1
|
Bani-Ahmad M, England A, McLaughlin L, Hadi YH, McEntee M. Potential of artificial intelligence for radiation dose reduction in computed tomography -A scoping review. Radiography (Lond) 2025; 31:102968. [PMID: 40339443 DOI: 10.1016/j.radi.2025.102968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/19/2025] [Accepted: 04/23/2025] [Indexed: 05/10/2025]
Abstract
INTRODUCTION Artificial intelligence (AI) is now transforming medical imaging, with extensive ramifications for nearly every aspect of diagnostic imaging, including computed tomography (CT). This current work aims to review, evaluate, and summarise the role of AI in radiation dose optimisation across three fundamental domains in CT: patient positioning, scan range determination, and image reconstruction. METHODS A comprehensive scoping review of the literature was performed. Electronic databases including Scopus, Ovid, EBSCOhost and PubMed were searched between January 2018 and December 2024. Relevant articles were identified from their titles had their abstracts evaluated, and those deemed relevant had their full text reviewed. Extracted data from selected studies included the application of AI, radiation dose, anatomical part, and any relevant evaluation metrics based on the CT parameter in which AI is applied. RESULTS 90 articles met the selection criteria. Included studies evaluated the performance of AI for dose optimisation through patient positioning, scan range determination, and reconstruction across various CT scans, including the abdomen, chest, head, neck, and pelvis, as well as CT angiography. A concise overview of the present state of AI in these three domains, emphasising benefits, limitations, and impact on the transformation of dose reduction in CT scanning, is provided. CONCLUSIONS AI methods can help minimise positioning offsets and over-scanning caused by manual errors and helped to overcome the limitation associated with low-dose CT settings through deep learning image reconstruction algorithms. Further clinical integration of AI will continue to allow for improvements in optimising CT scan protocols and radiation dose. IMPLICATIONS FOR PRACTICE This review underscores the significance of AI in optimizing radiation doses in CT imaging, focusing on three key areas: patient positioning, scan range determination, and image reconstruction.
Collapse
Affiliation(s)
- M Bani-Ahmad
- The Discipline of Medical Imaging and Radiation Therapy, University College Cork, College Road, T12 K8AF Cork, Ireland; Faculty of Applied Medical Sciences, Department of Medical Imaging, The Hashemite University, Zarqa, Jordan.
| | - A England
- The Discipline of Medical Imaging and Radiation Therapy, University College Cork, College Road, T12 K8AF Cork, Ireland
| | - L McLaughlin
- The Discipline of Medical Imaging and Radiation Therapy, University College Cork, College Road, T12 K8AF Cork, Ireland
| | - Y H Hadi
- The Discipline of Medical Imaging and Radiation Therapy, University College Cork, College Road, T12 K8AF Cork, Ireland
| | - M McEntee
- The Discipline of Medical Imaging and Radiation Therapy, University College Cork, College Road, T12 K8AF Cork, Ireland; Syddansk Universitet, University of Southern Denmark Faculty of Health Sciences, Denmark; University of Sydney, Faculty of Medicine, Australia
| |
Collapse
|
2
|
Nakamoto A, Onishi H, Ota T, Honda T, Tsuboyama T, Fukui H, Kiso K, Matsumoto S, Kaketaka K, Tanigaki T, Terashima K, Enchi Y, Kawabata S, Nakasone S, Tatsumi M, Tomiyama N. Contrast-enhanced thin-slice abdominal CT with super-resolution deep learning reconstruction technique: evaluation of image quality and visibility of anatomical structures. Jpn J Radiol 2025; 43:445-454. [PMID: 39538066 PMCID: PMC11868232 DOI: 10.1007/s11604-024-01685-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE To compare image quality and visibility of anatomical structures on contrast-enhanced thin-slice abdominal CT images reconstructed using super-resolution deep learning reconstruction (SR-DLR), deep learning-based reconstruction (DLR), and hybrid iterative reconstruction (HIR) algorithms. MATERIALS AND METHODS This retrospective study included 54 consecutive patients who underwent contrast-enhanced abdominal CT. Thin-slice images (0.5 mm thickness) were reconstructed using SR-DLR, DLR, and HIR. Objective image noise and contrast-to-noise ratio (CNR) for liver parenchyma relative to muscle were assessed. Two radiologists independently graded image quality using a 5-point rating scale for image noise, sharpness, artifact/blur, and overall image quality. They also graded the visibility of small vessels, main pancreatic duct, ureters, adrenal glands, and right adrenal vein on a 5-point scale. RESULTS SR-DLR yielded significantly lower objective image noise and higher CNR than DLR and HIR (P < .001). The visual scores of SR-DLR for image noise, sharpness, and overall image quality were significantly higher than those of DLR and HIR for both readers (P < .001). Both readers scored significantly higher on SR-DLR than on HIR for visibility for all structures (P < .01), and at least one reader scored significantly higher on SR-DLR than on DLR for visibility for all structures (P < .05). CONCLUSION SR-DLR reduced image noise and improved image quality of thin-slice abdominal CT images compared to HIR and DLR. This technique is expected to enable further detailed evaluation of small structures.
