1
|
Matsuyama T, Nagata H, Ozawa Y, Ito Y, Kimata H, Fujii K, Akino N, Ueda T, Nomura M, Yoshikawa T, Takenaka D, Kawai H, Sarai M, Izawa H, Ohno Y. High-resolution deep learning reconstruction for coronary CTA: compared efficacy of stenosis evaluation with other methods at in vitro and in vivo studies. Eur Radiol 2025:10.1007/s00330-025-11376-9. [PMID: 39903239 DOI: 10.1007/s00330-025-11376-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/09/2024] [Accepted: 10/23/2024] [Indexed: 02/06/2025]
Abstract
OBJECTIVE To directly compare coronary arterial stenosis evaluations by hybrid-type iterative reconstruction (IR), model-based IR (MBIR), deep learning reconstruction (DLR), and high-resolution deep learning reconstruction (HR-DLR) on coronary computed tomography angiography (CCTA) in both in vitro and in vivo studies. MATERIALS AND METHODS For the in vitro study, a total of three-vessel tube phantoms with diameters of 3 mm, 4 mm, and 5 mm and with simulated non-calcified stepped stenosis plaques with degrees of 0%, 25%, 50%, and 75% stenosis were scanned with area-detector CT (ADCT) and ultra-high-resolution CT (UHR-CT). Then, ADCT data were reconstructed using all methods, although UHR-CT data were reconstructed with hybrid-type IR, MBIR, and DLR. For the in vivo study, patients who had undergone CCTA at ADCT were retrospectively selected, and each CCTA data set was reconstructed with all methods. To compare the image noise and measurement accuracy at each of the stenosis levels, image noise, and inner diameter were evaluated and statistically compared. To determine the effect of HR-DLR on CAD-RADS evaluation accuracy, the accuracy of CAD-RADS categorization of all CCTAs was compared by using McNemar's test. RESULTS The image noise of HR-DLR was significantly lower than that of others on ADCT and UHR-CT (p < 0.0001). At a 50% and 75% stenosis level for each phantom, hybrid-type IR showed a significantly larger mean difference on ADCT than did others (p < 0.05). At in vivo study, 31 patients were included. Accuracy on HR-DLR was significantly higher than that on hybrid-type IR, MBIR, or DLR (p < 0.0001). CONCLUSION HR-DLR is potentially superior for coronary arterial stenosis evaluations to hybrid-type IR, MBIR, or DLR shown on CCTA. KEY POINTS Question How do coronary arterial stenosis evaluations by hybrid-type IR, MBIR, DLR, and HR-DLR compare to coronary CT angiography? Findings HR-DLR showed significantly lower image noise and more accurate coronary artery disease reporting and data system (CAD-RADS) evaluation than others. Clinical relevance HR-DLR is potentially superior to other reconstruction methods for coronary arterial stenosis evaluations, as demonstrated by coronary CT angiography results on ADCT and as shown in both in vitro and in vivo studies.
Collapse
Affiliation(s)
- Takahiro Matsuyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hiroyuki Nagata
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yoshiyuki Ozawa
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yuya Ito
- Canon Medical Systems Corporation, Otawara, Japan
| | | | - Kenji Fujii
- Canon Medical Systems Corporation, Otawara, Japan
| | | | - Takahiro Ueda
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Masahiko Nomura
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takeshi Yoshikawa
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Japan
- Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi, Japan
| | - Daisuke Takenaka
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Japan
- Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi, Japan
| | - Hideki Kawai
- Department of Cardiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Masayoshi Sarai
- Department of Cardiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hideo Izawa
- Department of Cardiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yoshiharu Ohno
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Japan.
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Japan.
| |
Collapse
|
2
|
Lee CL. Quantitative analysis of deep learning reconstruction in CT angiography: Enhancing CNR and reducing dose. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2025; 33:86-95. [PMID: 39973777 DOI: 10.1177/08953996241301696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BACKGROUND Computed tomography angiography (CTA) provides significant information on image quality in vascular imaging, thus offering high-resolution images despite having the disadvantages of increased radiation doses and contrast agent-related side effects. The deep-learning image reconstruction strategies were used to quantitatively evaluate the enhanced contrast-to-noise ratio (CNR) and the dose reduction effect of subtracted images. OBJECTIVE This study aimed to elucidate a comprehensive understanding of the quantitative image quality features of the conventional filtered back projection (FBP) and the advanced intelligent clear-IQ engine (AiCE), a deep learning reconstruction technique. The comparison was made in subtracted images with variable concentrations of contrast agents at variable tube currents and voltages, enhancing our knowledge of these two techniques. METHODS Data were obtained using a state-of-the-art 320-detector CT scanner. Image reconstruction was performed using FBP and AiCE with various intensities. The image quality evaluation was based on eight iodine concentrations in the phantom setup. The efficiency of AiCE relative to FBP was assessed by computing parameters including the root mean square error (RMSE), dose-dependent CNR, and potential dose reduction. RESULTS The results showed that elevated concentrations of iodine and increased tube currents improved AiCE performance regarding CNR enhancement compared to FBP. AiCE also demonstrated a potential dose reduction ranging from 13.7 to 81.9% compared to FBP, suggesting a significant reduction in radiation exposure while maintaining image quality. CONCLUSIONS The employment of deep learning image reconstruction with AiCE presented a significant improvement in CNR and potential dose reduction in CT angiography. This study highlights the potential of AiCE to improve vascular image quality and decrease radiation exposure risk, thereby improving diagnostic precision and patient care in vascular imaging practices.
Collapse
Affiliation(s)
- Chang-Lae Lee
- Health & Medical Equipment Business Unit, Samsung Electronics, Suwon-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Nomura M, Ohno Y, Ito Y, Kimata H, Fujii K, Akino N, Nagata H, Ueda T, Yoshikawa T, Takenaka D, Ozawa Y. Evaluating the Efficacy of Deep Learning Reconstruction in Reducing Radiation Dose for Computer-Aided Volumetry for Liver Tumor: A Phantom Study. J Comput Assist Tomogr 2025; 49:23-33. [PMID: 39511829 DOI: 10.1097/rct.0000000000001657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
OBJECTIVE The purpose of this study was to compare radiation dose reduction capability for accurate liver tumor measurements of a computer-aided volumetry (CAD v ) software for filtered back projection (FBP), hybrid-type iterative reconstruction (IR), mode-based iterative reconstruction (MBIR), and deep learning reconstruction (DLR) at a phantom study. METHODS A commercially available anthropomorphic abdominal phantom was scanned five times with a 320-detector row CT at 600 mA, 400 mA, 200 mA, and 100 mA and reconstructed by four methods. Signal-to-noise ratios (SNRs) of all lesions within the arterial and portal-venous phase inserts were calculated, and SNR of the lesion phantom was compared with that of all reconstruction methods by means of Tukey's honestly significant difference (HSD) test. Then, tumor volume ( V ) of each nodule was automatically measured using commercially available CAD v software. To compare dose reduction capability for each reconstruction method at both phases, mean differences between measured V and standard references were compared by Tukey's honestly significant difference test among the four different reconstruction methods on CT obtained at each of the four tube currents. RESULTS With each of the tube currents, SNRs for MBIR and DLR were significantly higher than those for FBP and hybrid-type IR ( p < 0.05). At the arterial phase, the mean difference in V for the CT protocol obtained at 600 or 100 mA and reconstructed with DLR was significantly smaller than that for others ( p < 0.05). At the portal-venous phase, the mean differences in V for the CT protocol obtained at 100 mA and reconstructed with hybrid-type IR, MBIR, and DLR were significantly smaller than that for FBP ( p < 0.05). CONCLUSIONS Findings of our phantom study show that reconstruction method had influence on CAD v merits for abdominal CT with not only standard but also reduced dose examinations and that DLR can potentially yield better image quality and CAD v measurements than FBP, hybrid-type IR, or MBIR in this setting.
