopy (MRS) modalities across the cognitive groups i.e., normal cognition, mild cognitive impairment (MCI), and AD. A total of 46 meta-analyses met the inclusion criteria, including relevance to MCI, and/or AD along with neuroimaging modality used with quantitative and/or functional data. Volumetric MRI identified early anatomical changes involving transentorhinal cortex, Brodmann area 28, followed by the hippocampus, which differentiated early AD from healthy subjects. A consistent pattern of disruption in the bilateral precuneus along with the medial temporal lobe and limbic system was observed in fMRI, while DTI substantiated the observed atrophic alterations in the corpus callosum among MCI and AD cases. Default mode network hypoconnectivity in bilateral precuneus (PCu)/posterior cingulate cortices (PCC) and hypometabolism/hypoperfusion in inferior parietal lobules and left PCC/PCu was evident. Molecular imaging revealed variable metabolite concentrations in PCC. In conclusion, the use of different neuroimaging modalities together may lead to identification of an early diagnostic and/or prognostic biomarker for AD.
Collapse
Affiliation(s)
- Puneet Talwar
- Department of Neurology, Institute of Human Behaviour and Allied Sciences (IHBAS), 110095, Dilshad Garden, Delhi, India.
| | - Suman Kushwaha
- Department of Neurology, Institute of Human Behaviour and Allied Sciences (IHBAS), 110095, Dilshad Garden, Delhi, India.
| | - Monali Chaturvedi
- Department of Neuroradiology, Institute of Human Behaviour and Allied Sciences (IHBAS), 110095, Dilshad Garden, Delhi, India
| | - Vidur Mahajan
- Centre for Advanced Research in Imaging, Neuroscience and Genomics (CARING), Mahajan Imaging, New Delhi, India
| |
Collapse
|
19
|
Kitaigorodsky M, Curiel Cid RE, Crocco E, Gorman KL, González-Jiménez CJ, Greig-Custo M, Barker WW, Duara R, Loewenstein DA. Changes in LASSI-L performance over time among older adults with amnestic MCI and amyloid positivity: A preliminary study. J Psychiatr Res 2021; 143:98-105. [PMID: 34464879 PMCID: PMC8557121 DOI: 10.1016/j.jpsychires.2021.08.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
There is a pressing need to develop measures that are sensitive to the earliest subtle cognitive changes of Alzheimer's disease (AD) to improve early detection and track disease progression. The Loewenstein-Acevedo Scales of Semantic Interference (LASSI-L) has been shown to successfully discriminate between cognitively unimpaired (CU) older adults and those with amnestic mild cognitive impairment (MCI) and to correlate with total and regional brain amyloid load. The present study investigated how the LASSI-L scores change over time among three distinct diagnostic groups. Eighty-six community-dwelling older adults underwent a baseline evaluation including: a clinical interview, a neuropsychological evaluation, Magnetic Resonance Imaging (MRI), and amyloid Positron Emission Tomography (PET). A follow up evaluation was conducted 12 months later. Initial mean values were calculated using one-way ANOVAs and chi-square analyses. Post-hoc comparisons were conducted using Tukey's Honestly Significant Difference (HSD). A 3 × 2 repeated measures analysis was utilized to examine differences in LASSI-L performance over time. The MCI amyloid positive group demonstrated a significantly greater decline in LASSI-L performance than the MCI amyloid negative and CU groups respectively. The scales that best differentiated the three groups included the Cued A2, which taps into maximum learning capacity, and Cued B2, which assesses the failure to recover from proactive semantic interference. Our findings further support the LASSI-L's discriminative validity.