Collapse
Affiliation(s)
- Atsushi Nakamoto
- Department of Future Diagnostic Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Hiromitsu Onishi
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, 1-7, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takashi Ota
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toru Honda
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Hideyuki Fukui
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kengo Kiso
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shohei Matsumoto
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Koki Kaketaka
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takumi Tanigaki
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kei Terashima
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yukihiro Enchi
- Division of Radiology, Department of Medical Technology, Osaka University Hospital, 2-15, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shuichi Kawabata
- Division of Radiology, Department of Medical Technology, Osaka University Hospital, 2-15, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinya Nakasone
- Division of Radiology, Department of Medical Technology, Osaka University Hospital, 2-15, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mitsuaki Tatsumi
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Noriyuki Tomiyama
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
3
|
Matsui Y, Ueda D, Fujita S, Fushimi Y, Tsuboyama T, Kamagata K, Ito R, Yanagawa M, Yamada A, Kawamura M, Nakaura T, Fujima N, Nozaki T, Tatsugami F, Fujioka T, Hirata K, Naganawa S. Applications of artificial intelligence in interventional oncology: An up-to-date review of the literature. Jpn J Radiol 2025; 43:164-176. [PMID: 39356439 PMCID: PMC11790735 DOI: 10.1007/s11604-024-01668-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024]
Abstract
Interventional oncology provides image-guided therapies, including transarterial tumor embolization and percutaneous tumor ablation, for malignant tumors in a minimally invasive manner. As in other medical fields, the application of artificial intelligence (AI) in interventional oncology has garnered significant attention. This narrative review describes the current state of AI applications in interventional oncology based on recent literature. A literature search revealed a rapid increase in the number of studies relevant to this topic recently. Investigators have attempted to use AI for various tasks, including automatic segmentation of organs, tumors, and treatment areas; treatment simulation; improvement of intraprocedural image quality; prediction of treatment outcomes; and detection of post-treatment recurrence. Among these, the AI-based prediction of treatment outcomes has been the most studied. Various deep and conventional machine learning algorithms have been proposed for these tasks. Radiomics has often been incorporated into prediction and detection models. Current literature suggests that AI is potentially useful in various aspects of interventional oncology, from treatment planning to post-treatment follow-up. However, most AI-based methods discussed in this review are still at the research stage, and few have been implemented in clinical practice. To achieve widespread adoption of AI technologies in interventional oncology procedures, further research on their reliability and clinical utility is necessary. Nevertheless, considering the rapid research progress in this field, various AI technologies will be integrated into interventional oncology practices in the near future.
Collapse
Affiliation(s)
- Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan.
| | - Daiju Ueda
- Department of Artificial Intelligence, Graduate School of Medicine, Osaka Metropolitan University, Abeno-Ku, Osaka, Japan
| | - Shohei Fujita
- Department of Radiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Bunkyo-Ku, Tokyo, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Sakyoku, Kyoto, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Kobe University Graduate School of Medicine, Chuo-Ku, Kobe, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Akira Yamada
- Medical Data Science Course, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, Chuo-Ku, Kumamoto, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Kita-Ku, Sapporo, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, Shinjuku-Ku, Tokyo, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, Minami-Ku, Hiroshima, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Bunkyo-Ku, Tokyo, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Kita-Ku, Sapporo, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, Japan
| |
Collapse
|
4
|
Qi H, Cui D, Xu S, Li W, Zeng Q. Image quality assessment of artificial intelligence iterative reconstruction for low dose unenhanced abdomen: comparison with hybrid iterative reconstruction. Abdom Radiol (NY) 2024:10.1007/s00261-024-04760-4. [PMID: 39707032 DOI: 10.1007/s00261-024-04760-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
OBJECTIVES To assess the impact of artificial intelligence iterative reconstruction algorithms (AIIR) on image quality with phantom and clinical studies. METHODS The phantom images were reconstructed with the hybrid iterative algorithm (HIR: Karl 3D-3, 5, 7, 9) and AIIR (grades 1-5) algorithm. Noise power spectra (NPS), task transfer functions (TTF) were measured, and additionally sharpness was assessed using a "blur metric" procedure. Sixty-two consecutive patients underwent standard-dose and low-dose unenhanced abdominal computed tomography (CT) scans, i.e., SDCT and LDCT groups, respectively. The SDCT images reconstructed using the Karl 3D-5, and the LDCT images reconstructed using the Karl 3D-5 and the AIIR-3 and 5, respectively. CT values, standard deviation (SD), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were assessed for hepatic parenchyma and paravertebral muscles. Images were independently evaluated by two radiologists for image-quality, noise, sharpness, and lesion diagnostic confidence. RESULTS In the phantom study, AIIR algorithm provided higher TTF50% and NPS average spatial frequency compared to HIR. In the clinical study, there was no statistically significant difference in CT values among the four reconstruction images (p > 0.05). The LDCT group AIIR-3 obtained the lowest SD values and the highest mean CNR and SNR values compared to the other three groups (p < 0.05). For qualitative assessment, the image subjective characteristic scores of AIIR-5 in the LDCT group, compared with the SDCT group, were not statistically significant (p > 0.05). CONCLUSIONS AIIR reduces radiation dose levels by approximately 78% and still maintains the image quality of unenhanced abdominal CT compared to HIR with SDCT. THE TRIAL REGISTRATION NUMBER NCT06142539.
