1
|
Tvilling L, West M, Glud AN, Zaer H, Sørensen JCH, Bjarkam CR, Orlowski D. Anatomy and histology of the Göttingen minipig adenohypophysis with special emphasis on the polypeptide hormones: GH, PRL, and ACTH. Brain Struct Funct 2021; 226:2375-2386. [PMID: 34235563 DOI: 10.1007/s00429-021-02337-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 07/01/2021] [Indexed: 12/19/2022]
Abstract
The pituitary is involved in the regulation of endocrine homeostasis. Therefore, animal models of pituitary disease based on a thorough knowledge of pituitary anatomy are of great importance. Accordingly, we aimed to perform a qualitative and quantitative description of polypeptide hormone secreting cellular components of the Göttingen minipig adenohypophysis using immunohistochemistry and stereology. Estimates of the total number of cells immune-stained for adrenocorticotrophic hormone (ACTH), prolactin (PRL), and growth hormone (GH) were obtained with the optical fractionator technique using Stereo Investigator software. Moreover, 3D reconstructions of cell distribution were made. We estimated that the normal minipig adenohypophysis contains, on average, 5.6 million GH, 3.5 million PRL, and 2.4 million ACTH producing cells. The ACTH producing cells were widely distributed, while the PRL and GH producing cells were located in clusters in the central and lateral regions of the adenohypophysis. The morphology of the hormone producing cells also differs. We visualized a clear difference in the numerical density of hormone producing cells throughout the adenohypophysis. The relative proportions of the cells analyzed in our experiment are comparable to those observed in humans, primates, and rodents; however, the distribution of cells differs among species. The distribution of GH cells in the minipig is similar to that in humans, while the PRL and ACTH cell distributions differ. The volume of the pituitary is slightly smaller than that of humans. These data provide a framework for future large animal experimentation on pituitary function in health and disease.
Collapse
Affiliation(s)
- Laura Tvilling
- CENSE, Department of Neurosurgery and the Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, 8200, Aarhus N, Denmark
| | - Mark West
- CENSE, Department of Neurosurgery and the Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, 8200, Aarhus N, Denmark
| | - Andreas N Glud
- CENSE, Department of Neurosurgery and the Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, 8200, Aarhus N, Denmark
| | - Hamed Zaer
- CENSE, Department of Neurosurgery and the Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, 8200, Aarhus N, Denmark
| | - Jens Christian H Sørensen
- CENSE, Department of Neurosurgery and the Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, 8200, Aarhus N, Denmark
| | - Carsten Reidies Bjarkam
- Department of Neurosurgery and the Department of Clinical Medicine, Aalborg University Hospital, 9100, Aalborg, Denmark
| | - Dariusz Orlowski
- CENSE, Department of Neurosurgery and the Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, 8200, Aarhus N, Denmark.
| |
Collapse
|
2
|
Yuan Y, Liu S, Zhao Y, Lian L, Lian Z. Interferon-γ acts as a regulator in the trade-off between phagocytosis and production performance in dwarf chickens. J Anim Sci Biotechnol 2018; 9:40. [PMID: 29796253 PMCID: PMC5964881 DOI: 10.1186/s40104-018-0256-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/19/2018] [Indexed: 11/10/2022] Open
Abstract
Background Interferon-γ (IFN-γ) is critical for innate and adaptive immunity against viral and bacterial infections. IFN-γ reportedly affects the phagocytic ability of monocytes and macrophages as well as regulates pituitary function in humans and mice. The present study analyzed the impact of IFN-γ on monocyte and macrophage phagocytosis, production performance, and pituitary function in vivo and in vitro (in dwarf chickens). IFN-γ was injected into dwarf chickens through a vein, and then, the laying rate, average egg weight, and levels of follicle-stimulating hormone (FSH) and IFN-γ were measured in treatment and control groups. For the in vitro experiment, the pituitary tissues were supplemented with IFN-γ, and the mRNA expression levels of follicle-stimulating hormone beta subunit (FSH-β), interferon gamma receptor 1 (IFNGR1), and interferon gamma receptor 2 (IFNGR2) in the pituitary were assessed. Results Monocyte and macrophage phagocytosis product (PP) was decreased by IFN-γ treatment in a dose-dependent manner in vitro. In the in vivo experiment, the level of IFN-γ in the treatment group was higher than that in the control group at 7 d (P < 0.05), 14 d (P < 0.01), and 21 d (P < 0.01) post-injection. Compared with the control group, monocyte and macrophage PP was lower in the treatment group after injection (P < 0.01). The laying rate was higher in the treatment group than in the control group at 2 and 3 wk post-injection (P < 0.05). There was a significant difference between the treatment and control groups in the levels of FSH at 1, 3, 7, and 14 d post-injection (P < 0.01). In the in vitro experiment, increased mRNA expression levels of FSH-β, IFNGR1, and IFNGR2 were observed in the treatment group after stimulation with 100 U/mL IFN-γ for 24 h compared to those in the control group (P < 0.05). Conclusions IFN-γ inhibited the phagocytosis of monocytes and macrophages; up-regulated the mRNA expression levels of the FSH-β, IFNGR1, and IFNGR2; enhanced the secretion of FSH; and improved the laying rate. IFN-γ might be an important regulator in the trade-off between the immune effect and production performance in dwarf chickens.