Collapse
Affiliation(s)
| | | | - Elizabeth Crocco
- Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | | | | | - Maria Greig-Custo
- Wien Center for Alzheimer's Disease & Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Warren W Barker
- Wien Center for Alzheimer's Disease & Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Ranjan Duara
- Wien Center for Alzheimer's Disease & Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - David A Loewenstein
- Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA; Wien Center for Alzheimer's Disease & Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA
| |
Collapse
|
20
|
Ruan C, Guo H, Gao J, Wang Y, Liu Z, Yan J, Li X, Lv H. Neuroprotective effects of metformin on cerebral ischemia-reperfusion injury by regulating PI3K/Akt pathway. Brain Behav 2021; 11:e2335. [PMID: 34473417 PMCID: PMC8553305 DOI: 10.1002/brb3.2335] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/07/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
Metformin (Met) is a commonly used drug in the treatment of type 2 diabetes. Currently, it has been found that Met can effectively reduce the incidence of stroke and exert anti-inflammatory effects. However, its role in ischemia-reperfusion (I/R)-induced nerve injury remains unclear. This study aims to investigate the neuroprotective effects of Met in I/R-induced neuron injury as well as the underlying mechanism. A middle cerebral artery occlusion (MCAO) model was established in Sprague Dawley (SD) rats, which were then treated with different doses of Met. Neurological deficits of rats were measured at different times post-surgery. TTC staining was done to observe the volume of cerebral infarction. HE staining was performed to observe pathological changes of brain tissues. Immunohistochemistry was performed to observe the expression of inflammatory factors in the cerebral tissues. qRT-PCR method was used to detect the relative expression of PI3K, Akt mRNA in cells after 24 h of drug action. Western blot method was used to detect the expression of PI3K, p-PI3K, Akt, and p-Akt in hippocampus. What is more, in vitro experiments were performed on BV2 microglia to verify the role of Met against oxygen-glucose deprivation (OGD). As a result, Met dose-dependently attenuated neurological deficits and neuronal apoptosis. Besides, Met administration also significantly reduced BV2 cells apoptosis and inflammatory response. Mechanistically, Met inactivated PI3K/Akt pathway induced by I/R and OGD, while it upregulated PI3K. In conclusion, Met protected rats from cerebral I/R injury via reducing neuronal apoptosis and microglial inflammation through PI3K/Akt pathway.
Collapse
Affiliation(s)
- Cailian Ruan
- Department ofMedicine, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, shannxi 710061, P. R. China.,College of Medicine, Yan'an University, Yan'an, shannxi 716000, P. R. China
| | - Hongtao Guo
- College of Medicine, Yan'an University, Yan'an, shannxi 716000, P. R. China
| | - Jiaqi Gao
- College of Medicine, Yan'an University, Yan'an, shannxi 716000, P. R. China
| | - Yiwei Wang
- College of Medicine, Yan'an University, Yan'an, shannxi 716000, P. R. China
| | - Zhiyong Liu
- College of Medicine, Yan'an University, Yan'an, shannxi 716000, P. R. China
| | - Jinyi Yan
- College of Medicine, Yan'an University, Yan'an, shannxi 716000, P. R. China
| | - Xiaoji Li
- College of Medicine, Yan'an University, Yan'an, shannxi 716000, P. R. China
| | - Haixia Lv
- Department ofMedicine, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, shannxi 710061, P. R. China
| |
Collapse
|
21
|
Rahman MM, Lendel C. Extracellular protein components of amyloid plaques and their roles in Alzheimer's disease pathology. Mol Neurodegener 2021; 16:59. [PMID: 34454574 PMCID: PMC8400902 DOI: 10.1186/s13024-021-00465-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 06/11/2021] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is pathologically defined by the presence of fibrillar amyloid β (Aβ) peptide in extracellular senile plaques and tau filaments in intracellular neurofibrillary tangles. Extensive research has focused on understanding the assembly mechanisms and neurotoxic effects of Aβ during the last decades but still we only have a brief understanding of the disease associated biological processes. This review highlights the many other constituents that, beside Aβ, are accumulated in the plaques, with the focus on extracellular proteins. All living organisms rely on a delicate network of protein functionality. Deposition of significant amounts of certain proteins in insoluble inclusions will unquestionably lead to disturbances in the network, which may contribute to AD and copathology. This paper provide a comprehensive overview of extracellular proteins that have been shown to interact with Aβ and a discussion of their potential roles in AD pathology. Methods that can expand the knowledge about how the proteins are incorporated in plaques are described. Top-down methods to analyze post-mortem tissue and bottom-up approaches with the potential to provide molecular insights on the organization of plaque-like particles are compared. Finally, a network analysis of Aβ-interacting partners with enriched functional and structural key words is presented.
Collapse
Affiliation(s)
- M Mahafuzur Rahman
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| | - Christofer Lendel
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| |
Collapse
|
22
|
Liu K, Li J, Raghunathan R, Zhao H, Li X, Wong STC. The Progress of Label-Free Optical Imaging in Alzheimer's Disease Screening and Diagnosis. Front Aging Neurosci 2021; 13:699024. [PMID: 34366828 PMCID: PMC8341907 DOI: 10.3389/fnagi.2021.699024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/02/2021] [Indexed: 01/13/2023] Open
Abstract
As the major neurodegenerative disease of dementia, Alzheimer's disease (AD) has caused an enormous social and economic burden on society. Currently, AD has neither clear pathogenesis nor effective treatments. Positron emission tomography (PET) and magnetic resonance imaging (MRI) have been verified as potential tools for diagnosing and monitoring Alzheimer's disease. However, the high costs, low spatial resolution, and long acquisition time limit their broad clinical utilization. The gold standard of AD diagnosis routinely used in research is imaging AD biomarkers with dyes or other reagents, which are unsuitable for in vivo studies owing to their potential toxicity and prolonged and costly process of the U.S. Food and Drug Administration (FDA) approval for human use. Furthermore, these exogenous reagents might bring unwarranted interference to mechanistic studies, causing unreliable results. Several label-free optical imaging techniques, such as infrared spectroscopic imaging (IRSI), Raman spectroscopic imaging (RSI), optical coherence tomography (OCT), autofluorescence imaging (AFI), optical harmonic generation imaging (OHGI), etc., have been developed to circumvent this issue and made it possible to offer an accurate and detailed analysis of AD biomarkers. In this review, we present the emerging label-free optical imaging techniques and their applications in AD, along with their potential and challenges in AD diagnosis.
