1
|
Mabrouk M, Ismail E, Beherei H, Abo-Elfadl MT, Salem ZA, Das DB, AbuBakr N. Biocompatibility of hydroxyethyl cellulose/glycine/RuO 2 composite scaffolds for neural-like cells. Int J Biol Macromol 2022; 209:2097-2108. [PMID: 35504415 DOI: 10.1016/j.ijbiomac.2022.04.190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022]
Abstract
Fabrication of scaffolds for nerve regeneration is one of the most challenging topics in regenerative medicine at the moment, which is also interlinked with the development of biocompatible substrates for cells growth. This work is targeted towards the development of green biomaterial composite scaffolds for nerve cell culture applications. Hybrid scaffolds of hydroxyethyl cellulose/glycine (HEC/Gly) composite doped with different concentrations of green ruthenium oxide (RuO2) were synthesized and characterized via a combination of different techniques. X-rays diffraction (XRD) and differential scanning calorimetry (DSC) analyses showed a crystalline nature for all the samples with noticeable decrease in the peak intensity of the fabricated scaffolds as compared to that for pure glycine. Fourier transform infrared spectroscopy (FTIR) tests revealed an increase in the vibrational bands of the synthesized RuO2 containing scaffolds which are related to the functional groups of the natural plant extract (Aspalathuslinearis) used for RuO2 nanoparticles (NPs) synthesis. Scanning electron microscopy (SEM) results revealed a 3D porous structure of the scaffolds with variant features attributed to the concentration of RuO2 NPs in the scaffold. The compressive test results recorded an enhancement in mechanical properties of the fabricated scaffolds (up to 8.55 MPa), proportionally correlated to increasing the RuO2 NPs concentration in HEC/Gly composite scaffold. Our biocompatibility tests revealed that the composite scaffolds doped with 1 and 2 ml of RuO2 demonstrated the highest proliferation percentages (152.2 and 135.6%) compared to control. Finally, the SEM analyses confirmed the impressive cells attachments and differentiation onto the scaffold surfaces as evidenced by the presence of many neuron-like cells with apparent cell bodies and possessing few short neurite-like processes. The presence of RuO2 and glycine was due to their extraordinary biocompatibility due to their cytoprotective and regenerative effects. Therefore, we conclude that these scaffolds are promising for accommodation and growth of neural-like cells.
Collapse
Affiliation(s)
- Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33El Bohouth St. (former EL Tahrir St.), Dokki, Giza, P.O.12622, Egypt.
| | - Enas Ismail
- Department of Restorative Dentistry, Faculty of Dentistry, University of the Western Cape, Cape Town 7505, South Africa; Physics Department, Faculty of Science (Girl's branch), Al Azhar University, Nasr City, Cairo, Egypt
| | - Hanan Beherei
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, 33El Bohouth St. (former EL Tahrir St.), Dokki, Giza, P.O.12622, Egypt.
| | - Mahmoud T Abo-Elfadl
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, 33 El-Buhouth Street, Dokki, Giza 12622, Egypt; Biochemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Zeinab A Salem
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt; Faculty of Oral and Dental Medicine, Ahram Canadian University, Cairo, Egypt
| | - Diganta B Das
- Department of Chemical Engineering, Loughborough University, Loughborough LE113TU, Leicestershire, UK
| | - Nermeen AbuBakr
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt; Stem Cells and Tissue Engineering Unit, Faculty of Dentistry, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Characterization of neural stem cells modified with hypoxia/neuron-specific VEGF expression system for spinal cord injury. Gene Ther 2017; 25:27-38. [PMID: 29155421 DOI: 10.1038/gt.2017.92] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 09/30/2017] [Accepted: 10/04/2017] [Indexed: 02/01/2023]
Abstract
Spinal cord injury (SCI) is an incurable disease causing an ischemic environment and functional defect, thus a new therapeutic approach is needed for SCI treatment. Vascular endothelial growth factor (VEGF) is a potent therapeutic gene to treat SCI via angiogenesis and neuroprotection, and both tissue-specific gene expression and high gene delivery efficiency are important for successful gene therapy. Here we design the hypoxia/neuron dual-specific gene expression system (pEpo-NSE) and efficient gene delivery platform can be achieved by the combination ex vivo gene therapy with erythropoietin (Epo) enhancer, neuron-specific enolase (NSE) promoter and neural stem cells (NSCs). An in vitro model, NSCs transfected with pEpo-NSE were consistently and selectively overexpressing therapeutic genes in response to neural differentiation and hypoxic conditions. Also, in SCI model, ex vivo gene therapy using pEpo-NSE system with NSCs significantly enhanced gene delivery efficiency compared with pEpo-NSE system gene therapy alone. However, microarray analysis reveals that introducing exogenous pEpo-NSE and VEGF triggers biological pathways in NSCs such as glycolysis and signaling pathways such as Ras and mitogen-activated protein kinase, leading to cell proliferation, differentiation and apoptosis. Collectively, it indicates that the pEpo-NSE gene expression system works stably in NSCs and ex vivo gene therapy using pEpo-NSE system with NSCs improves gene expression efficiency. However, exogenously introduced pEpo-NSE system has an influence on gene expression profiles in NSCs. Therefore, when we consider ex vivo gene therapy for SCI, the effects of changes in gene expression profiles in NSCs on safety should be investigated.