Collapse
Affiliation(s)
- Hui Qi
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Shandong Institute of Neuroimmunology, Jinan, China
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Dingye Cui
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Shandong Institute of Neuroimmunology, Jinan, China
| | - Shijie Xu
- United Imaging Healthcare (China), Shanghai, China
| | - Wei Li
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Shandong Institute of Neuroimmunology, Jinan, China.
| | - Qingshi Zeng
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Shandong Institute of Neuroimmunology, Jinan, China.
| |
Collapse
|
5
|
Ueda D, Walston SL, Fujita S, Fushimi Y, Tsuboyama T, Kamagata K, Yamada A, Yanagawa M, Ito R, Fujima N, Kawamura M, Nakaura T, Matsui Y, Tatsugami F, Fujioka T, Nozaki T, Hirata K, Naganawa S. Climate change and artificial intelligence in healthcare: Review and recommendations towards a sustainable future. Diagn Interv Imaging 2024; 105:453-459. [PMID: 38918123 DOI: 10.1016/j.diii.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
The rapid advancement of artificial intelligence (AI) in healthcare has revolutionized the industry, offering significant improvements in diagnostic accuracy, efficiency, and patient outcomes. However, the increasing adoption of AI systems also raises concerns about their environmental impact, particularly in the context of climate change. This review explores the intersection of climate change and AI in healthcare, examining the challenges posed by the energy consumption and carbon footprint of AI systems, as well as the potential solutions to mitigate their environmental impact. The review highlights the energy-intensive nature of AI model training and deployment, the contribution of data centers to greenhouse gas emissions, and the generation of electronic waste. To address these challenges, the development of energy-efficient AI models, the adoption of green computing practices, and the integration of renewable energy sources are discussed as potential solutions. The review also emphasizes the role of AI in optimizing healthcare workflows, reducing resource waste, and facilitating sustainable practices such as telemedicine. Furthermore, the importance of policy and governance frameworks, global initiatives, and collaborative efforts in promoting sustainable AI practices in healthcare is explored. The review concludes by outlining best practices for sustainable AI deployment, including eco-design, lifecycle assessment, responsible data management, and continuous monitoring and improvement. As the healthcare industry continues to embrace AI technologies, prioritizing sustainability and environmental responsibility is crucial to ensure that the benefits of AI are realized while actively contributing to the preservation of our planet.
Collapse
Affiliation(s)
- Daiju Ueda
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Abeno-ku, Osaka 545-8585, Japan; Department of Artificial Intelligence, Graduate School of Medicine, Osaka Metropolitan University, Abeno-ku, Osaka 545-8585, Japan.
| | - Shannon L Walston
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Abeno-ku, Osaka 545-8585, Japan
| | - Shohei Fujita
- Department of Radiology, University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Sakyoku, Kyoto 606-8507, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Akira Yamada
- Medical Data Science Course, Shinshu University School of Medicine, Matsumoto, Nagano 390-8621, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Graduate School of Medicine, Osaka University, Suita-city, Osaka 565-0871, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido 060-8648, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, Chuo-ku, Kumamoto 860-8556, Japan
| | - Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama 700-8558, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, Minami-ku, Hiroshima City, Hiroshima 734-8551, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
6
|
Yoshida K, Nagayama Y, Funama Y, Ishiuchi S, Motohara T, Masuda T, Nakaura T, Ishiko T, Hirai T, Beppu T. Low tube voltage and deep-learning reconstruction for reducing radiation and contrast medium doses in thin-slice abdominal CT: a prospective clinical trial. Eur Radiol 2024; 34:7386-7396. [PMID: 38753193 DOI: 10.1007/s00330-024-10793-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/23/2024] [Accepted: 04/08/2024] [Indexed: 10/29/2024]
Abstract
OBJECTIVES To investigate the feasibility of low-radiation dose and low iodinated contrast medium (ICM) dose protocol combining low-tube voltage and deep-learning reconstruction (DLR) algorithm in thin-slice abdominal CT. METHODS This prospective study included 148 patients who underwent contrast-enhanced abdominal CT with either 120-kVp (600 mgL/kg, n = 74) or 80-kVp protocol (360 mgL/kg, n = 74). The 120-kVp images were reconstructed using hybrid iterative reconstruction (HIR) (120-kVp-HIR), while 80-kVp images were reconstructed using HIR (80-kVp-HIR) and DLR (80-kVp-DLR) with 0.5 mm thickness. Size-specific dose estimate (SSDE) and iodine dose were compared between protocols. Image noise, CT attenuation, and contrast-to-noise ratio (CNR) were quantified. Noise power spectrum (NPS) and edge rise slope (ERS) were used to evaluate noise texture and edge sharpness, respectively. The subjective image quality was rated on a 4-point scale. RESULTS SSDE and iodine doses of 80-kVp were 40.4% (8.1 ± 0.9 vs. 13.6 ± 2.7 mGy) and 36.3% (21.2 ± 3.9 vs. 33.3 ± 4.3 gL) lower, respectively, than those of 120-kVp (both, p < 0.001). CT attenuation of vessels and solid organs was higher in 80-kVp than in 120-kVp images (all, p < 0.001). Image noise of 80-kVp-HIR and 80-kVp-DLR was higher and lower, respectively than that of 120-kVp-HIR (both p < 0.001). The highest CNR and subjective scores were attained in 80-kVp-DLR (all, p < 0.001). There were no significant differences in average NPS frequency and ERS between 120-kVp-HIR and 80-kVp-DLR (p ≥ 0.38). CONCLUSION Compared with the 120-kVp-HIR protocol, the combined use of 80-kVp and DLR techniques yielded superior subjective and objective image quality with reduced radiation and ICM doses at thin-section abdominal CT. CLINICAL RELEVANCE STATEMENT Scanning at low-tube voltage (80-kVp) combined with the deep-learning reconstruction algorithm may enhance diagnostic efficiency and patient safety by improving image quality and reducing radiation and contrast doses of thin-slice abdominal CT. KEY POINTS Reducing radiation and iodine doses is desirable; however, contrast and noise degradation can be detrimental. The 80-kVp scan with the deep-learning reconstruction technique provided better images with lower radiation and contrast doses. This technique may be efficient for improving diagnostic confidence and patient safety in thin-slice abdominal CT.