Collapse
Affiliation(s)
- Kai Liu
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jiasong Li
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, United States
| | - Raksha Raghunathan
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, United States
| | - Hong Zhao
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
| | - Xuping Li
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, United States
| | - Stephen T. C. Wong
- Translational Biophotonics Laboratory, Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, United States
- T. T. and W. F. Chao Center for BRAIN, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
23
|
Murti BT, Putri AD, Huang YJ, Wei SM, Peng CW, Yang PK. Clinically oriented Alzheimer's biosensors: expanding the horizons towards point-of-care diagnostics and beyond. RSC Adv 2021; 11:20403-20422. [PMID: 35479927 PMCID: PMC9033966 DOI: 10.1039/d1ra01553b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/28/2021] [Indexed: 12/30/2022] Open
Abstract
The development of minimally invasive and easy-to-use sensor devices is of current interest for ultrasensitive detection and signal recognition of Alzheimer's disease (AD) biomarkers. Over the years, tremendous effort has been made on diagnostic platforms specifically targeting neurological markers for AD in order to replace the conventional, laborious, and invasive sampling-based approaches. However, the sophistication of analytical outcomes, marker inaccessibility, and material validity strongly limit the current strategies towards effectively predicting AD. Recently, with the promising progress in biosensor technology, the realization of a clinically applicable sensing platform has become a potential option to enable early diagnosis of AD and other neurodegenerative diseases. In this review, various types of biosensors, which include electrochemical, fluorescent, plasmonic, photoelectrochemical, and field-effect transistor (FET)-based sensor configurations, with better clinical applicability and analytical performance towards AD are highlighted. Moreover, the feasibility of these sensors to achieve point-of-care (POC) diagnosis is also discussed. Furthermore, by grafting nanoscale materials into biosensor architecture, the remarkable enhancement in durability, functionality, and analytical outcome of sensor devices is presented. Finally, future perspectives on further translational and commercialization pathways of clinically driven biosensor devices for AD are discussed and summarized.
Collapse
Affiliation(s)
- Bayu Tri Murti
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- Semarang College of Pharmaceutical Sciences (STIFAR) Semarang City Indonesia
| | - Athika Darumas Putri
- Semarang College of Pharmaceutical Sciences (STIFAR) Semarang City Indonesia
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Pharmacy, Taipei Medical University Taipei Taiwan
| | - Yi-June Huang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
| | - Shih-Min Wei
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
| | - Chih-Wei Peng
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
| | - Po-Kang Yang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University Taipei Taiwan
- Department of Biomedical Sciences and Engineering, National Central University Chung-li Taiwan
| |
Collapse
|
24
|
Li LL, Ma YH, Bi YL, Sun FR, Hu H, Hou XH, Xu W, Shen XN, Dong Q, Tan L, Yang JL, Yu JT. Serum Uric Acid May Aggravate Alzheimer's Disease Risk by Affecting Amyloidosis in Cognitively Intact Older Adults: The CABLE Study. J Alzheimers Dis 2021; 81:389-401. [PMID: 33814427 DOI: 10.3233/jad-201192] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Serum uric acid (SUA) affects the reaction of oxidative stress and free radicals in the neurodegenerative processes. However, whether SUA impacts Alzheimer's disease (AD) pathology remains unclear. OBJECTIVE We aimed to explore whether high SUA levels can aggravate the neurobiological changes of AD in preclinical AD. METHODS We analyzed cognitively intact participants (n = 839, age 62.16 years) who received SUA and cerebrospinal fluid (CSF) biomarkers (amyloid-β [Aβ], total tau [t-Tau], and phosphorylated tau [p-Tau]) measurements from the Chinese Alzheimer's Biomarker and LifestylE (CABLE) database using multivariable-adjusted linear models. RESULTS Levels of SUA in the preclinical AD elevated compared with the healthy controls (p = 0.007) and subjects with amyloid pathology had higher concentration of SUA than controls (p = 0.017). Roughly, equivalent levels of SUA displayed among cognitively intact individuals with or without tau pathology and neurodegeneration. CSF Aβ1 - 42 (p = 0.019) and Aβ1 - 42/Aβ1 - 40 (p = 0.027) were decreased and CSF p-Tau/Aβ1 - 42 (p = 0.009) and t-Tau/Aβ1 - 42 (p = 0.043) were increased with the highest (> 75th percentile) SUA when compared to lowest SUA, implying a high burden of cerebral amyloidosis in individuals with high SUA. Sensitivity analyses using the usual threshold to define hyperuricemia and precluding drug effects yielded robust associations. Nevertheless, the quadratic model did not show any U-shaped relationships between them. CONCLUSION SUA may aggravate brain amyloid deposition in preclinical AD, which corroborated the detrimental role of SUA.