Collapse
|
3
|
Wiener CD, Molina ML, Passos M, Moreira FP, Bittencourt G, de Mattos Souza LD, da Silva RA, Jansen K, Oses JP. Neuron-specific enolase levels in drug-naïve young adults with major depressive disorder. Neurosci Lett 2016; 620:93-6. [PMID: 27026487 DOI: 10.1016/j.neulet.2016.03.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 02/23/2016] [Accepted: 03/26/2016] [Indexed: 01/08/2023]
Abstract
The aim of this study is to assess neuron-specific enolase (NSE) levels and clinical features in subjects with major depressive disorder (MDD). This is a cross-sectional study with drug-naïve young adults with MDD (aged 18-29 years). Serum levels of NSE were assessed using the electrochemiluminescence method. MDD diagnosis, suicidal ideation, and time of disease were assessed using the Structured Clinical Interview for DSM-IV (SCID). The Hamilton Depression Rating Scale (HDRS) and Hamilton Anxiety Rating Scale (HARS) were used to assess depressive and anxiety symptoms. No relationship was observed between NSE levels and severity of depressive and anxiety symptoms, time of disease, and suicidal ideation. These results suggest that NSE serum levels were not associated with clinical features of MDD among drug-naïve young adults.
Collapse
Affiliation(s)
- Carolina David Wiener
- Programa de Pós-Graduação em Saúde e Comportamento, Universidade Católica de Pelotas, Pelotas, Brazil; Hospital São Francisco de Paula, Universidade Católica de Pelotas, Pelotas, Brazil.
| | - Mariane Lopez Molina
- Programa de Pós-Graduação em Saúde e Comportamento, Universidade Católica de Pelotas, Pelotas, Brazil
| | - Miguel Passos
- Programa de Pós-Graduação em Saúde e Comportamento, Universidade Católica de Pelotas, Pelotas, Brazil
| | - Fernanda Pedrotti Moreira
- Programa de Pós-Graduação em Saúde e Comportamento, Universidade Católica de Pelotas, Pelotas, Brazil
| | - Guilherme Bittencourt
- Programa de Pós-Graduação em Saúde e Comportamento, Universidade Católica de Pelotas, Pelotas, Brazil
| | | | - Ricardo Azevedo da Silva
- Programa de Pós-Graduação em Saúde e Comportamento, Universidade Católica de Pelotas, Pelotas, Brazil
| | - Karen Jansen
- Programa de Pós-Graduação em Saúde e Comportamento, Universidade Católica de Pelotas, Pelotas, Brazil
| | - Jean Pierre Oses
- Programa de Pós-Graduação em Saúde e Comportamento, Universidade Católica de Pelotas, Pelotas, Brazil; Hospital São Francisco de Paula, Universidade Católica de Pelotas, Pelotas, Brazil
| |
Collapse
|
4
|
Xu G, Yang L, Zhang W, Wei X. All the Tested Human Somatic Cells Express Both Oct4A and Its Pseudogenes but Express Oct4A at Much Lower Levels Compared with Its Pseudogenes and Human Embryonic Stem Cells. Stem Cells Dev 2015; 24:1546-57. [PMID: 25687509 DOI: 10.1089/scd.2014.0552] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oct4 pseudogenes and isoforms seriously confuse the detection of the pluripotency-associated Oct4A expression in somatic cells, which in many cases was not accurately determined. This confusion has recently been discussed, but the wrong conclusions have continuously been made. Most studies failed to detect the expression of Oct4 pseudogenes and isoforms in somatic cells but detected only Oct4A, for which the detection signals incorrectly came from its pseudogenes and isoforms. Some studies detected the expression of only Oct4 pseudogenes in somatic cells but failed to detect Oct4A. The other studies failed to detect the expression