Collapse
Affiliation(s)
- Kenichiro Yoshida
- Department of Radiology, Yamaga Medical Center, 511 Yamaga, Kumamoto, 861-0501, Japan
- Graduate School of Health Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuo-ku, Kumamoto, 862-0976, Japan
| | - Yasunori Nagayama
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| | - Yoshinori Funama
- Department of Medical Radiation Sciences, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuo-ku, Kumamoto, 862-0976, Japan
| | - Soichiro Ishiuchi
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Toshihiko Motohara
- Department of Gastroenterology, Yamaga Medical Center, 511 Yamaga, Kumamoto, 861-0501, Japan
| | - Toshiro Masuda
- Department of Surgery, Yamaga Medical Center, 511 Yamaga, Kumamoto, 861-0501, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takatoshi Ishiko
- Department of Surgery, Yamaga Medical Center, 511 Yamaga, Kumamoto, 861-0501, Japan
| | - Toshinori Hirai
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Toru Beppu
- Department of Surgery, Yamaga Medical Center, 511 Yamaga, Kumamoto, 861-0501, Japan
| |
Collapse
|
7
|
Nakaura T, Ito R, Ueda D, Nozaki T, Fushimi Y, Matsui Y, Yanagawa M, Yamada A, Tsuboyama T, Fujima N, Tatsugami F, Hirata K, Fujita S, Kamagata K, Fujioka T, Kawamura M, Naganawa S. The impact of large language models on radiology: a guide for radiologists on the latest innovations in AI. Jpn J Radiol 2024; 42:685-696. [PMID: 38551772 PMCID: PMC11217134 DOI: 10.1007/s11604-024-01552-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/21/2024] [Indexed: 07/03/2024]
Abstract
The advent of Deep Learning (DL) has significantly propelled the field of diagnostic radiology forward by enhancing image analysis and interpretation. The introduction of the Transformer architecture, followed by the development of Large Language Models (LLMs), has further revolutionized this domain. LLMs now possess the potential to automate and refine the radiology workflow, extending from report generation to assistance in diagnostics and patient care. The integration of multimodal technology with LLMs could potentially leapfrog these applications to unprecedented levels.However, LLMs come with unresolved challenges such as information hallucinations and biases, which can affect clinical reliability. Despite these issues, the legislative and guideline frameworks have yet to catch up with technological advancements. Radiologists must acquire a thorough understanding of these technologies to leverage LLMs' potential to the fullest while maintaining medical safety and ethics. This review aims to aid in that endeavor.
Collapse
Affiliation(s)
- Takeshi Nakaura
- Department of Central Radiology, Kumamoto University Hospital, Honjo 1-1-1, Kumamoto, 860-8556, Japan.
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Daiju Ueda
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1‑4‑3 Asahi‑Machi, Abeno‑ku, Osaka, 545‑8585, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, Shinjuku‑ku, Tokyo, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Sakyoku, Kyoto, Japan
| | - Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita‑ku, Okayama, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Akira Yamada
- Department of Radiology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, Minami‑ku, Hiroshima, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Kita‑ku, Sapporo, Hokkaido, Japan
| | - Shohei Fujita
- Department of Radiology, University of Tokyo, Bunkyo‑ku, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo‑ku, Tokyo, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Bunkyo‑ku, Tokyo, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
8
|
Kawai N, Noda Y, Nakamura F, Kaga T, Suzuki R, Miyoshi T, Mori F, Hyodo F, Kato H, Matsuo M. Low-tube-voltage whole-body CT angiography with extremely low iodine dose: a comparison between hybrid-iterative reconstruction and deep-learning image-reconstruction algorithms. Clin Radiol 2024; 79:e791-e798. [PMID: 38403540 DOI: 10.1016/j.crad.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/27/2024]
Abstract
AIM To evaluate arterial enhancement, its depiction, and image quality in low-tube potential whole-body computed tomography (CT) angiography (CTA) with extremely low iodine dose and compare the results with those obtained by hybrid-iterative reconstruction (IR) and deep-learning image-reconstruction (DLIR) methods. MATERIALS AND METHODS This prospective study included 34 consecutive participants (27 men; mean age, 74.2 years) who underwent whole-body CTA at 80 kVp for evaluating aortic diseases between January and July 2020. Contrast material (240 mg iodine/ml) with simultaneous administration of its quarter volume of saline, which corresponded to 192 mg iodine/ml, was administered. CT raw data were reconstructed using adaptive statistical IR-Veo of 40% (hybrid-IR), DLIR with medium- (DLIR-M), and high-strength level (DLIR-H). A radiologist measured CT attenuation of the arteries and background noise, and the signal-to-noise ratio (SNR) was then calculated. Two reviewers qualitatively evaluated the arterial depictions and diagnostic acceptability on axial, multiplanar-reformatted (MPR), and volume-rendered (VR) images. RESULTS Mean contrast material volume and iodine weight administered were 64.1 ml and 15.4 g, respectively. The SNRs of the arteries were significantly higher in the following order of the DLIR-H, DLIR-M, and hybrid-IR (p<0.001). Depictions of six arteries on axial, three arteries on MPR, and four arteries on VR images were significantly superior in the DLIR-M or hybrid-IR than in the DLIR-H (p≤0.009 for each). Diagnostic acceptability was significantly better in the DLIR-M and DLIR-H than in the hybrid-IR (p<0.001-0.005). CONCLUSION DLIR-M showed well-balanced arterial depictions and image quality compared with the hybrid-IR and DLIR-H.