Collapse
Affiliation(s)
| | | | - Yuya Ito
- Canon Medical Systems Corporation, Otawara, Tochigi
| | | | - Kenji Fujii
- Canon Medical Systems Corporation, Otawara, Tochigi
| | | | - Hiroyuki Nagata
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi
| | | | | | | | | |
Collapse
|
4
|
Tanahashi Y, Kubota K, Nomura T, Ikeda T, Kutsuna M, Funayama S, Kobayashi T, Ozaki K, Ichikawa S, Goshima S. Improved vascular depiction and image quality through deep learning reconstruction of CT hepatic arteriography during transcatheter arterial chemoembolization. Jpn J Radiol 2024; 42:1243-1254. [PMID: 38888853 PMCID: PMC11522109 DOI: 10.1007/s11604-024-01614-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
PURPOSE To evaluate the effect of deep learning reconstruction (DLR) on vascular depiction, tumor enhancement, and image quality of computed tomography hepatic arteriography (CTHA) images acquired during transcatheter arterial chemoembolization (TACE). METHODS Institutional review board approval was obtained. Twenty-seven patients (18 men and 9 women, mean age, 75.7 years) who underwent CTHA immediately before TACE were enrolled. All images were reconstructed using three reconstruction algorithms: hybrid-iterative reconstruction (hybrid-IR), DLR with mild strength (DLR-M), and DLR with strong strength (DLR-S). Vascular depiction, tumor enhancement, feeder visualization, and image quality of CTHA were quantitatively and qualitatively assessed by two radiologists and compared between the three reconstruction algorithms. RESULTS The mean signal-to-noise ratios (SNR) of sub-segmental arteries and sub-sub-segmental arteries, and the contrast-to-noise ratio (CNR) of tumors, were significantly higher on DLR-S than on DLR-M and hybrid-IR (P < 0.001). The mean qualitative score for sharpness of sub-segmental and sub-sub-segmental arteries was significantly better on DLR-S than on DLR-M and hybrid-IR (P < 0.001). There was no significant difference in the feeder artery detection rate of automated feeder artery detection software among three reconstruction algorithms (P = 0.102). The contrast, continuity, and confidence level of feeder artery detection was significantly better on DLR-S than on DLR-M (P = 0.013, 0.005, and 0.001) and hybrid-IR (P < 0.001, P = 0.002, and P < 0.001). The weighted kappa values between two readers for qualitative scores of feeder artery visualization were 0.807-0.874. The mean qualitative scores for sharpness, granulation, and diagnostic acceptability of CTHA were better on DLR-S than on DLR-M and hybrid-IR (P < 0.001). CONCLUSIONS DLR significantly improved the SNR of small hepatic arteries, the CNR of tumor, and feeder artery visualization on CTHA images. DLR-S seems to be better suited to routine CTHA in TACE than does hybrid-IR.
Collapse
Affiliation(s)
- Yukichi Tanahashi
- Department of Radiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu City, Shizuoka, 431-3192, Japan.
| | - Koh Kubota
- Department of Radiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| | - Takayuki Nomura
- Radiology Service, Hamamatsu University Hospital, Hamamatsu City, Shizuoka, Japan
| | - Takanobu Ikeda
- Department of Radiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| | - Masaya Kutsuna
- Department of Radiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| | - Satoshi Funayama
- Department of Radiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| | - Tatsunori Kobayashi
- Department of Radiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| | - Kumi Ozaki
- Department of Radiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| | - Shintaro Ichikawa
- Department of Radiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| | - Satoshi Goshima
- Department of Radiology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu City, Shizuoka, 431-3192, Japan
| |
Collapse
|
5
|
Beysang A, Villani N, Boubaker F, Puel U, Eliezer M, Hossu G, Haioun K, Blum A, Teixeira PAG, Parietti-Winkler C, Gillet R. Ultra-high-resolution CT of the temporal bone: Comparison between deep learning reconstruction and hybrid and model-based iterative reconstruction. Diagn Interv Imaging 2024; 105:233-242. [PMID: 38368178 DOI: 10.1016/j.diii.2024.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/19/2024]
Abstract
PURPOSE The purpose of this study was to evaluate the ability of ultra-high-resolution computed tomography (UHR-CT) to assess stapes and chorda tympani nerve anatomy using a deep learning (DLR), a model-based, and a hybrid iterative reconstruction algorithm compared to simulated conventional CT. MATERIALS AND METHODS CT acquisitions were performed with a Mercury 4.0 phantom. Images were acquired with a 1024 × 1024 matrix and a 0.25 mm slice thickness and reconstructed using DLR, model-based, and hybrid iterative reconstruction algorithms. To simulate conventional CT, images were also reconstructed with a 512 × 512 matrix and a 0.5 mm slice thickness. Spatial resolution, noise power spectrum, and objective high-contrast detectability were compared. Three radiologists evaluated the clinical acceptability of these algorithms by assessing the thickness and image quality of the stapes footplate and superstructure elements, as well as the image quality of the chorda tympani nerve bony and tympanic segments using a 5-point confidence scale on 13 temporal bone CT examinations reconstructed with the four algorithms. RESULTS UHR-CT provided higher spatial resolution than simulated conventional CT at the penalty of higher noise. DLR and model-based iterative reconstruction provided better noise reduction than hybrid iterative reconstruction, and DLR had the highest detectability index, regardless of the dose level. All stapedial structure thicknesses were thinner using UHR-CT by comparison with conventional simulated CT (P < 0.009). DLR showed the best visualization scores compared to the other reconstruction algorithms (P < 0.032). CONCLUSION UHR-CT with DLR results in less noise than UHR-CT with hybrid iterative reconstruction and significantly improves stapes and tympanic chorda tympani nerve depiction compared to simulated conventional CT and UHR-CT with iterative reconstruction.
Collapse
Affiliation(s)
- Achille Beysang
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 54000, Nancy, France
| | - Nicolas Villani
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 54000, Nancy, France
| | - Fatma Boubaker
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 54000, Nancy, France
| | - Ulysse Puel
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 54000, Nancy, France; Université de Lorraine, INSERM, IADI, 54000, Nancy, France; Université de Lorraine, CIC, Innovation Technologique, University Hospital Center of Nancy, 54000, Nancy, France
| | - Michael Eliezer
- Department of Radiology, Hôpital Lariboisière, AP-HP, 75010 Paris, France
| | - Gabriela Hossu
- Université de Lorraine, INSERM, IADI, 54000, Nancy, France; Université de Lorraine, CIC, Innovation Technologique, University Hospital Center of Nancy, 54000, Nancy, France
| | - Karim Haioun
- Canon Medical Systems Corporation, Kawasaki-shi, 212-0015 Kanagawa, Japan
| | - Alain Blum
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 54000, Nancy, France; Université de Lorraine, INSERM, IADI, 54000, Nancy, France; Université de Lorraine, CIC, Innovation Technologique, University Hospital Center of Nancy, 54000, Nancy, France
| | - Pedro Augusto Gondim Teixeira
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 54000, Nancy, France; Université de Lorraine, INSERM, IADI, 54000, Nancy, France; Université de Lorraine, CIC, Innovation Technologique, University Hospital Center of Nancy, 54000, Nancy, France
| | - Cécile Parietti-Winkler
- ENT Surgery Department, Central Hospital, University Hospital Center of Nancy, 54000 Nancy, France
| | - Romain Gillet
- Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 54000, Nancy, France; Université de Lorraine, INSERM, IADI, 54000, Nancy, France; Université de Lorraine, CIC, Innovation Technologique, University Hospital Center of Nancy, 54000, Nancy, France.