Collapse
Affiliation(s)
- Lin-Lin Li
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Dalian, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan-Lin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Fu-Rong Sun
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xiao-He Hou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xue-Ning Shen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Dalian, China.,Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jiu-Long Yang
- Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Comprehensive review on design perspective of PET ligands based on β-amyloids, tau and neuroinflammation for diagnostic intervention of Alzheimer’s disease. Clin Transl Imaging 2021. [DOI: 10.1007/s40336-021-00410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Suzuki M, Fushimi Y, Okada T, Hinoda T, Nakamoto R, Arakawa Y, Sawamoto N, Togashi K, Nakamoto Y. Quantitative and qualitative evaluation of sequential PET/MRI using a newly developed mobile PET system for brain imaging. Jpn J Radiol 2021; 39:669-680. [PMID: 33641056 DOI: 10.1007/s11604-021-01105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE To evaluate the clinical feasibility of a newly developed mobile PET system with MR-compatibility (flexible PET; fxPET), compared with conventional PET (cPET)/CT for brain imaging. METHODS Twenty-one patients underwent cPET/CT with subsequent fxPET/MRI using 18F-FDG. As qualitative evaluation, we visually rated image quality of MR and PET images using a four-point scoring system. We evaluated overall image quality for MR, while we evaluated overall image quality, sharpness and lesion contrast. As quantitative evaluation, we compared registration accuracy between two modalities [(fxPET and MRI) and (cPET and CT)] measuring spatial coordinates. We also examined the accuracy of regional 18F-FDG uptake. RESULTS All acquired images were of diagnostic quality and the number of detected lesions did not differ significantly between fxPET/MR and cPET/CT. Mean misregistration was significantly larger with fxPET/MRI than with cPET/CT. SUVmax and SUVmean for fxPET and cPET showed high correlations in the lesions (R = 0.84, 0.79; P < 0.001, P = 0.002, respectively). In normal structures, we also showed high correlations of SUVmax (R = 0.85, 0.87; P < 0.001, P < 0.001, respectively) and SUVmean (R = 0.83, 0.87; P < 0.001, P < 0.001, respectively) in bilateral caudate nuclei and a moderate correlation of SUVmax (R = 0.65) and SUVmean (R = 0.63) in vermis. CONCLUSIONS The fxPET/MRI system showed image quality within the diagnostic range, registration accuracy below 3 mm and regional 18F-FDG uptake highly correlated with that of cPET/CT.
Collapse
Affiliation(s)
- Mizue Suzuki
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Tomohisa Okada
- Human Brain Research Center, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takuya Hinoda
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ryusuke Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yoshiki Arakawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Nobukatsu Sawamoto
- Department of Human Health Sciences, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kaori Togashi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
27
|
Abedin F, Tatulian SA. Mutual structural effects of unmodified and pyroglutamylated amyloid β peptides during aggregation. J Pept Sci 2021; 27:e3312. [PMID: 33631839 DOI: 10.1002/psc.3312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/05/2021] [Accepted: 02/16/2021] [Indexed: 11/09/2022]
Abstract
Amyloid β (Aβ) peptide aggregates are linked to Alzheimer's disease (AD). Posttranslationally pyroglutamylated Aβ (pEAβ) occurs in AD brains in significant quantities and is hypertoxic, but the underlying structural and aggregation properties remain poorly understood. Here, the structure and aggregation of Aβ1-40 and pEAβ3-40 are analyzed separately and in equimolar combination. Circular dichroism data show that Aβ1-40 , pEAβ3-40 , and their combination assume α-helical structure in dry state and transition to unordered structure in aqueous buffer. Aβ1-40 and the 1:1 combination gradually acquire β-sheet structure while pEAβ3-40 adopts an α-helix/β-sheet conformation. Thioflavin-T fluorescence studies suggest that the two peptides mutually inhibit fibrillogenesis. Fourier transform infrared (FTIR) spectroscopy identifies the presence of β-turn and α-helical structures in addition to β-sheet structure in peptides in aqueous buffer. The kinetics of transitions from the initial α-helical structure to β-sheet structure were resolved by slow hydration of dry peptides by D2 O vapor, coupled with isotope-edited FTIR. These data confirmed the mutual suppression of β-sheet formation by the two peptides. Remarkably, pEAβ3-40 maintained a significant fraction of α-helical structure in the combined sample, implying a reduced β-sheet propensity of pEAβ3-40 . Altogether, the data imply that the combination of unmodified and pyroglutamylated Aβ peptides resists fibrillogenesis and favors the prefibrillar state, which may underlie hypertoxicity of pEAβ.