Collapse
Affiliation(s)
- N Kawai
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Y Noda
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - F Nakamura
- Department of Radiology, Gifu Municipal Hospital, 7-1 Kashima, Gifu 500-8513, Japan
| | - T Kaga
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - R Suzuki
- Department of Radiology Services, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194, Japan
| | - T Miyoshi
- Department of Radiology Services, Gifu University Hospital, 1-1 Yanagido, Gifu 501-1194, Japan
| | - F Mori
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - F Hyodo
- Department of Pharmacology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; Center for One Medicine Innovative Translational Research (COMIT), Institute for Advanced Study, Gifu University, Japan
| | - H Kato
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - M Matsuo
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| |
Collapse
|
9
|
Barat M, Pellat A, Hoeffel C, Dohan A, Coriat R, Fishman EK, Nougaret S, Chu L, Soyer P. CT and MRI of abdominal cancers: current trends and perspectives in the era of radiomics and artificial intelligence. Jpn J Radiol 2024; 42:246-260. [PMID: 37926780 DOI: 10.1007/s11604-023-01504-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
Abdominal cancers continue to pose daily challenges to clinicians, radiologists and researchers. These challenges are faced at each stage of abdominal cancer management, including early detection, accurate characterization, precise assessment of tumor spread, preoperative planning when surgery is anticipated, prediction of tumor aggressiveness, response to therapy, and detection of recurrence. Technical advances in medical imaging, often in combination with imaging biomarkers, show great promise in addressing such challenges. Information extracted from imaging datasets owing to the application of radiomics can be used to further improve the diagnostic capabilities of imaging. However, the analysis of the huge amount of data provided by these advances is a difficult task in daily practice. Artificial intelligence has the potential to help radiologists in all these challenges. Notably, the applications of AI in the field of abdominal cancers are expanding and now include diverse approaches for cancer detection, diagnosis and classification, genomics and detection of genetic alterations, analysis of tumor microenvironment, identification of predictive biomarkers and follow-up. However, AI currently has some limitations that need further refinement for implementation in the clinical setting. This review article sums up recent advances in imaging of abdominal cancers in the field of image/data acquisition, tumor detection, tumor characterization, prognosis, and treatment response evaluation.
Collapse
Affiliation(s)
- Maxime Barat
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, 75014, Paris, France
- Faculté de Médecine, Université Paris Cité, 75006, Paris, France
| | - Anna Pellat
- Faculté de Médecine, Université Paris Cité, 75006, Paris, France
- Department of Gastroenterology and Digestive Oncology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, 75014, Paris, France
| | - Christine Hoeffel
- Department of Radiology, Hopital Robert Debré, CHU Reims, Université Champagne-Ardennes, 51092, Reims, France
| | - Anthony Dohan
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, 75014, Paris, France
- Faculté de Médecine, Université Paris Cité, 75006, Paris, France
| | - Romain Coriat
- Faculté de Médecine, Université Paris Cité, 75006, Paris, France
- Department of Gastroenterology and Digestive Oncology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, 75014, Paris, France
| | - Elliot K Fishman
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Stéphanie Nougaret
- Department of Radiology, Montpellier Cancer Institute, 34000, Montpellier, France
- PINKCC Lab, IRCM, U1194, 34000, Montpellier, France
| | - Linda Chu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Philippe Soyer
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hopitaux de Paris, 75014, Paris, France.
- Faculté de Médecine, Université Paris Cité, 75006, Paris, France.
| |
Collapse
|
10
|
Ueda D, Kakinuma T, Fujita S, Kamagata K, Fushimi Y, Ito R, Matsui Y, Nozaki T, Nakaura T, Fujima N, Tatsugami F, Yanagawa M, Hirata K, Yamada A, Tsuboyama T, Kawamura M, Fujioka T, Naganawa S. Fairness of artificial intelligence in healthcare: review and recommendations. Jpn J Radiol 2024; 42:3-15. [PMID: 37540463 PMCID: PMC10764412 DOI: 10.1007/s11604-023-01474-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023]
Abstract
In this review, we address the issue of fairness in the clinical integration of artificial intelligence (AI) in the medical field. As the clinical adoption of deep learning algorithms, a subfield of AI, progresses, concerns have arisen regarding the impact of AI biases and discrimination on patient health. This review aims to provide a comprehensive overview of concerns associated with AI fairness; discuss strategies to mitigate AI biases; and emphasize the need for cooperation among physicians, AI researchers, AI developers, policymakers, and patients to ensure equitable AI integration. First, we define and introduce the concept of fairness in AI applications in healthcare and radiology, emphasizing the benefits and challenges of incorporating AI into clinical practice. Next, we delve into concerns regarding fairness in healthcare, addressing the various causes of biases in AI and potential concerns such as misdiagnosis, unequal access to treatment, and ethical considerations. We then outline strategies for addressing fairness, such as the importance of diverse and representative data and algorithm audits. Additionally, we discuss ethical and legal considerations such as data privacy, responsibility, accountability, transparency, and explainability in AI. Finally, we present the Fairness of Artificial Intelligence Recommendations in healthcare (FAIR) statement to offer best practices. Through these efforts, we aim to provide a foundation for discussing the responsible and equitable implementation and deployment of AI in healthcare.