| |
Collapse
|
6
|
Ikeda H, Ohno Y, Yamamoto K, Murayama K, Ikedo M, Yui M, Kumazawa Y, Shimamura Y, Takagi Y, Nakagaki Y, Hanamatsu S, Obama Y, Ueda T, Nagata H, Ozawa Y, Iwase A, Toyama H. Deep Learning Reconstruction for DWIs by EPI and FASE Sequences for Head and Neck Tumors. Cancers (Basel) 2024; 16:1714. [PMID: 38730665 PMCID: PMC11083776 DOI: 10.3390/cancers16091714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Diffusion-weighted images (DWI) obtained by echo-planar imaging (EPI) are frequently degraded by susceptibility artifacts. It has been suggested that DWI obtained by fast advanced spin-echo (FASE) or reconstructed with deep learning reconstruction (DLR) could be useful for image quality improvements. The purpose of this investigation using in vitro and in vivo studies was to determine the influence of sequence difference and of DLR for DWI on image quality, apparent diffusion coefficient (ADC) evaluation, and differentiation of malignant from benign head and neck tumors. METHODS For the in vitro study, a DWI phantom was scanned by FASE and EPI sequences and reconstructed with and without DLR. Each ADC within the phantom for each DWI was then assessed and correlated for each measured ADC and standard value by Spearman's rank correlation analysis. For the in vivo study, DWIs obtained by EPI and FASE sequences were also obtained for head and neck tumor patients. Signal-to-noise ratio (SNR) and ADC were then determined based on ROI measurements, while SNR of tumors and ADC were compared between all DWI data sets by means of Tukey's Honest Significant Difference test. RESULTS For the in vitro study, all correlations between measured ADC and standard reference were significant and excellent (0.92 ≤ ρ ≤ 0.99, p < 0.0001). For the in vivo study, the SNR of FASE with DLR was significantly higher than that of FASE without DLR (p = 0.02), while ADC values for benign and malignant tumors showed significant differences between each sequence with and without DLR (p < 0.05). CONCLUSION In comparison with EPI sequence, FASE sequence and DLR can improve image quality and distortion of DWIs without significantly influencing ADC measurements or differentiation capability of malignant from benign head and neck tumors.
Collapse
Affiliation(s)
- Hirotaka Ikeda
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Yoshiharu Ohno
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Kaori Yamamoto
- Canon Medical Systems Corporation, Otawara 324-8550, Tochigi, Japan
| | - Kazuhiro Murayama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Masato Ikedo
- Canon Medical Systems Corporation, Otawara 324-8550, Tochigi, Japan
| | - Masao Yui
- Canon Medical Systems Corporation, Otawara 324-8550, Tochigi, Japan
| | - Yunosuke Kumazawa
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Yurika Shimamura
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Yui Takagi
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Yuhei Nakagaki
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Satomu Hanamatsu
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Yuki Obama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Takahiro Ueda
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Hiroyuki Nagata
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Yoshiyuki Ozawa
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Akiyoshi Iwase
- Department of Radiology, Fujita Health University Hospital, Toyoake 470-1192, Aichi, Japan
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| |
Collapse
|
7
|
Lyu P, Li Z, Chen Y, Wang H, Liu N, Liu J, Zhan P, Liu X, Shang B, Wang L, Gao J. Deep learning reconstruction CT for liver metastases: low-dose dual-energy vs standard-dose single-energy. Eur Radiol 2024; 34:28-38. [PMID: 37532899 DOI: 10.1007/s00330-023-10033-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 08/04/2023]
Abstract
OBJECTIVES To assess image quality and liver metastasis detection of reduced-dose dual-energy CT (DECT) with deep learning image reconstruction (DLIR) compared to standard-dose single-energy CT (SECT) with DLIR or iterative reconstruction (IR). METHODS In this prospective study, two groups of 40 participants each underwent abdominal contrast-enhanced scans with full-dose SECT (120-kVp images, DLIR and IR algorithms) or reduced-dose DECT (40- to 60-keV virtual monochromatic images [VMIs], DLIR algorithm), with 122 and 106 metastases, respectively. Groups were matched by age, sex ratio, body mass index, and cross-sectional area. Noise power spectrum of liver images and task-based transfer function of metastases were calculated to assess the noise texture and low-contrast resolution. The image noise, signal-to-noise ratios (SNR) of liver and portal vein, liver-to-lesion contrast-to-noise ratio (LLR), lesion conspicuity, lesion detection rate, and the subjective image quality metrics were compared between groups on 1.25-mm reconstructed images. RESULTS Compared to 120-kVp images with IR, 40- and 50-keV VMIs with DLIR showed similar noise texture and LLR, similar or higher image noise and low-contrast resolution, improved SNR and lesion conspicuity, and similar or better perceptual image quality. When compared to 120-kVp images with DLIR, 50-keV VMIs with DLIR had similar low-contrast resolution, SNR, LLR, lesion conspicuity, and perceptual image quality but lower frequency noise texture and higher image noise. For the detection of hepatic metastases, reduced-dose DECT by 34% maintained observer lesion detection rates. CONCLUSION DECT assisted with DLIR enables a 34% dose reduction for detecting hepatic metastases while maintaining comparable perceptual image quality to full-dose SECT. CLINICAL RELEVANCE STATEMENT Reduced-dose dual-energy CT with deep learning image reconstruction is as accurate as standard-dose single-energy CT for the detection of liver metastases and saves more than 30% of the radiation dose. KEY POINTS • The 40- and 50-keV virtual monochromatic images (VMIs) with deep learning image reconstruction (DLIR) improved lesion conspicuity compared with 120-kVp images with iterative reconstruction while providing similar or better perceptual image quality. • The 50-keV VMIs with DLIR provided comparable perceptual image quality and lesion conspicuity to 120-kVp images with DLIR. • The reduction of radiation by 34% by DLIR in low-keV VMIs is clinically sufficient for detecting low-contrast hepatic metastases.
Collapse
Affiliation(s)
- Peijie Lyu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhen Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yan Chen
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Huixia Wang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Nana Liu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jie Liu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Pengchao Zhan
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xing Liu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Bo Shang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Luotong Wang
- CT Imaging Research Center, GE Healthcare China, Beijing, China
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| |
Collapse
|
8
|
Ueda D, Kakinuma T, Fujita S, Kamagata K, Fushimi Y, Ito R, Matsui Y, Nozaki T, Nakaura T, Fujima N, Tatsugami F, Yanagawa M, Hirata K, Yamada A, Tsuboyama T, Kawamura M, Fujioka T, Naganawa S. Fairness of artificial intelligence in healthcare: review and recommendations. Jpn J Radiol 2024; 42:3-15. [PMID: 37540463 PMCID: PMC10764412 DOI: 10.1007/s11604-023-01474-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023]
Abstract
In this review, we address the issue of fairness in the clinical integration of artificial intelligence (AI) in the medical field. As the clinical adoption of deep learning algorithms, a subfield of AI, progresses, concerns have arisen regarding the impact of AI biases and discrimination on patient health. This review aims to provide a comprehensive overview of concerns associated with AI fairness; discuss strategies to mitigate AI biases; and emphasize the need for cooperation among physicians, AI researchers, AI developers, policymakers, and patients to ensure equitable AI integration. First, we define and introduce the concept of fairness in AI applications in healthcare and radiology, emphasizing the benefits and challenges of incorporating AI into clinical practice. Next, we delve into concerns regarding fairness in healthcare, addressing the various causes of biases in AI and potential concerns such as misdiagnosis, unequal access to treatment, and ethical considerations. We then outline strategies for addressing fairness, such as the importance of diverse and representative data and algorithm audits. Additionally, we discuss ethical and legal considerations such as data privacy, responsibility, accountability, transparency, and explainability in AI. Finally, we present the Fairness of Artificial Intelligence Recommendations in healthcare (FAIR) statement to offer best practices. Through these efforts, we aim to provide a foundation for discussing the responsible and equitable implementation and deployment of AI in healthcare.