Collapse
Affiliation(s)
- Faisal Abedin
- Physics Graduate Program, University of Central Florida, Orlando, Florida, USA
| | - Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
28
|
Chávez-Fumagalli MA, Shrivastava P, Aguilar-Pineda JA, Nieto-Montesinos R, Del-Carpio GD, Peralta-Mestas A, Caracela-Zeballos C, Valdez-Lazo G, Fernandez-Macedo V, Pino-Figueroa A, Vera-Lopez KJ, Lino Cardenas CL. Diagnosis of Alzheimer's Disease in Developed and Developing Countries: Systematic Review and Meta-Analysis of Diagnostic Test Accuracy. J Alzheimers Dis Rep 2021; 5:15-30. [PMID: 33681713 PMCID: PMC7902992 DOI: 10.3233/adr-200263] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The present systematic review and meta-analysis of diagnostic test accuracy summarizes the last three decades in advances on diagnosis of Alzheimer's disease (AD) in developed and developing countries. OBJECTIVE To determine the accuracy of biomarkers in diagnostic tools in AD, for example, cerebrospinal fluid, positron emission tomography (PET), and magnetic resonance imaging (MRI), etc. METHODS The authors searched PubMed for published studies from 1990 to April 2020 on AD diagnostic biomarkers. 84 published studies were pooled and analyzed in this meta-analysis and diagnostic accuracy was compared by summary receiver operating characteristic statistics. RESULTS Overall, 84 studies met the criteria and were included in a meta-analysis. For EEG, the sensitivity ranged from 67 to 98%, with a median of 80%, 95% CI [75, 91], tau-PET diagnosis sensitivity ranged from 76 to 97%, with a median of 94%, 95% CI [76, 97]; and MRI sensitivity ranged from 41 to 99%, with a median of 84%, 95% CI [81, 87]. Our results showed that tau-PET diagnosis had higher performance as compared to other diagnostic methods in this meta-analysis. CONCLUSION Our findings showed an important discrepancy in diagnostic data for AD between developed and developing countries, which can impact global prevalence estimation and management of AD. Also, our analysis found a better performance for the tau-PET diagnostic over other methods to diagnose AD patients, but the expense of tau-PET scan seems to be the limiting factor in the diagnosis of AD in developing countries such as those found in Asia, Africa, and Latin America.
Collapse
Affiliation(s)
- Miguel A. Chávez-Fumagalli
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigación, Universidad Católica de Santa Maria, Arequipa, Peru
| | - Pallavi Shrivastava
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigación, Universidad Católica de Santa Maria, Arequipa, Peru
| | - Jorge A. Aguilar-Pineda
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigación, Universidad Católica de Santa Maria, Arequipa, Peru
| | - Rita Nieto-Montesinos
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigación, Universidad Católica de Santa Maria, Arequipa, Peru
| | - Gonzalo Davila Del-Carpio
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigación, Universidad Católica de Santa Maria, Arequipa, Peru
| | - Antero Peralta-Mestas
- Division of Neurology, Psychiatry and Radiology of the National Hospital ESSALUD-HNCASE, Arequipa, Peru
| | - Claudia Caracela-Zeballos
- Division of Neurology, Psychiatry and Radiology of the National Hospital ESSALUD-HNCASE, Arequipa, Peru
| | - Guillermo Valdez-Lazo
- Division of Neurology, Psychiatry and Radiology of the National Hospital ESSALUD-HNCASE, Arequipa, Peru
| | - Victor Fernandez-Macedo
- Division of Neurology, Psychiatry and Radiology of the National Hospital ESSALUD-HNCASE, Arequipa, Peru
| | - Alejandro Pino-Figueroa
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Karin J. Vera-Lopez
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigación, Universidad Católica de Santa Maria, Arequipa, Peru
| | - Christian L. Lino Cardenas
- Laboratory of Genomics and Neurovascular Diseases, Vicerrectorado de investigación, Universidad Católica de Santa Maria, Arequipa, Peru
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
29
|
Taoka T, Naganawa S. Imaging for central nervous system (CNS) interstitial fluidopathy: disorders with impaired interstitial fluid dynamics. Jpn J Radiol 2021; 39:1-14. [PMID: 32653987 PMCID: PMC7813706 DOI: 10.1007/s11604-020-01017-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