of any Oct4 genes. Oct4A is more homologous to its pseudogenes than its isoforms, and it is much more difficult to distinguish Oct4A from its pseudogenes, so this study focused on them. In this study, the strict experimental procedures were followed. Three pairs of Oct4A-specific polymerase chain reaction (PCR) primers were carefully designed and tested by sequencing reverse transcription-polymerase chain reaction (RT-PCR) clones, which showed that only one of them was truly specific to Oct4A. RT-PCR was also performed with the primers amplifying both Oct4A and its pseudogenes, and several hundreds of PCR clones from each cell type were sequenced to reliably distinguish the low-abundant Oct4A from its high-abundant pseudogenes. Western blot, immunocytochemistry, and flow cytometric analyses were performed with three Oct4 antibodies to confirm the results of Oct4 mRNA expression. This study undoubtedly made the correct conclusions about Oct4 expression in human somatic cells and showed that all the tested human somatic cells expressed both Oct4A and its pseudogenes but expressed Oct4A at much lower levels compared with its pseudogenes.
Collapse
Affiliation(s)
- Guangzu Xu
- Institute of Biomedicine, College of Life Science and Technology, National Engineering Research Center of Genetic Medicine, Jinan University , Guangzhou, China
| | - Ling Yang
- Institute of Biomedicine, College of Life Science and Technology, National Engineering Research Center of Genetic Medicine, Jinan University , Guangzhou, China
| | - Weixiong Zhang
- Institute of Biomedicine, College of Life Science and Technology, National Engineering Research Center of Genetic Medicine, Jinan University , Guangzhou, China
| | - Xing Wei
- Institute of Biomedicine, College of Life Science and Technology, National Engineering Research Center of Genetic Medicine, Jinan University , Guangzhou, China
| |
Collapse
|
5
|
Schmidt FM, Mergl R, Stach B, Jahn I, Schönknecht P. Elevated levels of cerebrospinal fluid neuron-specific enolase (NSE), but not S100B in major depressive disorder. World J Biol Psychiatry 2015; 16:106-13. [PMID: 25264292 DOI: 10.3109/15622975.2014.952776] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Alterations in neuronal and glial integrity are considered to be of pathogenic impact on major depressive disorder (MDD). For MDD, data on cerebrospinal fluid (CSF) levels of neuron-specific enolase (NSE) are lacking and scarce for glial protein S100B. METHODS We measured CSF levels of NSE and S100B in 31 patients with MDD and 32 mentally healthy controls using electrochemiluminescence immunoassays (ECLIA). RESULTS Adjusted means of NSE were significantly elevated in the MDD patients (11.73 ng/ml (9.95-13.52 95% CI) compared to the controls (6.17 ng/ml (4.55-7.78), F = 9.037, P = 0.004. Effect size for adjusted mean group difference of 5.57 ng/ml was found invariably high (Cohen's d = 1.23). Differentiating MDD from controls, a NSE cut-off of 7.94 ng/ml showed sensitivity of 81% (95% CI 63.7-90.8) and specificity of 75% (95% CI 57.9-86.7). Adjusted levels of S100B did not differ significantly between the two groups (1.12 ng/ml (0.77-1.48) in MDD, 0.97 ng/ml (0.64-1.30) in controls). CONCLUSIONS Our results of elevated CSF-NSE levels support neuronal pathology in MDD and the potential use of CSF-NSE as marker in clinical diagnostics. Missing group differences in S100B do not promote a specific glial pathology in depressive disorders.