Collapse
Affiliation(s)
- Daiju Ueda
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-Machi, Abeno-ku, Osaka, 545-8585, Japan.
| | | | - Shohei Fujita
- Department of Radiology, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Sakyoku, Kyoto, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, Chuo-ku, Kumamoto, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| | - Akira Yamada
- Department of Radiology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
9
|
Iwano S, Kamiya S, Ito R, Kudo A, Kitamura Y, Nakamura K, Naganawa S. Measurement of solid size in early-stage lung adenocarcinoma by virtual 3D thin-section CT applied artificial intelligence. Sci Rep 2023; 13:21709. [PMID: 38066174 PMCID: PMC10709591 DOI: 10.1038/s41598-023-48755-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
An artificial intelligence (AI) system that reconstructs virtual 3D thin-section CT (TSCT) images from conventional CT images by applying deep learning was developed. The aim of this study was to investigate whether virtual and real TSCT could measure the solid size of early-stage lung adenocarcinoma. The pair of original thin-CT and simulated thick-CT from the training data with TSCT images (thickness, 0.5-1.0 mm) of 2700 pulmonary nodules were used to train the thin-CT generator in the generative adversarial network (GAN) framework and develop a virtual TSCT AI system. For validation, CT images of 93 stage 0-I lung adenocarcinomas were collected, and virtual TSCTs were reconstructed from conventional 5-mm thick-CT images using the AI system. Two radiologists measured and compared the solid size of tumors on conventional CT and virtual and real TSCT. The agreement between the two observers showed an almost perfect agreement on the virtual TSCT for solid size measurements (intraclass correlation coefficient = 0.967, P < 0.001, respectively). The virtual TSCT had a significantly stronger correlation than that of conventional CT (P = 0.003 and P = 0.001, respectively). The degree of agreement between the clinical T stage determined by virtual TSCT and the clinical T stage determined by real TSCT was excellent in both observers (k = 0.882 and k = 0.881, respectively). The AI system developed in this study was able to measure the solid size of early-stage lung adenocarcinoma on virtual TSCT as well as on real TSCT.
Collapse
Affiliation(s)
- Shingo Iwano
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Shinichiro Kamiya
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Akira Kudo
- Imaging Technology Center, Fujifilm Corporation, 2-26-30, Nishiazabu, Minato-ku, Tokyo, 106-8620, Japan
| | - Yoshiro Kitamura
- Imaging Technology Center, Fujifilm Corporation, 2-26-30, Nishiazabu, Minato-ku, Tokyo, 106-8620, Japan
| | - Keigo Nakamura
- Imaging Technology Center, Fujifilm Corporation, 2-26-30, Nishiazabu, Minato-ku, Tokyo, 106-8620, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
10
|
Hamabuchi N, Ohno Y, Kimata H, Ito Y, Fujii K, Akino N, Takenaka D, Yoshikawa T, Oshima Y, Matsuyama T, Nagata H, Ueda T, Ikeda H, Ozawa Y, Toyama H. Effectiveness of deep learning reconstruction on standard to ultra-low-dose high-definition chest CT images. Jpn J Radiol 2023; 41:1373-1388. [PMID: 37498483 PMCID: PMC10687108 DOI: 10.1007/s11604-023-01470-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/09/2023] [Indexed: 07/28/2023]
Abstract
PURPOSE Deep learning reconstruction (DLR) has been introduced by major vendors, tested for CT examinations of a variety of organs, and compared with other reconstruction methods. The purpose of this study was to compare the capabilities of DLR for image quality improvement and lung texture evaluation with those of hybrid-type iterative reconstruction (IR) for standard-, reduced- and ultra-low-dose CTs (SDCT, RDCT and ULDCT) obtained with high-definition CT (HDCT) and reconstructed at 0.25-mm, 0.5-mm and 1-mm section thicknesses with 512 × 512 or 1024 × 1024 matrixes for patients with various pulmonary diseases. MATERIALS AND METHODS Forty age-, gender- and body mass index-matched patients with various pulmonary diseases underwent SDCT (CT dose index volume : mean ± standard deviation, 9.0 ± 1.8 mGy), RDCT (CTDIvol: 1.7 ± 0.2 mGy) and ULDCT (CTDIvol: 0.8 ± 0.1 mGy) at a HDCT. All CT data set were then reconstructed with 512 × 512 or 1024 × 1024 matrixes by means of hybrid-type IR and DLR. SNR of lung parenchyma and probabilities of all lung textures were assessed for each CT data set. SNR and detection performance of each lung texture reconstructed with DLR and hybrid-type IR were then compared by means of paired t tests and ROC analyses for all CT data at each section thickness. RESULTS Data for each radiation dose showed DLR attained significantly higher SNR than hybrid-type IR for each of the CT data (p < 0.0001). On assessments of all findings except consolidation and nodules or masses, areas under the curve (AUCs) for ULDCT with hybrid-type IR for each section thickness (0.91 ≤ AUC ≤ 0.97) were significantly smaller than those with DLR (0.97 ≤ AUC ≤ 1, p < 0.05) and the standard protocol (0.98 ≤ AUC ≤ 1, p < 0.05). CONCLUSION DLR is potentially more effective for image quality improvement and lung texture evaluation than hybrid-type IR on all radiation dose CTs obtained at HDCT and reconstructed with each section thickness with both matrixes for patients with a variety of pulmonary diseases.
Collapse
Affiliation(s)
- Nayu Hamabuchi
- Department of Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Yoshiharu Ohno
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan.
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan.
| | - Hirona Kimata
- Canon Medical Systems Corporation, Otawara, Tochigi, Japan
| | - Yuya Ito
- Canon Medical Systems Corporation, Otawara, Tochigi, Japan
| | - Kenji Fujii
- Canon Medical Systems Corporation, Otawara, Tochigi, Japan
| | - Naruomi Akino
- Canon Medical Systems Corporation, Otawara, Tochigi, Japan
| | - Daisuke Takenaka
- Department of Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
- Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi, Hyogo, Japan
| | - Takeshi Yoshikawa
- Department of Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
- Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi, Hyogo, Japan
| | - Yuka Oshima
- Department of Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Takahiro Matsuyama
- Department of Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Hiroyuki Nagata
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Takahiro Ueda
- Department of Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Hirotaka Ikeda
- Department of Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Yoshiyuki Ozawa
- Department of Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
11
|
Tatsugami F, Nakaura T, Yanagawa M, Fujita S, Kamagata K, Ito R, Kawamura M, Fushimi Y, Ueda D, Matsui Y, Yamada A, Fujima N, Fujioka T, Nozaki T, Tsuboyama T, Hirata K, Naganawa S. Recent advances in artificial intelligence for cardiac CT: Enhancing diagnosis and prognosis prediction. Diagn Interv Imaging 2023; 104:521-528. [PMID: 37407346 DOI: 10.1016/j.diii.2023.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Abstract
Recent advances in artificial intelligence (AI) for cardiac computed tomography (CT) have shown great potential in enhancing diagnosis and prognosis prediction in patients with cardiovascular disease. Deep learning, a type of machine learning, has revolutionized radiology by enabling automatic feature extraction and learning from large datasets, particularly in image-based applications. Thus, AI-driven techniques have enabled a faster analysis of cardiac CT examinations than when they are analyzed by humans, while maintaining reproducibility. However, further research and validation are required to fully assess the diagnostic performance, radiation dose-reduction capabilities, and clinical correctness of these AI-driven techniques in cardiac CT. This review article presents recent advances of AI in the field of cardiac CT, including deep-learning-based image reconstruction, coronary artery motion correction, automatic calcium scoring, automatic epicardial fat measurement, coronary artery stenosis diagnosis, fractional flow reserve prediction, and prognosis prediction, analyzes current limitations of these techniques and discusses future challenges.