After the introduction of the glymphatic system hypothesis, an increasing number of studies on cerebrospinal fluid and interstitial fluid dynamics within the brain have been investigated and reported. A series of diseases are known which develop due to abnormality of the glymphatic system including Alzheimer's disease, traumatic brain injury, stroke, or other disorders. These diseases or disorders share the characteristics of the glymphatic system dysfunction or other mechanisms related to the interstitial fluid dynamics. In this review article, we propose "Central Nervous System (CNS) Interstitial Fluidopathy" as a new concept encompassing diseases whose pathologies are majorly associated with abnormal interstitial fluid dynamics. Categorizing these diseases or disorders as "CNS interstitial fluidopathies," will promote the understanding of their mechanisms and the development of potential imaging methods for the evaluation of the disease as well as clinical methods for disease treatment or prevention. In other words, having a viewpoint of the dynamics of interstitial fluid appears relevant for understanding CNS diseases or disorders, and it would be possible to develop novel common treatment methods or medications for "CNS interstitial fluidopathies."
Collapse
Affiliation(s)
- Toshiaki Taoka
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan. .,Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
30
|
Locus Coeruleus Modulates Neuroinflammation in Parkinsonism and Dementia. Int J Mol Sci 2020; 21:ijms21228630. [PMID: 33207731 PMCID: PMC7697920 DOI: 10.3390/ijms21228630] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Locus Coeruleus (LC) is the main noradrenergic nucleus of the central nervous system, and its neurons widely innervate the whole brain. LC is severely degenerated both in Alzheimer’s disease (AD) and in Parkinson’s disease (PD), years before the onset of clinical symptoms, through mechanisms that differ among the two disorders. Several experimental studies have shown that noradrenaline modulates neuroinflammation, mainly by acting on microglia/astrocytes function. In the present review, after a brief introduction on the anatomy and physiology of LC, we provide an overview of experimental data supporting a pathogenetic role of LC degeneration in AD and PD. Then, we describe in detail experimental data, obtained in vitro and in vivo in animal models, which support a potential role of neuroinflammation in such a link, and the specific molecules (i.e., released cytokines, glial receptors, including pattern recognition receptors and others) whose expression is altered by LC degeneration and might play a key role in AD/PD pathogenesis. New imaging and biochemical tools have recently been developed in humans to estimate in vivo the integrity of LC, the degree of neuroinflammation, and pathology AD/PD biomarkers; it is auspicable that these will allow in the near future to test the existence of a link between LC-neuroinflammation and neurodegeneration directly in patients.
Collapse
|
31
|
Mole JP, Fasano F, Evans J, Sims R, Kidd E, Aggleton JP, Metzler-Baddeley C. APOE-ε4-related differences in left thalamic microstructure in cognitively healthy adults. Sci Rep 2020; 10:19787. [PMID: 33188215 PMCID: PMC7666117 DOI: 10.1038/s41598-020-75992-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/15/2020] [Indexed: 01/05/2023] Open
Abstract
APOE-ε4 is a main genetic risk factor for developing late onset Alzheimer's disease (LOAD) and is thought to interact adversely with other risk factors on the brain. However, evidence regarding the impact of APOE-ε4 on grey matter structure in asymptomatic individuals remains mixed. Much attention has been devoted to characterising APOE-ε4-related changes in the hippocampus, but LOAD pathology is known to spread through the whole of the Papez circuit including the limbic thalamus. Here, we tested the impact of APOE-ε4 and two other risk factors, a family history of dementia and obesity, on grey matter macro- and microstructure across the whole brain in 165 asymptomatic individuals (38-71 years). Microstructural properties of apparent neurite density and dispersion, free water, myelin and cell metabolism were assessed with Neurite Orientation Density and Dispersion (NODDI) and quantitative magnetization transfer (qMT) imaging. APOE-ε4 carriers relative to non-carriers had a lower macromolecular proton fraction (MPF) in the left thalamus. No risk effects were present for cortical thickness, subcortical volume, or NODDI indices. Reduced thalamic MPF may reflect inflammation-related tissue swelling and/or myelin loss in APOE-ε4. Future prospective studies should investigate the sensitivity and specificity of qMT-based MPF as a non-invasive biomarker for LOAD risk.