Collapse
Affiliation(s)
- Frank Martin Schmidt
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig , Leipzig , Germany
| | | | | | | | | |
Collapse
|
6
|
Schmidt FM, Mergl R, Stach B, Jahn I, Gertz HJ, Schönknecht P. Elevated levels of cerebrospinal fluid neuron-specific enolase (NSE) in Alzheimer's disease. Neurosci Lett 2014; 570:81-5. [DOI: 10.1016/j.neulet.2014.04.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
|
7
|
Duan P, Sun S, Li B, Huang C, Xu Y, Han X, Xing Y, Yan W. miR-29a modulates neuronal differentiation through targeting REST in mesenchymal stem cells. PLoS One 2014; 9:e97684. [PMID: 24841827 PMCID: PMC4026383 DOI: 10.1371/journal.pone.0097684] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 04/23/2014] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To investigate the modulation of microRNAs (miRNAs) upon the neuronal differentiation of mesenchymal stem cells (MSCs) through targeting RE-1 Silencing Factor (REST), a mature neuronal gene suppressor in neuronal and un-neuronal cells. METHODS Rat bone marrow derived-MSCs were induced into neuron-like cells (MSC-NCs) by DMSO and BHA in vitro. The expression of neuron specific enolase (NSE), microtubule-associated protein tau (Tau), REST and its target genes, including synaptosomal-associated protein 25 (SNAP25) and L1 cell adhesion molecular (L1CAM), were detected in MSCs and MSC-NCs. miRNA array analysis was conducted to screen for the upregulated miRNAs after neuronal differentiation. TargetScan was used to predict the relationship between these miRNAs and REST gene, and dual luciferase reporter assay was applied to validate it. Gain and loss of function experiments were used to study the role of miR-29a upon neuronal differentiation of MSCs. The knockdown of REST was conducted to show that miR-29a affected this process through targeting REST. RESULTS MSCs were induced into neuron-like cells which presented neuronal cell shape and expressed NSE and Tau. The expression of REST declined and the expression of SNAP25 and L1CAM increased upon the neuronal differentiation of MSCs. Among 14 upregulated miRNAs, miR-29a was validated to target REST gene. During the neuronal differentiation of MSCs, miR-29a inhibition blocked the downregulation of REST, as well as the upregulation of SNAP25, L1CAM, NSE and Tau. REST knockdown rescued the effect of miR-29a inhibition on the expression of NSE and Tau. Meanwhile, miR-29a knockin significantly decreased the expression of REST and increased the expression of SNAP25 and L1CMA in MSCs, but did not significantly affect the expression of NSE and Tau. CONCLUSION miR-29a regulates neurogenic markers through targeting REST in mesenchymal stem cells, which provides advances in neuronal differentiation research and stem cell therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ping Duan
- Institute of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Shiling Sun
- Hematology Department in the First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Bo Li
- Institute of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Chuntian Huang
- Institute of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Xu
- Institute of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Xuefei Han
- Institute of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Xing
- Department of Physiology, Xinxiang Medical University, Xinxiang, Henan, China
- * E-mail: (Y. Xing); (WY)
| | - Wenhai Yan
- Institute of Basic Medicine, Zhengzhou University, Zhengzhou, Henan, China
- * E-mail: (Y. Xing); (WY)
| |
Collapse
|
8
|
Nakano R, Edamura K, Sugiya H, Narita T, Okabayashi K, Moritomo T, Teshima K, Asano K, Nakayama T. Evaluation of mRNA expression levels and electrophysiological function of neuron-like cells derived from canine bone marrow stromal cells. Am J Vet Res 2014; 74:1311-20. [PMID: 24066915 DOI: 10.2460/ajvr.74.10.1311] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the in vitro differentiation of canine bone marrow stromal cells (BMSCs) into functional, mature neurons. SAMPLE Bone marrow from 6 adult dogs. PROCEDURES BMSCs were isolated from bone marrow and chemically induced to develop into neurons. The morphology of the BMSCs during neuronal induction was monitored, and immunocytochemical analyses for neuron markers were performed after the induction. Real-time PCR methods were used to evaluate the mRNA expression levels of markers for neural stem or progenitor cells, neurons, and ion channels, and western blotting was used to assess the expression of neuronal proteins before and after neuronal induction. The electrophysiological properties of the neuron-like cells induced from canine BMSCs were evaluated with fluorescent dye to monitor Ca(2)+ influx. RESULTS Canine BMSCs developed a neuron-like morphology after neuronal induction. Immunocytochemical analysis revealed that these neuron-like cells were positive for neuron markers. After induction, the cells' mRNA expression levels of almost all neuron and ion channel markers increased, and the protein expression levels of nestin and neurofilament-L increased significantly. However, the neuron-like cells derived from canine BMSCs did not have the Ca(2)+ influx characteristic of spiking neurons. CONCLUSIONS AND CLINICAL RELEVANCE Although canine BMSCs had neuron-like morphological and biochemical properties after induction, they did not develop the electrophysiological characteristics of neurons. Thus, these results have suggested that canine BMSCs could have the capacity to differentiate into a neuronal lineage, but the differentiation protocol used may have been insufficient to induce development into functional neurons.