Collapse
Affiliation(s)
- Daiju Ueda
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-Machi, Abeno-ku, Osaka, 545-8585, Japan.
| | | | - Shohei Fujita
- Department of Radiology, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Sakyoku, Kyoto, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, Chuo-ku, Kumamoto, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| | - Akira Yamada
- Department of Radiology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Osaka University Graduate School of Medicine, Suita City, Osaka, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
11
|
Tatsugami F, Nakaura T, Yanagawa M, Fujita S, Kamagata K, Ito R, Kawamura M, Fushimi Y, Ueda D, Matsui Y, Yamada A, Fujima N, Fujioka T, Nozaki T, Tsuboyama T, Hirata K, Naganawa S. Recent advances in artificial intelligence for cardiac CT: Enhancing diagnosis and prognosis prediction. Diagn Interv Imaging 2023; 104:521-528. [PMID: 37407346 DOI: 10.1016/j.diii.2023.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Abstract
Recent advances in artificial intelligence (AI) for cardiac computed tomography (CT) have shown great potential in enhancing diagnosis and prognosis prediction in patients with cardiovascular disease. Deep learning, a type of machine learning, has revolutionized radiology by enabling automatic feature extraction and learning from large datasets, particularly in image-based applications. Thus, AI-driven techniques have enabled a faster analysis of cardiac CT examinations than when they are analyzed by humans, while maintaining reproducibility. However, further research and validation are required to fully assess the diagnostic performance, radiation dose-reduction capabilities, and clinical correctness of these AI-driven techniques in cardiac CT. This review article presents recent advances of AI in the field of cardiac CT, including deep-learning-based image reconstruction, coronary artery motion correction, automatic calcium scoring, automatic epicardial fat measurement, coronary artery stenosis diagnosis, fractional flow reserve prediction, and prognosis prediction, analyzes current limitations of these techniques and discusses future challenges.
Collapse
Affiliation(s)
- Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Shohei Fujita
- Departmen of Radiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyoku, Kyoto, 606-8507, Japan
| | - Daiju Ueda
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Akira Yamada
- Department of Radiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital N15, W5, Kita-Ku, Sapporo 060-8638, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-0016, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Kita 15 Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8648, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
12
|
Fujima N, Kamagata K, Ueda D, Fujita S, Fushimi Y, Yanagawa M, Ito R, Tsuboyama T, Kawamura M, Nakaura T, Yamada A, Nozaki T, Fujioka T, Matsui Y, Hirata K, Tatsugami F, Naganawa S. Current State of Artificial Intelligence in Clinical Applications for Head and Neck MR Imaging. Magn Reson Med Sci 2023; 22:401-414. [PMID: 37532584 PMCID: PMC10552661 DOI: 10.2463/mrms.rev.2023-0047] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/09/2023] [Indexed: 08/04/2023] Open
Abstract
Due primarily to the excellent soft tissue contrast depictions provided by MRI, the widespread application of head and neck MRI in clinical practice serves to assess various diseases. Artificial intelligence (AI)-based methodologies, particularly deep learning analyses using convolutional neural networks, have recently gained global recognition and have been extensively investigated in clinical research for their applicability across a range of categories within medical imaging, including head and neck MRI. Analytical approaches using AI have shown potential for addressing the clinical limitations associated with head and neck MRI. In this review, we focus primarily on the technical advancements in deep-learning-based methodologies and their clinical utility within the field of head and neck MRI, encompassing aspects such as image acquisition and reconstruction, lesion segmentation, disease classification and diagnosis, and prognostic prediction for patients presenting with head and neck diseases. We then discuss the limitations of current deep-learning-based approaches and offer insights regarding future challenges in this field.
Collapse
Affiliation(s)
- Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Daiju Ueda
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Osaka, Japan
| | - Shohei Fujita
- Department of Radiology, University of Tokyo, Tokyo, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, Kumamoto, Kumamoto, Japan
| | - Akira Yamada
- Department of Radiology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Okayama, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, Hiroshima, Hiroshima, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
13
|
Yanagawa M, Ito R, Nozaki T, Fujioka T, Yamada A, Fujita S, Kamagata K, Fushimi Y, Tsuboyama T, Matsui Y, Tatsugami F, Kawamura M, Ueda D, Fujima N, Nakaura T, Hirata K, Naganawa S. New trend in artificial intelligence-based assistive technology for thoracic imaging. LA RADIOLOGIA MEDICA 2023; 128:1236-1249. [PMID: 37639191 PMCID: PMC10547663 DOI: 10.1007/s11547-023-01691-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
Although there is no solid agreement for artificial intelligence (AI), it refers to a computer system with intelligence similar to that of humans. Deep learning appeared in 2006, and more than 10 years have passed since the third AI boom was triggered by improvements in computing power, algorithm development, and the use of big data. In recent years, the application and development of AI technology in the medical field have intensified internationally. There is no doubt that AI will be used in clinical practice to assist in diagnostic imaging in the future. In qualitative diagnosis, it is desirable to develop an explainable AI that at least represents the basis of the diagnostic process. However, it must be kept in mind that AI is a physician-assistant system, and the final decision should be made by the physician while understanding the limitations of AI. The aim of this article is to review the application of AI technology in diagnostic imaging from PubMed database while particularly focusing on diagnostic imaging in thorax such as lesion detection and qualitative diagnosis in order to help radiologists and clinicians to become more familiar with AI in thorax.