Collapse
Affiliation(s)
- Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Shohei Fujita
- Departmen of Radiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyoku, Kyoto, 606-8507, Japan
| | - Daiju Ueda
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Akira Yamada
- Department of Radiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital N15, W5, Kita-Ku, Sapporo 060-8638, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-0016, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Kita 15 Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8648, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
12
|
Fujima N, Kamagata K, Ueda D, Fujita S, Fushimi Y, Yanagawa M, Ito R, Tsuboyama T, Kawamura M, Nakaura T, Yamada A, Nozaki T, Fujioka T, Matsui Y, Hirata K, Tatsugami F, Naganawa S. Current State of Artificial Intelligence in Clinical Applications for Head and Neck MR Imaging. Magn Reson Med Sci 2023; 22:401-414. [PMID: 37532584 PMCID: PMC10552661 DOI: 10.2463/mrms.rev.2023-0047] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/09/2023] [Indexed: 08/04/2023] Open
Abstract
Due primarily to the excellent soft tissue contrast depictions provided by MRI, the widespread application of head and neck MRI in clinical practice serves to assess various diseases. Artificial intelligence (AI)-based methodologies, particularly deep learning analyses using convolutional neural networks, have recently gained global recognition and have been extensively investigated in clinical research for their applicability across a range of categories within medical imaging, including head and neck MRI. Analytical approaches using AI have shown potential for addressing the clinical limitations associated with head and neck MRI. In this review, we focus primarily on the technical advancements in deep-learning-based methodologies and their clinical utility within the field of head and neck MRI, encompassing aspects such as image acquisition and reconstruction, lesion segmentation, disease classification and diagnosis, and prognostic prediction for patients presenting with head and neck diseases. We then discuss the limitations of current deep-learning-based approaches and offer insights regarding future challenges in this field.
Collapse
Affiliation(s)
- Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Daiju Ueda
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Osaka, Japan
| | - Shohei Fujita
- Department of Radiology, University of Tokyo, Tokyo, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, Kumamoto, Kumamoto, Japan
| | - Akira Yamada
- Department of Radiology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Okayama, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
13
|
Oshima Y, Ohno Y, Takenaka D, Ito Y, Kimata H, Fujii K, Akino N, Hamabuchi N, Matsuyama T, Nagata H, Ueda T, Ikeda H, Ozawa Y, Yoshikawa T, Toyama H. Capability for dose reduction while maintaining nodule detection: Comparison of silver and copper X-ray spectrum modulation filters for chest CT using a phantom study with different reconstruction methods. Eur J Radiol 2023; 166:110969. [PMID: 37454556 DOI: 10.1016/j.ejrad.2023.110969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE To compare the capability of CTs obtained with a silver or copper x-ray beam spectral modulation filter (Ag filter and Cu filter) and reconstructed with FBP, hybrid-type IR and deep learning reconstruction (DLR) for radiation dose reduction for lung nodule detection using a chest phantom study. MATERIALS AND METHODS A chest CT phantom was scanned with a 320-detector row CT with Ag filter at 0.6, 1.6 and 2.5 mGy and Cu filters at 0.6, 1.6, 2.5 and 9.6 mGy, and reconstructed with the aforementioned methods. To compare image quality of all the CT data, SNRs and CNRs for any nodule were calculated for all protocols. To compare nodule detection capability among all protocols, the probability of detection of any nodule was assessed with a 5-point visual scoring system. Then, ROC analyses were performed to compare nodule detection capability of Ag and Cu filters for each radiation dose data with the same method and of the three methods for any radiation dose data and obtained with either filter. RESULTS At any of the doses, SNR, CNR and area under the curve for the Ag filter were significantly higher or larger than those for the Cu filter (p < 0.05). Moreover, with DLR, those values were significantly higher or larger than all the others for CTs obtained with any of the radiation doses and either filter (p < 0.05). CONCLUSION The Ag filter and DLR can significantly improve image quality and nodule detection capability compared with the Cu filter and other reconstruction methods at each of radiation doses used.
Collapse
Affiliation(s)
- Yuka Oshima
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Yoshiharu Ohno
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan; Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan.
| | - Daisuke Takenaka
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan; Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi, Hyogo, Japan
| | - Yuya Ito
- Canon Medical Systems Corporation, Otawara, Tochigi, Japan
| | - Hirona Kimata
- Canon Medical Systems Corporation, Otawara, Tochigi, Japan
| | - Kenji Fujii
- Canon Medical Systems Corporation, Otawara, Tochigi, Japan
| | - Naruomi Akino
- Canon Medical Systems Corporation, Otawara, Tochigi, Japan
| | - Nayu Hamabuchi
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Takahiro Matsuyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Hiroyuki Nagata
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Takahiro Ueda
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Hirotaka Ikeda
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Yoshiyuki Ozawa
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Takeshi Yoshikawa
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan; Canon Medical Systems Corporation, Otawara, Tochigi, Japan
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
14
|
Shehata MA, Saad AM, Kamel S, Stanietzky N, Roman-Colon AM, Morani AC, Elsayes KM, Jensen CT. Deep-learning CT reconstruction in clinical scans of the abdomen: a systematic review and meta-analysis. Abdom Radiol (NY) 2023; 48:2724-2756. [PMID: 37280374 PMCID: PMC11781595 DOI: 10.1007/s00261-023-03966-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To perform a systematic literature review and meta-analysis of the two most common commercially available deep-learning algorithms for CT. METHODS We used PubMed, Scopus, Embase, and Web of Science to conduct systematic searches for studies assessing the most common commercially available deep-learning CT reconstruction algorithms: True Fidelity (TF) and Advanced intelligent Clear-IQ Engine (AiCE) in the abdomen of human participants since only these two algorithms currently have adequate published data for robust systematic analysis. RESULTS Forty-four articles fulfilled inclusion criteria. 32 studies evaluated TF and 12 studies assessed AiCE. DLR algorithms produced images with significantly less noise (22-57.3% less than IR) but preserved a desirable noise texture with increased contrast-to-noise ratios and improved lesion detectability on conventional CT. These improvements with DLR were similarly noted in dual-energy CT which was only assessed for a single vendor. Reported radiation reduction potential was 35.1-78.5%. Nine studies assessed observer performance with the two dedicated liver lesion studies being performed on the same vendor reconstruction (TF). These two studies indicate preserved low contrast liver lesion detection (> 5 mm) at CTDIvol 6.8 mGy (BMI 23.5 kg/m2) to 12.2 mGy (BMI 29 kg/m2). If smaller lesion detection and improved lesion characterization is needed, a CTDIvol of 13.6-34.9 mGy is needed in a normal weight to obese population. Mild signal loss and blurring have been reported at high DLR reconstruction strengths. CONCLUSION Deep learning reconstructions significantly improve image quality in CT of the abdomen. Assessment of other dose levels and clinical indications is needed. Careful choice of radiation dose levels is necessary, particularly for small liver lesion assessment.
Collapse
Affiliation(s)
- Mostafa A Shehata
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX, 77030-4009, USA
| | | | - Serageldin Kamel
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX, 77030-4009, USA
| | - Nir Stanietzky
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX, 77030-4009, USA
| | | | - Ajaykumar C Morani
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX, 77030-4009, USA
| | - Khaled M Elsayes
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX, 77030-4009, USA
| | - Corey T Jensen
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX, 77030-4009, USA.
| |
Collapse
|
15
|
Ohno Y, Ozawa Y, Nagata H, Bando S, Cong S, Takahashi T, Oshima Y, Hamabuchi N, Matsuyama T, Ueda T, Yoshikawa T, Takenaka D, Toyama H. Area-Detector Computed Tomography for Pulmonary Functional Imaging. Diagnostics (Basel) 2023; 13:2518. [PMID: 37568881 PMCID: PMC10416899 DOI: 10.3390/diagnostics13152518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
An area-detector CT (ADCT) has a 320-detector row and can obtain isotropic volume data without helical scanning within an area of nearly 160 mm. The actual-perfusion CT data within this area can, thus, be obtained by means of continuous dynamic scanning for the qualitative or quantitative evaluation of regional perfusion within nodules, lymph nodes, or tumors. Moreover, this system can obtain CT data with not only helical but also step-and-shoot or wide-volume scanning for body CT imaging. ADCT also has the potential to use dual-energy CT and subtraction CT to enable contrast-enhanced visualization by means of not only iodine but also xenon or krypton for functional evaluations. Therefore, systems using ADCT may be able to function as a pulmonary functional imaging tool. This review is intended to help the reader understand, with study results published during the last a few decades, the basic or clinical evidence about (1) newly applied reconstruction methods for radiation dose reduction for functional ADCT, (2) morphology-based pulmonary functional imaging, (3) pulmonary perfusion evaluation, (4) ventilation assessment, and (5) biomechanical evaluation.