Collapse
Affiliation(s)
- Rei Nakano
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lee WS, Kwon J, Yun DH, Lee YN, Woo EY, Park MJ, Lee JS, Han YH, Bae IH. Specificity protein 1 expression contributes to Bcl-w-induced aggressiveness in glioblastoma multiforme. Mol Cells 2014; 37:17-23. [PMID: 24552705 PMCID: PMC3907011 DOI: 10.14348/molcells.2014.2161] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 10/11/2013] [Accepted: 11/26/2013] [Indexed: 12/30/2022] Open
Abstract
We already had reported that Bcl-w promotes invasion or migration in gastric cancer cells and glioblastoma multiforme (GBM) by activating matrix metalloproteinase-2 (MMP-2) via specificity protein 1 (Sp1) or β-cateinin, respectively. High expression of Bcl-w also has been reported in GBM which is the most common malignant brain tumor and exhibits aggressive and invasive behavior. These reports propose that Bcl-w-induced signaling is strongly associated with aggressive characteristic of GBM. We demonstrated that Sp1 protein or mRNA expression is induced by Bcl-w using Western blotting or RT-PCR, respectively, and markedly elevated in high-grade glioma specimens compared with low-grade glioma tissues using tissue array. However, relationship between Bcl-w-related signaling and aggressive characteristic of GBM is poorly characterized. This study suggested that Bcl-w-induced Sp1 activation promoted expression of glioma stem-like cell markers, such as Musashi, Nanog, Oct4 and sox-2, as well as neurosphere formation and invasiveness, using western blotting, neurosphere formation assay, or invasion assay, culminating in their aggressive behavior. Therefore, Bcl-w-induced Sp1 activation is proposed as a putative marker for aggressiveness of GBM.
Collapse
Affiliation(s)
- Woo Sang Lee
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706,
Korea
| | | | - Dong Ho Yun
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706,
Korea
| | - Young Nam Lee
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706,
Korea
| | - Eun Young Woo
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706,
Korea
| | - Myung-Jin Park
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706,
Korea
| | - Jae-Seon Lee
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706,
Korea
| | - Young-Hoon Han
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706,
Korea
| | - In Hwa Bae
- Division of Radiation Cancer Research, Korea Institute of Radiological & Medical Sciences, Seoul 139-706,
Korea
| |
Collapse
|
10
|
Polymorphisms and phenotypic analysis of cytochrome P450 2D6 in the Tibetan population. Gene 2013; 527:360-5. [DOI: 10.1016/j.gene.2013.03.110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 03/20/2013] [Accepted: 03/25/2013] [Indexed: 11/22/2022]
|
11
|
Dual differentiation-exogenous mesenchymal stem cell therapy for traumatic spinal cord injury repair in a murine hemisection model. Stem Cells Int 2013; 2013:928982. [PMID: 24027587 PMCID: PMC3762188 DOI: 10.1155/2013/928982] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 07/10/2013] [Accepted: 07/24/2013] [Indexed: 01/07/2023] Open
Abstract
Mesenchymal stem cell (MSC) transplantation has shown tremendous promise as a therapy for repair of various tissues of the musculoskeletal, vascular, and central nervous systems. Based on this success, recent research in this field has focused on complex tissue damage, such as that which occurs from traumatic spinal cord injury (TSCI). As the critical event for successful exogenous, MSC therapy is their migration to the injury site, which allows for their anti-inflammatory and morphogenic effects on fracture healing, neuronal regeneration, and functional recover. Thus, there is a need for a cost-effective in vivo model that can faithfully recapitulate the salient features of the injury, therapy, and recovery. To address this, we review the recent advances in exogenous MSC therapy for TSCI and traumatic vertebral fracture repair and the existing challenges regarding their translational applications. We also describe a novel murine model designed to take advantage of multidisciplinary collaborations between musculoskeletal and neuroscience researchers, which is needed to establish an efficacious MSC therapy for TSCI.
Collapse
|