Collapse
Affiliation(s)
- Jilu P Mole
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Fabrizio Fasano
- Siemens Healthcare, Henkestrasse 127, 91052, Erlangen, Germany
| | - John Evans
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Rebecca Sims
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Haydn Ellis Building, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Emma Kidd
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue,, Cardiff, CF10 3NB, UK
| | - John P Aggleton
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK
| | - Claudia Metzler-Baddeley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cathays, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
32
|
Sone D, Shigemoto Y, Ogawa M, Maikusa N, Okita K, Takano H, Kato K, Sato N, Matsuda H. Association between neurite metrics and tau/inflammatory pathology in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12125. [PMID: 33204813 PMCID: PMC7656172 DOI: 10.1002/dad2.12125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The molecular mechanism of neurodegeneration, including tau and neurite complexity, is an important topic in Alzheimer's disease (AD) research. METHODS We recruited 27 amyloid-positive individuals identified through 11C-Pittsburgh compound B (PiB) positron emission tomography (PET) and 31 amyloid-negative individuals with normal cognition. All participants underwent 11C-PiB and 18F-THK5351 PET and magnetic resonance imaging (MRI) with neurite orientation dispersion and density imaging (NODDI) protocol. The neurite density index (NDI), orientation dispersion index (ODI), and PET images were analyzed to calculate voxel-wise correlations among the imaging modalities and correlations with cognitions. RESULTS In the amyloid-positive participants, there were significant negative correlations between 18F-THK5351 and NDI and between 18F-THK5351 and ODI. The bilateral mesial and lateral temporal lobes were mainly involved. Regarding cognition, 18F-THK5351 showed more marked associations with all cognitive domains than the other modalities. DISCUSSION Tau and neuroinflammation in AD may reduce the neurite density and orientation dispersion, particularly in the mesial and lateral temporal lobes.
Collapse
Affiliation(s)
- Daichi Sone
- Integrative Brain Imaging CenterNational Center of Neurology and PsychiatryTokyoJapan
- Department of Clinical and Experimental EpilepsyUCL Institute of NeurologyLondonUK
- Cyclotron and Drug Discovery Research CenterSouthern Tohoku Research Institute for NeuroscienceFukushimaJapan
| | - Yoko Shigemoto
- Integrative Brain Imaging CenterNational Center of Neurology and PsychiatryTokyoJapan
- Cyclotron and Drug Discovery Research CenterSouthern Tohoku Research Institute for NeuroscienceFukushimaJapan
- Department of RadiologyNational Center of Neurology and PsychiatryTokyoJapan
| | - Masayo Ogawa
- Integrative Brain Imaging CenterNational Center of Neurology and PsychiatryTokyoJapan
| | - Norihide Maikusa
- Integrative Brain Imaging CenterNational Center of Neurology and PsychiatryTokyoJapan
| | - Kyoji Okita
- Integrative Brain Imaging CenterNational Center of Neurology and PsychiatryTokyoJapan
| | - Harumasa Takano
- Integrative Brain Imaging CenterNational Center of Neurology and PsychiatryTokyoJapan
| | - Koichi Kato
- Integrative Brain Imaging CenterNational Center of Neurology and PsychiatryTokyoJapan
| | - Noriko Sato
- Department of RadiologyNational Center of Neurology and PsychiatryTokyoJapan
| | - Hiroshi Matsuda
- Integrative Brain Imaging CenterNational Center of Neurology and PsychiatryTokyoJapan
- Cyclotron and Drug Discovery Research CenterSouthern Tohoku Research Institute for NeuroscienceFukushimaJapan
| |
Collapse
|
33
|
Rowley PA, Samsonov AA, Betthauser TJ, Pirasteh A, Johnson SC, Eisenmenger LB. Amyloid and Tau PET Imaging of Alzheimer Disease and Other Neurodegenerative Conditions. Semin Ultrasound CT MR 2020; 41:572-583. [PMID: 33308496 DOI: 10.1053/j.sult.2020.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although diagnosing the syndrome of dementia is largely a clinical endeavor, neuroimaging plays an increasingly important role in accurately determining the underlying etiology, which extends beyond its traditional role in excluding other causes of altered cognition. New neuroimaging methods not only facilitate the diagnosis of the most common neurodegenerative conditions (particularly Alzheimer Disease [AD]) after symptom onset, but also show diagnostic promise even in the very early or presymptomatic phases of disease. Positron emission tomography (PET) is increasingly recognized as a key clinical tool for differentiating normal age-related changes in brain metabolism (using 18F-fluorodeoxyglucose [FDG]) from those seen in the earliest stages of specific forms of dementia. However, FDG PET only demonstrates nonspecific changes in altered parenchymal glucose uptake and not the specific etiologic proteinopathy causing the abnormal glucose uptake. A growing class of radiotracers targeting specific protein aggregates for amyloid-β (Aβ) and tau are changing the way AD is diagnosed, as these radiotracers directly label the underlying disease pathology. As these pathology-specific radiotracers are currently making their way to the clinic, it is important for the clinical neuroradiologist to understand the underlying patterns of Aβ and tau deposition in the context of AD (across its clinical continuum) and in other causes of dementia, as well as understand the implications of current research.