Collapse
Affiliation(s)
- Yoshiharu Ohno
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan;
| | - Yoshiyuki Ozawa
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Hiroyuki Nagata
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan;
| | - Shuji Bando
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Shang Cong
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Tomoki Takahashi
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Yuka Oshima
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Nayu Hamabuchi
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Takahiro Matsuyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Takahiro Ueda
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Takeshi Yoshikawa
- Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi 673-0021, Hyogo, Japan
| | - Daisuke Takenaka
- Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi 673-0021, Hyogo, Japan
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| |
Collapse
|
16
|
Jeon PH, Lee CL. Deep learning image reconstruction for quality assessment of iodine concentration in computed tomography: A phantom study. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2023; 31:409-422. [PMID: 36744361 DOI: 10.3233/xst-221356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
BACKGROUND Recently, deep learning reconstruction (DLR) technology aiming to improve image quality with minimal radiation dose has been applied not only to pediatric scans, but also to computed tomography angiography (CTA). OBJECTIVE To evaluate image quality characteristics of filtered back projection (FBP), hybrid iterative reconstruction [Adaptive Iterative Dose Reduction 3D (AIDR 3D)], and DLR (AiCE) using different iodine concentrations and scan parameters. METHODS Phantoms with eight iodine concentrations (ranging from 1.2 to 25.9 mg/mL) located at the edge of a cylindrical water phantom with a diameter of 19 cm were scanned. Data were reconstructed with FBP, AIDR 3D, and AiCE using various scan parameters of tube current and voltage using a 320 row-detector CT scanner. Data obtained using different reconstruction techniques were quantitatively compared by analyzing Hounsfield units (HU), noise, and contrast-to-noise ratios (CNRs). RESULTS HU values of FBP and AIDR 3D were constant even when the iodine concentration was changed, whereas AiCE showed the highest HU value when the iodine concentration was low, but the HU value reversed when the iodine concentration exceeded a certain value. In the AIDR 3D and AiCE, the noise decreased as the tube current increased, and the change in noise when the iodine concentration was inconsistent. AIDR 3D and AiCE yielded better noise reduction rates than with FBP at a low tube current. The noise reduction rate of AIDR 3D and AiCE compared to that of FBP showed characteristics ranging from 7% to 35%, and the noise reduction rate of AiCE compared to that of AIDR 3D ranged from 2.0% to 13.3%. CONCLUSIONS The evaluated reconstruction techniques showed different image quality characteristics (HU value, noise, and CNR) according to dose and scan parameters, and users must consider these results and characteristics before performing patient scans.
Collapse
Affiliation(s)
- Pil-Hyun Jeon
- Department of Diagnostic Radiology, Yonsei University Wonju College of Medicine, Wonju Severance Christian Hospital, Wonju-Si, Gangwon-Do, Republic of Korea
| | - Chang-Lae Lee
- Health & Medical Equipment Business Unit, Samsung Electronics, Suwon-Si, Gyeonggi-Do, Republic of Korea
| |
Collapse
|
17
|
Ohno Y, Akino N, Fujisawa Y, Kimata H, Ito Y, Fujii K, Kataoka Y, Ida Y, Oshima Y, Hamabuchi N, Shigemura C, Watanabe A, Obama Y, Hanamatsu S, Ueda T, Ikeda H, Murayama K, Toyama H. Comparison of lung CT number and airway dimension evaluation capabilities of ultra-high-resolution CT, using different scan modes and reconstruction methods including deep learning reconstruction, with those of multi-detector CT in a QIBA phantom study. Eur Radiol 2022; 33:368-379. [PMID: 35841417 DOI: 10.1007/s00330-022-08983-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/05/2022] [Accepted: 06/22/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Ultra-high-resolution CT (UHR-CT), which can be applied normal resolution (NR), high-resolution (HR), and super-high-resolution (SHR) modes, has become available as in conjunction with multi-detector CT (MDCT). Moreover, deep learning reconstruction (DLR) method, as well as filtered back projection (FBP), hybrid-type iterative reconstruction (IR), and model-based IR methods, has been clinically used. The purpose of this study was to directly compare lung CT number and airway dimension evaluation capabilities of UHR-CT using different scan modes with those of MDCT with different reconstruction methods as investigated in a lung density and airway phantom design recommended by QIBA. MATERIALS AND METHODS Lung CT number, inner diameter (ID), inner area (IA), and wall thickness (WT) were measured, and mean differences between measured CT number, ID, IA, WT, and standard reference were compared by means of Tukey's HSD test between all UHR-CT data and MDCT reconstructed with FBP as 1.0-mm section thickness. RESULTS For each reconstruction method, mean differences in lung CT numbers and all airway parameters on 0.5-mm and 1-mm section thickness CTs obtained with SHR and HR modes showed significant differences with those obtained with the NR mode on UHR-CT and MDCT (p < 0.05). Moreover, the mean differences on all UHR-CTs obtained with SHR, HR, or NR modes were significantly different from those of 1.0-mm section thickness MDCTs reconstructed with FBP (p < 0.05). CONCLUSION Scan modes and reconstruction methods used for UHR-CT were found to significantly affect lung CT number and airway dimension evaluations as did reconstruction methods used for MDCT. KEY POINTS • Scan and reconstruction methods used for UHR-CT showed significantly higher CT numbers and smaller airway dimension evaluations as did those for MDCT in a QIBA phantom study (p < 0.05). • Mean differences in lung CT number for 0.25-mm, 0.5-mm, and 1.0-mm section thickness CT images obtained with SHR and HR modes were significantly larger than those for CT images at 1.0-mm section thickness obtained with MDCT and reconstructed with FBP (p < 0.05). • Mean differences in inner diameter (ID), inner area (IA), and wall thickness (WT) measured with SHR and HR modes on 0.5- and 1.0-mm section thickness CT images were significantly smaller than those obtained with NR mode on UHR-CT and MDCT (p < 0.05).
Collapse
Affiliation(s)
- Yoshiharu Ohno
- Department of Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan. .,Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan.
