1
|
Gudmundsson B, Thormar HG, Sigurdsson A, Dankers W, Steinarsdottir M, Hermanowicz S, Sigurdsson S, Olafsson D, Halldorsdottir AM, Meyn S, Jonsson JJ. Northern lights assay: a versatile method for comprehensive detection of DNA damage. Nucleic Acids Res 2018; 46:e118. [PMID: 30053193 PMCID: PMC6237810 DOI: 10.1093/nar/gky645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 11/17/2022] Open
Abstract
DNA damage assays have various limitations in types of lesions detected, sensitivity, specificity and samples that can be analyzed. The Northern Lights Assay (NLA) is based on 2D Strandness-Dependent Electrophoresis (2D-SDE), a technique that separates nucleic acids based on length, strandness, structure and conformation changes induced by damage. NLA is run on a microgel platform in 20-25 min. Each specimen is analyzed in pairs of non-digested DNA to detect single- and double-stranded breaks (DSBs) and Mbo I-digested DNA to detect other lesions. We used NLA to evaluate DNA in solution and isolated from human cells treated with various genotoxic agents. NLA detected and distinguished between single- and DSBs, interstrand and intrastrand DNA crosslinks, and denatured single-stranded DNA. NLA was sufficiently sensitive to detect biologically relevant amount of DNA damage. NLA is a versatile, sensitive and simple method for comprehensive and simultaneous analysis of multiple types of damage, both in purified DNA and in DNA isolated from cells and body fluids. NLA can be used to evaluate DNA quality in biosamples, monitor complex molecular procedures, assess genotoxicity, diagnose genome instability, facilitate cancer theranostics and in basic nucleic acids research.
Collapse
Affiliation(s)
- Bjarki Gudmundsson
- Department of Biochemistry and Molecular Biology, University of Iceland, Reykjavik IS-101, Iceland
- Department of Genetics and Molecular Medicine, Landspitali–National University Hospital, Reykjavik IS-101, Iceland
- Lifeind ehf., Reykjavik IS-101, Iceland
| | - Hans G Thormar
- Department of Biochemistry and Molecular Biology, University of Iceland, Reykjavik IS-101, Iceland
- Lifeind ehf., Reykjavik IS-101, Iceland
| | - Albert Sigurdsson
- Department of Biochemistry and Molecular Biology, University of Iceland, Reykjavik IS-101, Iceland
| | - Wendy Dankers
- Department of Biochemistry and Molecular Biology, University of Iceland, Reykjavik IS-101, Iceland
| | - Margret Steinarsdottir
- Department of Genetics and Molecular Medicine, Landspitali–National University Hospital, Reykjavik IS-101, Iceland
| | - Stefan Hermanowicz
- Department of Biochemistry and Molecular Biology, University of Iceland, Reykjavik IS-101, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik IS-101, Iceland
| | - Stefan Sigurdsson
- Department of Biochemistry and Molecular Biology, University of Iceland, Reykjavik IS-101, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik IS-101, Iceland
| | - David Olafsson
- Department of Biochemistry and Molecular Biology, University of Iceland, Reykjavik IS-101, Iceland
- The Blood Bank, Landspitali–National University Hospital, Reykjavik IS-101, Iceland
| | | | - Stephen Meyn
- Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- University of Toronto, Toronto, ON, M5S 1A8, Canada
- Center for Human Genomics and Precision Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705, USA
| | - Jon J Jonsson
- Department of Biochemistry and Molecular Biology, University of Iceland, Reykjavik IS-101, Iceland
- Department of Genetics and Molecular Medicine, Landspitali–National University Hospital, Reykjavik IS-101, Iceland
| |
Collapse
|
2
|
Wu H, Wu X, Liang Z. Impact of germline and somatic BRCA1/2 mutations: tumor spectrum and detection platforms. Gene Ther 2017; 24:601-609. [PMID: 28771233 DOI: 10.1038/gt.2017.73] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/10/2017] [Accepted: 07/27/2017] [Indexed: 12/13/2022]
Abstract
The BRCA1/2 genes are long and complex and mutation carriers are at risk of developing malignancies, mainly of gynecological origin. Various mutations arise in these genes and their characterization is a time-consuming, cost intensive, complicated process. Tumors of BRCA1/2 origin have distinct molecular and histological features that can impact responses to therapy. Therefore, detection of these mutations constitutes an important step in the risk assessment, prevention strategy and treatment of subjects. Although Sanger sequencing is the gold standard for the detection of genetic mutations, several next generation sequencing-based high throughput platforms have been developed and adapted for the detection of BRCA1/2 mutations. This review provides a comprehensive overview of the sequencing platforms available for the screening and identification of these mutations. We also summarize what is known about the different types of mutations that arise in these genes and the tumor spectra they result in. Finally, we present a short discussion on existing clinical guidelines which assist physicians in the decision-making process. These parameters have important consequences for the management of patients and an urgent need exists for the development of detection platforms that are cost effective and can provide clinicians with conclusive results within a significantly shorter time.