Collapse
Affiliation(s)
- Paul A Rowley
- Department of Radiology, University of Wisconsin, Madison, WI
| | | | | | - Ali Pirasteh
- Department of Radiology, University of Wisconsin, Madison, WI
| | | | | |
Collapse
|
34
|
Taoka T, Naganawa S. Neurofluid Dynamics and the Glymphatic System: A Neuroimaging Perspective. Korean J Radiol 2020; 21:1199-1209. [PMID: 32783417 PMCID: PMC7462760 DOI: 10.3348/kjr.2020.0042] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/25/2020] [Accepted: 04/23/2020] [Indexed: 12/23/2022] Open
Abstract
The glymphatic system hypothesis is a concept describing the clearance of waste products from the brain. The term “glymphatic system” combines the glial and lymphatic systems and is typically described as follows. The perivascular space functions as a conduit that drains cerebrospinal fluid (CSF) into the brain parenchyma. CSF guided to the perivascular space around the arteries enters the interstitium of brain tissue via aquaporin-4 water channels to clear waste proteins into the perivascular space around the veins before being drained from the brain. In this review, we introduce the glymphatic system hypothesis and its association with fluid dynamics, sleep, and disease. We also discuss imaging methods to evaluate the glymphatic system.
Collapse
Affiliation(s)
- Toshiaki Taoka
- Department of Innovative Biomedical Visualization (iBMV), Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
35
|
Pais M, Martinez L, Ribeiro O, Loureiro J, Fernandez R, Valiengo L, Canineu P, Stella F, Talib L, Radanovic M, Forlenza OV. Early diagnosis and treatment of Alzheimer's disease: new definitions and challenges. REVISTA BRASILEIRA DE PSIQUIATRIA (SAO PAULO, BRAZIL : 1999) 2020; 42:431-441. [PMID: 31994640 PMCID: PMC7430379 DOI: 10.1590/1516-4446-2019-0735] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/01/2019] [Indexed: 12/14/2022]
Abstract
The prevalence of Alzheimer's disease (AD), a progressive neurodegenerative disorder, is expected to more than double by 2050. Studies on the pathophysiology of AD have been changing our understanding of this disorder and setting a new scenario for drug development and other therapies. Concepts like the "amyloid cascade" and the "continuum of AD," discussed in this article, are now well established. From updated classifications and recommendations to advances in biomarkers of AD, we aim to critically assess the literature on AD, addressing new definitions and challenges that emerged from recent studies on the subject. Updates on the status of major clinical trials are also given, and future perspectives are discussed.
Collapse
Affiliation(s)
- Marcos Pais
- Laboratório de Neurociências (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Luana Martinez
- Laboratório de Neurociências (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Octávio Ribeiro
- Laboratório de Neurociências (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Júlia Loureiro
- Laboratório de Neurociências (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Romel Fernandez
- Laboratório de Neurociências (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Leandro Valiengo
- Laboratório de Neurociências (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Paulo Canineu
- Laboratório de Neurociências (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
- Programa de Gerontologia, Pontifícia Universidade Católica de São Paulo (PUC-SP), São Paulo, SP, Brazil
| | - Florindo Stella
- Laboratório de Neurociências (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
- Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro, SP, Brazil
| | - Leda Talib
- Laboratório de Neurociências (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Marcia Radanovic
- Laboratório de Neurociências (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| | - Orestes V. Forlenza
- Laboratório de Neurociências (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brazil
| |
Collapse
|
36
|
Kaneta T. PET and SPECT imaging of the brain: a review on the current status of nuclear medicine in Japan. Jpn J Radiol 2020; 38:343-357. [DOI: 10.1007/s11604-019-00901-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 10/31/2019] [Indexed: 01/07/2023]
|
37
|
Ishii K. Diagnostic imaging of dementia with Lewy bodies, frontotemporal lobar degeneration, and normal pressure hydrocephalus. Jpn J Radiol 2019; 38:64-76. [DOI: 10.1007/s11604-019-00881-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/10/2019] [Indexed: 10/25/2022]
|