| | - Naruomi Akino
- Canon Medical Systems Corporation, Otawara, Tochigi, Japan
| | | | - Hirona Kimata
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Yuya Ito
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Kenji Fujii
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Yumi Kataoka
- Department of Radiology, Fujita Health University Hospital, Toyoake, Aichi, Japan
| | - Yoshihiro Ida
- Department of Radiology, Fujita Health University Hospital, Toyoake, Aichi, Japan
| | - Yuka Oshima
- Department of Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Nayu Hamabuchi
- Department of Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Chika Shigemura
- Department of Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Ayumi Watanabe
- Department of Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Yuki Obama
- Department of Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Satomu Hanamatsu
- Department of Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Takahiro Ueda
- Department of Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Hirotaka Ikeda
- Department of Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Kazuhiro Murayama
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| |
Collapse
|
18
|
Takahara K, Ohno Y, Fukaya K, Matsukiyo R, Nukaya T, Takenaka M, Zennami K, Ichino M, Fukami N, Sasaki H, Kusaka M, Toyama H, Sumitomo M, Shiroki R. Novel Intraoperative Navigation Using Ultra-High-Resolution CT in Robot-Assisted Partial Nephrectomy. Cancers (Basel) 2022; 14:cancers14082047. [PMID: 35454953 PMCID: PMC9032210 DOI: 10.3390/cancers14082047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Successful surgery in robot-assisted partial nephrectomy (RAPN), especially for highly complex tumors, relies on a detailed understanding of the anatomical relations of the tumor absolute and relative to the urinary tract and the vascular structures, including the renal pedicle. Intraoperative navigation with accurate information regarding tumor position relative to the surrounding urinary vascular structures undoubtedly assists the surgeon during RAPN. In this report, we performed RAPN with intraoperative navigation using a novel computed tomography scanner (UHR-CT) and compared its perioperative and short-term functional outcomes to those of area-detector CT (ADCT). We found that this novel navigation system using UHR-CT provided a shorter warm ischemia time and lower estimated blood loss than ADCT, and concluded this could be a useful tool for patients who undergo RAPN. This is the first report to evaluate the feasibility and usefulness of UHR-CT for intraoperative navigation during RAPN. Abstract To assess the perioperative and short-term functional outcomes of robot-assisted partial nephrectomy (RAPN) with intraoperative navigation using an ultra-high-resolution computed tomography (UHR-CT) scanner, we retrospectively analyzed 323 patients who underwent RAPN using an UHR-CT or area-detector CT (ADCT). Perioperative outcomes and the postoperative preservation ratio of estimated glomerular filtration rate (eGFR) were compared. After the propensity score matching, we evaluated 99 patients in each group. Although the median warm ischemia time (WIT) was less than 25 min in both groups, it was significantly shorter in the UHR-CT group than in the ADCT group (15 min vs. 17 min, p = 0.032). Moreover, the estimated blood loss (EBL) was significantly lower in the UHR-CT group than in the ADCT group (33 mL vs. 50 mL, p = 0.028). However, there were no significant intergroup differences in the postoperative preservation ratio of eGFR at 3 or 6 months of follow-up (ADCT 91.8% vs. UHR-CT 93.5%, p = 0.195; and ADCT 91.7% vs. UHR-CT 94.0%, p = 0.160, respectively). Although no differences in short-term renal function were observed in intraoperative navigation for RAPN in this propensity score–matched cohort, this study is the first to demonstrate that UHR-CT resulted in a shorter WIT and lower EBL than ADCT.
Collapse
Affiliation(s)
- Kiyoshi Takahara
- Department of Urology, Fujita-Health University School of Medicine, Nagoya 470-1192, Japan; (K.F.); (T.N.); (M.T.); (K.Z.); (M.I.); (H.S.); (M.S.); (R.S.)
- Correspondence: ; Tel.: +81-562-93-2884
| | - Yoshiharu Ohno
- Department of Radiology, Fujita-Health University School of Medicine, Nagoya 470-1192, Japan; (Y.O.); (R.M.); (H.T.)
| | - Kosuke Fukaya
- Department of Urology, Fujita-Health University School of Medicine, Nagoya 470-1192, Japan; (K.F.); (T.N.); (M.T.); (K.Z.); (M.I.); (H.S.); (M.S.); (R.S.)
| | - Ryo Matsukiyo
- Department of Radiology, Fujita-Health University School of Medicine, Nagoya 470-1192, Japan; (Y.O.); (R.M.); (H.T.)
| | - Takuhisa Nukaya
- Department of Urology, Fujita-Health University School of Medicine, Nagoya 470-1192, Japan; (K.F.); (T.N.); (M.T.); (K.Z.); (M.I.); (H.S.); (M.S.); (R.S.)
| | - Masashi Takenaka
- Department of Urology, Fujita-Health University School of Medicine, Nagoya 470-1192, Japan; (K.F.); (T.N.); (M.T.); (K.Z.); (M.I.); (H.S.); (M.S.); (R.S.)
| | - Kenji Zennami
- Department of Urology, Fujita-Health University School of Medicine, Nagoya 470-1192, Japan; (K.F.); (T.N.); (M.T.); (K.Z.); (M.I.); (H.S.); (M.S.); (R.S.)
| | - Manabu Ichino
- Department of Urology, Fujita-Health University School of Medicine, Nagoya 470-1192, Japan; (K.F.); (T.N.); (M.T.); (K.Z.); (M.I.); (H.S.); (M.S.); (R.S.)
| | - Naohiko Fukami
- Department of Urology, Okazaki Medical Center, Fujita Health University, Okazaki 444-0827, Japan; (N.F.); (M.K.)
| | - Hitomi Sasaki
- Department of Urology, Fujita-Health University School of Medicine, Nagoya 470-1192, Japan; (K.F.); (T.N.); (M.T.); (K.Z.); (M.I.); (H.S.); (M.S.); (R.S.)
| | - Mamoru Kusaka
- Department of Urology, Okazaki Medical Center, Fujita Health University, Okazaki 444-0827, Japan; (N.F.); (M.K.)
| | - Hiroshi Toyama
- Department of Radiology, Fujita-Health University School of Medicine, Nagoya 470-1192, Japan; (Y.O.); (R.M.); (H.T.)
| | - Makoto Sumitomo
- Department of Urology, Fujita-Health University School of Medicine, Nagoya 470-1192, Japan; (K.F.); (T.N.); (M.T.); (K.Z.); (M.I.); (H.S.); (M.S.); (R.S.)
| | - Ryoichi Shiroki
- Department of Urology, Fujita-Health University School of Medicine, Nagoya 470-1192, Japan; (K.F.); (T.N.); (M.T.); (K.Z.); (M.I.); (H.S.); (M.S.); (R.S.)
| |
Collapse
|
19
|
Bornet PA, Villani N, Gillet R, Germain E, Lombard C, Blum A, Gondim Teixeira PA. Clinical acceptance of deep learning reconstruction for abdominal CT imaging: objective and subjective image quality and low-contrast detectability assessment. Eur Radiol 2022; 32:3161-3172. [PMID: 34989850 DOI: 10.1007/s00330-021-08410-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/25/2021] [Accepted: 10/13/2021] [Indexed: 01/29/2023]
Abstract
OBJECTIVE To evaluate the image quality and clinical acceptance of a deep learning reconstruction (DLR) algorithm compared to traditional iterative reconstruction (IR) algorithms. METHODS CT acquisitions were performed with two phantoms and a total of nine dose levels. Images were reconstructed with two types of IR algorithms, DLR and filtered-back projection. Spatial resolution, image texture, mean noise value, and objective and subjective low-contrast detectability were compared. Ten senior radiologists evaluated the clinical acceptance of these algorithms by scoring ten CT exams reconstructed with the DLR and IR algorithms evaluated. RESULTS Compared to MBIR, DLR yielded a lower noise and a higher low-contrast detectability index at low doses (CTDIvol ≤ 2.2 and ≤ 4.5 mGy, respectively). Spatial resolution and detectability at higher doses were better with MBIR. Compared to HIR, DLR yielded a higher spatial resolution, a lower noise, and a higher detectability index. Despite these differences in algorithm performance, significant differences in subjective low-contrast performance were not found (p ≥ 0.005). DLR texture was finer than that of MBIR and closer to that of HIR. Radiologists preferred DLR images for all criteria assessed (p < 0.0001), whereas MBIR was rated worse than HIR (p < 0.0001) in all criteria evaluated, except for noise (p = 0.044). DLR reconstruction time was 12 times faster than that of MBIR. CONCLUSION DLR yielded a gain in objective detection and noise at lower dose levels with the best clinical acceptance among the evaluated reconstruction algorithms. KEY POINTS • DLR yielded improved objective low-contrast detection and noise at lower dose levels. • Despite the differences in objective detectability among the algorithms evaluated, there were no differences in subjective detectability. • DLR presented significantly higher clinical acceptability scores compared to MBIR and HIR.