Collapse
Affiliation(s)
- Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-City, Osaka, 565-0871, Japan.
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-0016, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Akira Yamada
- Department of Radiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-2621, Japan
| | - Shohei Fujita
- Department of Radiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyoku, Kyoto, 606-8507, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-City, Osaka, 565-0871, Japan
| | - Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Daiju Ueda
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-Machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, N15, W5, Kita-ku, Sapporo, 060-8638, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Kita 15 Nish I 7, Kita-ku, Sapporo, Hokkaido, 060-8648, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
14
|
Ludes G, Ohana M, Labani A, Meyer N, Moliére S, Roy C. Impact of a reduced iodine load with deep learning reconstruction on abdominal MDCT. Medicine (Baltimore) 2023; 102:e34579. [PMID: 37657067 PMCID: PMC10476859 DOI: 10.1097/md.0000000000034579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/13/2023] [Indexed: 09/03/2023] Open
Abstract
To evaluate the impact of a reduced iodine load using deep learning reconstruction (DLR) on the hepatic parenchyma compared to conventional iterative reconstruction (hybrid IR) and its consequence on the radiation dose and image quality. This retrospective monocentric intraindividual comparison study included 66 patients explored at the portal phase using different multidetector computed tomography parameters: Group A, hybrid IR algorithm (hybrid IR) and a nonionic low-osmolality contrast agent (350 mgI/mL); Group B, DLR algorithm (DLR) and a nonionic iso-osmolality contrast agent (270 mgI/mL). We recorded the attenuation of the liver parenchyma, image quality, and radiation dose parameters. The mean hounsfield units (HU) value of the liver parenchyma was significantly lower in group B, at 105.9 ± 10.9 HU versus 118.5 ± 14.6 HU in group A. However, the 90%IC of mean liver attenuation in the group B (DLR) was between 100.8 HU and 109.3 HU. The signal-to-noise ratio of the liver parenchyma was significantly higher on DLR images, increasing by 56%. However, for both the contrast-to-noise ratio (CNR) and CNR liver/PV no statistical difference was found, even if the CNR liver/PV ratio was slightly higher for group A. The mean dose-length product and computed tomography dose index volume values were significantly lower with DLR, corresponding to a radiation dose reduction of 36% for the DLR. Using a DLR algorithm for abdominal multidetector computed tomography with a low iodine load can provide sufficient enhancement of the liver parenchyma up to 100 HU in addition to the advantages of a higher image quality, a better signal-to-noise ratio and a lower radiation dose.
Collapse
Affiliation(s)
- Gaspard Ludes
- Department of Radiology B, University Hospital of Strasbourg – New Civil Hospital, Strasbourg, Cedex, France
| | - Mickael Ohana
- Department of Radiology B, University Hospital of Strasbourg – New Civil Hospital, Strasbourg, Cedex, France
| | - Aissam Labani
- Department of Radiology B, University Hospital of Strasbourg – New Civil Hospital, Strasbourg, Cedex, France
| | - Nicolas Meyer
- Department of Statistics, University Hospital of Strasbourg – New Civil Hospital, Strasbourg, Cedex, France
| | - Sébastien Moliére
- Department of Radiology B, University Hospital of Strasbourg – New Civil Hospital, Strasbourg, Cedex, France
| | - Catherine Roy
- Department of Radiology B, University Hospital of Strasbourg – New Civil Hospital, Strasbourg, Cedex, France
| |
Collapse
|
15
|
Shehata MA, Saad AM, Kamel S, Stanietzky N, Roman-Colon AM, Morani AC, Elsayes KM, Jensen CT. Deep-learning CT reconstruction in clinical scans of the abdomen: a systematic review and meta-analysis. Abdom Radiol (NY) 2023; 48:2724-2756. [PMID: 37280374 PMCID: PMC11781595 DOI: 10.1007/s00261-023-03966-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To perform a systematic literature review and meta-analysis of the two most common commercially available deep-learning algorithms for CT. METHODS We used PubMed, Scopus, Embase, and Web of Science to conduct systematic searches for studies assessing the most common commercially available deep-learning CT reconstruction algorithms: True Fidelity (TF) and Advanced intelligent Clear-IQ Engine (AiCE) in the abdomen of human participants since only these two algorithms currently have adequate published data for robust systematic analysis. RESULTS Forty-four articles fulfilled inclusion criteria. 32 studies evaluated TF and 12 studies assessed AiCE. DLR algorithms produced images with significantly less noise (22-57.3% less than IR) but preserved a desirable noise texture with increased contrast-to-noise ratios and improved lesion detectability on conventional CT. These improvements with DLR were similarly noted in dual-energy CT which was only assessed for a single vendor. Reported radiation reduction potential was 35.1-78.5%. Nine studies assessed observer performance with the two dedicated liver lesion studies being performed on the same vendor reconstruction (TF). These two studies indicate preserved low contrast liver lesion detection (> 5 mm) at CTDIvol 6.8 mGy (BMI 23.5 kg/m2) to 12.2 mGy (BMI 29 kg/m2). If smaller lesion detection and improved lesion characterization is needed, a CTDIvol of 13.6-34.9 mGy is needed in a normal weight to obese population. Mild signal loss and blurring have been reported at high DLR reconstruction strengths. CONCLUSION Deep learning reconstructions significantly improve image quality in CT of the abdomen. Assessment of other dose levels and clinical indications is needed. Careful choice of radiation dose levels is necessary, particularly for small liver lesion assessment.