Collapse
Affiliation(s)
- H Wu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - X Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Z Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
A Class of Environmental and Endogenous Toxins Induces BRCA2 Haploinsufficiency and Genome Instability. Cell 2017; 169:1105-1118.e15. [PMID: 28575672 PMCID: PMC5457488 DOI: 10.1016/j.cell.2017.05.010] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/07/2017] [Accepted: 05/02/2017] [Indexed: 02/02/2023]
Abstract
Mutations truncating a single copy of the tumor suppressor, BRCA2, cause cancer susceptibility. In cells bearing such heterozygous mutations, we find that a cellular metabolite and ubiquitous environmental toxin, formaldehyde, stalls and destabilizes DNA replication forks, engendering structural chromosomal aberrations. Formaldehyde selectively depletes BRCA2 via proteasomal degradation, a mechanism of toxicity that affects very few additional cellular proteins. Heterozygous BRCA2 truncations, by lowering pre-existing BRCA2 expression, sensitize to BRCA2 haploinsufficiency induced by transient exposure to natural concentrations of formaldehyde. Acetaldehyde, an alcohol catabolite detoxified by ALDH2, precipitates similar effects. Ribonuclease H1 ameliorates replication fork instability and chromosomal aberrations provoked by aldehyde-induced BRCA2 haploinsufficiency, suggesting that BRCA2 inactivation triggers spontaneous mutagenesis during DNA replication via aberrant RNA-DNA hybrids (R-loops). These findings suggest a model wherein carcinogenesis in BRCA2 mutation carriers can be incited by compounds found pervasively in the environment and generated endogenously in certain tissues with implications for public health.
Collapse
|
4
|
Vidarsdottir L, Steingrimsdottir G, Bodvarsdottir SK, Ogmundsdottir HM, Eyfjord JE. Sensitivity of BRCA2 mutated human cell lines to Aurora kinase inhibition. Invest New Drugs 2010; 30:425-34. [PMID: 20960027 DOI: 10.1007/s10637-010-9566-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 10/11/2010] [Indexed: 12/18/2022]
Abstract
Aurora kinases play a vital part in successful mitosis and cell division. Aberrant Aurora-A and -B expression is commonly seen in various types of tumors. Small molecule Aurora inhibitors have already entered clinical trials. Aurora-A amplification has been shown to be associated with breast tumors from BRCA2-mutation carriers and such patients might therefore be candidates for treatment with Aurora kinase inhibitors. There is a need to identify markers that can predict sensitivity to Aurora inhibition. In this study sensitivity to the inhibitor ZM447439 was tested on a panel of 15 non-malignant and malignant epithelial cell lines that differed with respect to BRCA2 and p53 status and related to level of Aurora kinase expression. The IC(50) value for cell survival ranged from 1.9-8.1 μM and was not related to presence or absence of BRCA2 mutation. The levels of Aurora-A and -B expression correlated with each other but sensitivity towards ZM447439 did not correlate with levels of Aurora-A and -B mRNA expression, alone. Cells treated with the Aurora kinase inhibitor completed mitosis but cytokinesis was inhibited resulting in polyploidy and multinucleation. Different levels of polyploidy could not be fully explained by defects in p53. Only cell lines with a combination of high Aurora-A and -B expression, BRCA2 mutation and p53 defects showed more sensitivity towards Aurora inhibition than other cell lines. In conclusion, BRCA2-mutated cells showed variable sensitivity towards Aurora kinase inhibition. The level of sensitivity could not be predicted by Aurora expression levels alone but BRCA2 mutated tumors with high Aurora expression and non-functional p53 are likely candidates for treatment with Aurora inhibitors.
Collapse
Affiliation(s)
- Linda Vidarsdottir
- Cancer Research Laboratory, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | | | | | | |
Collapse
|
5
|
Shen C, Gu M, Liang D, Miao L, Hu L, Zheng C, Chen J. Establishment and characterization of three new human breast cancer cell lines derived from Chinese breast cancer tissues. Cancer Cell Int 2009; 9:2. [PMID: 19121212 PMCID: PMC2646685 DOI: 10.1186/1475-2867-9-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 01/02/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Breast cancer is a major malignancy affecting females worldwide. It is the most common cause of death from cancer in women. Cell lines are widely used in laboratory research and particularly as in vitro models in cancer research. But we found that the routinely used breast cancer cell lines were mostly derived from Caucasians or African-Americans. There were few standard models to study the pathogenic mechanism at molecular level and cell signaling pathway of breast cancer for Asian patients. It is quite necessary to establish new breast cancer cell lines from xanthoderm to study the pathogenic mechanism and therapeutic methods. RESULTS Three new breast cancer cell lines, designated BC-019, BC-020 and BC-021, were successfully established and characterized from breast invasive ductal carcinoma tissues of three Chinese female patients. These new cell lines growing as adherent monolayer with characteristic epithelial morphology could be maintained continuously in vitro, and they were ER-, PR- and C-erbB-2-positive. Their chromosomes showed high hyperdiploidy and complex rearrangements, and they displayed aggressive tumorigencity in tumorigenesis test. CONCLUSION The three newly established breast cancer cell lines from Chinese patients were tested for a number of, and the results indicate that the cell lines were in good quality and could be served as new cell models in breast cancer study.
Collapse
Affiliation(s)
- Chao Shen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
- China Center for Type Culture Collection, Wuhan University, Wuhan 430072, PR China
| | - Meijia Gu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
- China Center for Type Culture Collection, Wuhan University, Wuhan 430072, PR China
| | - Dan Liang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
- China Center for Type Culture Collection, Wuhan University, Wuhan 430072, PR China
| | - Lixia Miao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Liu Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Congyi Zheng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
- China Center for Type Culture Collection, Wuhan University, Wuhan 430072, PR China
| | - Jiakuan Chen
- Zhongnan Hospital, Wuhan University, Wuhan 430072, PR China
| |
Collapse
|