Collapse
Affiliation(s)
- Pierre-Antoine Bornet
- Guilloz Imaging Department, University of Lorraine, Central Hospital, University Hospital Center of Nancy, Nancy, France.
| | - Nicolas Villani
- Guilloz Imaging Department, University of Lorraine, Central Hospital, University Hospital Center of Nancy, Nancy, France
| | - Romain Gillet
- Guilloz Imaging Department, University of Lorraine, Central Hospital, University Hospital Center of Nancy, Nancy, France
| | - Edouard Germain
- Guilloz Imaging Department, University of Lorraine, Central Hospital, University Hospital Center of Nancy, Nancy, France
| | - Charles Lombard
- Guilloz Imaging Department, University of Lorraine, Central Hospital, University Hospital Center of Nancy, Nancy, France
| | - Alain Blum
- Guilloz Imaging Department, University of Lorraine, Central Hospital, University Hospital Center of Nancy, Nancy, France
| | - Pedro Augusto Gondim Teixeira
- Guilloz Imaging Department, University of Lorraine, Central Hospital, University Hospital Center of Nancy, Nancy, France
| |
Collapse
|
20
|
The effect of deep learning reconstruction on abdominal CT densitometry and image quality: a systematic review and meta-analysis. Eur Radiol 2021; 32:2921-2929. [PMID: 34913104 PMCID: PMC9038933 DOI: 10.1007/s00330-021-08438-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/23/2021] [Accepted: 10/25/2021] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To determine the difference in CT values and image quality of abdominal CT images reconstructed by filtered back-projection (FBP), hybrid iterative reconstruction (IR), and deep learning reconstruction (DLR). METHODS PubMed and Embase were systematically searched for articles regarding CT densitometry in the abdomen and the image reconstruction techniques FBP, hybrid IR, and DLR. Mean differences in CT values between reconstruction techniques were analyzed. A comparison between signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of FBP, hybrid IR, and DLR was made. A comparison of diagnostic confidence between hybrid IR and DLR was made. RESULTS Sixteen articles were included, six being suitable for meta-analysis. In the liver, the mean difference between hybrid IR and DLR was - 0.633 HU (p = 0.483, SD ± 0.902 HU). In the spleen, the mean difference between hybrid IR and DLR was - 0.099 HU (p = 0.925, SD ± 1.061 HU). In the pancreas, the mean difference between hybrid IR and DLR was - 1.372 HU (p = 0.353, SD ± 1.476 HU). In 14 articles, CNR was described. In all cases, DLR showed a significantly higher CNR. In 9 articles, SNR was described. In all cases but one, DLR showed a significantly higher SNR. In all cases, DLR showed a significantly higher diagnostic confidence. CONCLUSIONS There were no significant differences in CT values reconstructed by FBP, hybrid IR, and DLR in abdominal organs. This shows that these reconstruction techniques are consistent in reconstructing CT values. DLR images showed a significantly higher SNR and CNR, compared to FBP and hybrid IR. KEY POINTS CT values of abdominal CT images are similar between deep learning reconstruction (DLR), filtered back-projection (FBP), and hybrid iterative reconstruction (IR). DLR results in improved image quality in terms of SNR and CNR compared to FBP and hybrid IR images. DLR can thus be safely implemented in the clinical setting resulting in improved image quality without affecting CT values.
Collapse
|
21
|
Gondim Teixeira PA, Villani N, Ait Idir M, Germain E, Lombard C, Gillet R, Blum A. Ultra-high resolution computed tomography of joints: practical recommendations for acquisition protocol optimization. Quant Imaging Med Surg 2021; 11:4287-4298. [PMID: 34603984 DOI: 10.21037/qims-21-217] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/19/2021] [Indexed: 12/21/2022]
Abstract
Background To assess the influence on the spatial resolution of various Ultra-high-resolution computed tomography (CT) parameters and provide practical recommendations for acquisition protocol optimization in musculoskeletal imaging. Methods All acquisitions were performed with an Ultra-high resolution scanner, and variations of the following parameters were evaluated: field-of-view (150-300 mm), potential (80-140 KVp), current (25-250 mAs), focal spot size (0.4×0.5 to 0.8×1.3 mm2), slice thickness (0.25-0.5 mm), reconstruction matrix (512×512 to 2048×2048), and iso-centering (up to 85 mm off-center). Two different image reconstruction algorithms were evaluated: hybrid iterative reconstruction (HIR) and model-based iterative reconstruction (MBIR). CATPHAN 600 phantom images were analyzed to calculate the number of visible line pairs per centimeter (lp/cm). Task transfer function (TTF) curves were calculated to quantitatively evaluate spatial resolution. Cadaveric knee acquisitions were also performed. Results Under the conditions studied, the factor that most intensely influenced spatial resolution was the matrix size (additional visualization of up to 8 lp/cm). Increasing the matrix from 512×512 to 2048×2048 led to a 28.2% increase in TTF10% values with a high-dose protocol and a 5.6% increase with a low-dose protocol with no change in the number of visually distinguishable line pairs. The second most important factor affecting spatial resolution was the tube output (29.6% TTF10% gain and 5 additional lp/cm visualized), followed by the reconstruction algorithm choice and lateral displacement (both with a 4 lp/cm gain). Decreasing the slice thickness from 0.5 to 0.25 mm, led to an increase of 3 lp/cm (from 17 to 20 lp/cm) and a 17.3% increase in TTF10% values with no change in the "in-plane" spatial resolution. Conclusions This study provides practical recommendations for spatial resolution optimization using Ultra-high-resolution CT.
Collapse
Affiliation(s)
- Pedro Augusto Gondim Teixeira
- Guilloz Imaging department, Central Hospital, University Hospital Center of Nancy, Nancy, France.,Lorraine University, Inserm, IADI, Nancy, France
| | - Nicolas Villani
- Radioprotection Unit, Central Hospital, University Hospital Center of Nancy, Nancy, France
| | - Malik Ait Idir
- Guilloz Imaging department, Central Hospital, University Hospital Center of Nancy, Nancy, France
| | - Edouard Germain
- Guilloz Imaging department, Central Hospital, University Hospital Center of Nancy, Nancy, France
| | - Charles Lombard
- Guilloz Imaging department, Central Hospital, University Hospital Center of Nancy, Nancy, France
| | - Romain Gillet
- Guilloz Imaging department, Central Hospital, University Hospital Center of Nancy, Nancy, France
| | - Alain Blum
- Guilloz Imaging department, Central Hospital, University Hospital Center of Nancy, Nancy, France
| |
Collapse
|
22
|
Nakamura Y, Higaki T, Honda Y, Tatsugami F, Tani C, Fukumoto W, Narita K, Kondo S, Akagi M, Awai K. Advanced CT techniques for assessing hepatocellular carcinoma. Radiol Med 2021; 126:925-935. [PMID: 33954894 DOI: 10.1007/s11547-021-01366-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the sixth-most common cancer in the world, and hepatic dynamic CT studies are routinely performed for its evaluation. Ongoing studies are examining advanced imaging techniques that may yield better findings than are obtained with conventional hepatic dynamic CT scanning. Dual-energy CT-, perfusion CT-, and artificial intelligence-based methods can be used for the precise characterization of liver tumors, the quantification of treatment responses, and for predicting the overall survival rate of patients. In this review, the advantages and disadvantages of conventional hepatic dynamic CT imaging are reviewed and the general principles of dual-energy- and perfusion CT, and the clinical applications and limitations of these technologies are discussed with respect to HCC. Finally, we address the utility of artificial intelligence-based methods for diagnosing HCC.
Collapse
Affiliation(s)
- Yuko Nakamura
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Toru Higaki
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yukiko Honda
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Fuminari Tatsugami
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Chihiro Tani
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Wataru Fukumoto
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Keigo Narita
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shota Kondo
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Motonori Akagi
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kazuo Awai
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
23
|
Hoshika M. [4. Physical Evaluation of Ultra-high-resolution Computed Tomography -Cranial Region]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2021; 77:397-405. [PMID: 33883375 DOI: 10.6009/jjrt.2021_jsrt_77.4.397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Minori Hoshika
- Division of Radiology, Department of Medical Technology, Okayama University Hospital
| |
Collapse
|