Collapse
Affiliation(s)
- Mostafa A Shehata
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX, 77030-4009, USA
| | | | - Serageldin Kamel
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX, 77030-4009, USA
| | - Nir Stanietzky
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX, 77030-4009, USA
| | | | - Ajaykumar C Morani
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX, 77030-4009, USA
| | - Khaled M Elsayes
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX, 77030-4009, USA
| | - Corey T Jensen
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1473, Houston, TX, 77030-4009, USA.
| |
Collapse
|
16
|
Yamada A, Kamagata K, Hirata K, Ito R, Nakaura T, Ueda D, Fujita S, Fushimi Y, Fujima N, Matsui Y, Tatsugami F, Nozaki T, Fujioka T, Yanagawa M, Tsuboyama T, Kawamura M, Naganawa S. Clinical applications of artificial intelligence in liver imaging. LA RADIOLOGIA MEDICA 2023:10.1007/s11547-023-01638-1. [PMID: 37165151 DOI: 10.1007/s11547-023-01638-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023]
Abstract
This review outlines the current status and challenges of the clinical applications of artificial intelligence in liver imaging using computed tomography or magnetic resonance imaging based on a topic analysis of PubMed search results using latent Dirichlet allocation. LDA revealed that "segmentation," "hepatocellular carcinoma and radiomics," "metastasis," "fibrosis," and "reconstruction" were current main topic keywords. Automatic liver segmentation technology using deep learning is beginning to assume new clinical significance as part of whole-body composition analysis. It has also been applied to the screening of large populations and the acquisition of training data for machine learning models and has resulted in the development of imaging biomarkers that have a significant impact on important clinical issues, such as the estimation of liver fibrosis, recurrence, and prognosis of malignant tumors. Deep learning reconstruction is expanding as a new technological clinical application of artificial intelligence and has shown results in reducing contrast and radiation doses. However, there is much missing evidence, such as external validation of machine learning models and the evaluation of the diagnostic performance of specific diseases using deep learning reconstruction, suggesting that the clinical application of these technologies is still in development.
Collapse
Affiliation(s)
- Akira Yamada
- Department of Radiology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan.
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, Japan
| | - Kenji Hirata
- Department of Nuclear Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, Chuo-Ku, Kumamoto, Japan
| | - Daiju Ueda
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Abeno-Ku, Osaka, Japan
| | - Shohei Fujita
- Department of Radiology, University of Tokyo, Tokyo, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Sakyoku, Kyoto, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| | - Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-Ku, Okayama, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, Minami-Ku, Hiroshima City, Hiroshima, Japan
| | - Taiki Nozaki
- Department of Radiology, St. Luke's International Hospital, Tokyo, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Takahiro Tsuboyama
- Department of Radiology, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
17
|
Fujioka T, Satoh Y, Imokawa T, Mori M, Yamaga E, Takahashi K, Kubota K, Onishi H, Tateishi U. Proposal to Improve the Image Quality of Short-Acquisition Time-Dedicated Breast Positron Emission Tomography Using the Pix2pix Generative Adversarial Network. Diagnostics (Basel) 2022; 12:diagnostics12123114. [PMID: 36553120 PMCID: PMC9777139 DOI: 10.3390/diagnostics12123114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/26/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
This study aimed to evaluate the ability of the pix2pix generative adversarial network (GAN) to improve the image quality of low-count dedicated breast positron emission tomography (dbPET). Pairs of full- and low-count dbPET images were collected from 49 breasts. An image synthesis model was constructed using pix2pix GAN for each acquisition time with training (3776 pairs from 16 breasts) and validation data (1652 pairs from 7 breasts). Test data included dbPET images synthesized by our model from 26 breasts with short acquisition times. Two breast radiologists visually compared the overall image quality of the original and synthesized images derived from the short-acquisition time data (scores of 1−5). Further quantitative evaluation was performed using a peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). In the visual evaluation, both readers revealed an average score of >3 for all images. The quantitative evaluation revealed significantly higher SSIM (p < 0.01) and PSNR (p < 0.01) for 26 s synthetic images and higher PSNR for 52 s images (p < 0.01) than for the original images. Our model improved the quality of low-count time dbPET synthetic images, with a more significant effect on images with lower counts.
Collapse
Affiliation(s)
- Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yoko Satoh
- Yamanashi PET Imaging Clinic, Chuo City 409-3821, Japan
- Department of Radiology, University of Yamanashi, Chuo City 409-3898, Japan
- Correspondence:
| | - Tomoki Imokawa
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Mio Mori
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Emi Yamaga
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kanae Takahashi
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kazunori Kubota
- Department of Radiology, Dokkyo Medical University Saitama Medical Center, Koshigaya 343-8555, Japan
| | - Hiroshi Onishi
- Department of Radiology, University of Yamanashi, Chuo City 409-3898, Japan
| | - Ukihide Tateishi
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| |
Collapse
|