Collapse
Affiliation(s)
- Yitong Yuan
- 1Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Shunqi Liu
- 2Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Yue Zhao
- 2Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Ling Lian
- 1Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Zhengxing Lian
- 1Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
3
|
Wang J, Yang Z, Fu S, Liu B, Wu D, Wang W, Sun D, Wu R, Liu J. Bovine lactotroph cultures for the study of prolactin synthesis functions. In Vitro Cell Dev Biol Anim 2016; 52:296-304. [PMID: 26744030 DOI: 10.1007/s11626-015-9974-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/27/2015] [Indexed: 11/26/2022]
Abstract
The aim of this study was to establish a bovine anterior pituitary-derived lactotroph (BAPDL) line that expresses prolactin (PRL) in vitro to study the mechanisms of bovine PRL synthesis and secretion. Immunohistochemistry assay of PRL in the newborn calves' anterior pituitary glands showed that most lactotrophs were located within the superior border of the lateral wings of the anterior pituitary. Tissues of the superior border of the lateral wings of the anterior pituitary were dispersed and cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS). The limiting dilution method was used to establish BAPDL from single cell clone. BAPDL cells constantly expressed mRNAs for PRL and pituitary-specific transcription factor 1 (Pit-1) gene and grew steadily and rapidly in the DMEM supplemented with 10% FBS. PRL immunoreactivity was present in BAPDL at passage 20. The concentration of bovine PRL in BAPDL at passage 20 culture supernatant was decreased to below 35% compared with that in BAPDL at passage 1. The effects of human epidermal growth factor (hEGF) and dopamine (DA) on the expression and secretion of PRL in BAPDL at passage 4 were also investigated. The results are consistent with those of previous studies. Thus, it can be used successfully for studying the mechanisms of stimuli regulating PRL synthesis and release.
Collapse
Affiliation(s)
- Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Zhanqing Yang
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Bingrun Liu
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Dianjun Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Wei Wang
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Dongbo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Juxiong Liu
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
4
|
β-Hydroxybutyric sodium salt inhibition of growth hormone and prolactin secretion via the cAMP/PKA/CREB and AMPK signaling pathways in dairy cow anterior pituitary cells. Int J Mol Sci 2015; 16:4265-80. [PMID: 25690038 PMCID: PMC4346956 DOI: 10.3390/ijms16024265] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/16/2015] [Accepted: 02/09/2015] [Indexed: 12/19/2022] Open
Abstract
β-hydroxybutyric acid (BHBA) regulates the synthesis and secretion of growth hormone (GH) and prolactin (PRL), but its mechanism is unknown. In this study, we detected the effects of BHBA on the activities of G protein signaling pathways, AMPK-α activity, GH, and PRL gene transcription, and GH and PRL secretion in dairy cow anterior pituitary cells (DCAPCs). The results showed that BHBA decreased intracellular cAMP levels and a subsequent reduction in protein kinase A (PKA) activity. Inhibition of PKA activity reduced cAMP response element-binding protein (CREB) phosphorylation, thereby inhibiting GH and PRL transcription and secretion. The effects of BHBA were attenuated by a specific Gαi inhibitor, pertussis toxin (PTX). In addition, intracellular BHBA uptake mediated by monocarboxylate transporter 1 (MCT1) could trigger AMPK signaling and result in the decrease in GH and PRL mRNA translation in DCAPCs cultured under low-glucose and non-glucose condition when compared with the high-glucose group. This study identifies a biochemical mechanism for the regulatory action of BHBA on GH and PRL gene transcription, translation, and secretion in DCAPCs, which may be one of the factors that regulate pituitary function during the transition period in dairy cows.
Collapse
|
5
|
Short-chain fatty acids inhibit growth hormone and prolactin gene transcription via cAMP/PKA/CREB signaling pathway in dairy cow anterior pituitary cells. Int J Mol Sci 2013; 14:21474-88. [PMID: 24177567 PMCID: PMC3856016 DOI: 10.3390/ijms141121474] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 12/28/2022] Open
Abstract
Short-chain fatty acids (SCFAs) play a key role in altering carbohydrate and lipid metabolism, influence endocrine pancreas activity, and as a precursor of ruminant milk fat. However, the effect and detailed mechanisms by which SCFAs mediate bovine growth hormone (GH) and prolactin (PRL) gene transcription remain unclear. In this study, we detected the effects of SCFAs (acetate, propionate, and butyrate) on the activity of the cAMP/PKA/CREB signaling pathway, GH, PRL, and Pit-1 gene transcription in dairy cow anterior pituitary cells (DCAPCs). The results showed that SCFAs decreased intracellular cAMP levels and a subsequent reduction in PKA activity. Inhibition of PKA activity decreased CREB phosphorylation, thereby inhibiting GH and PRL gene transcription. Furthermore, PTX blocked SCFAs- inhibited cAMP/PKA/CREB signaling pathway. These data showed that the inhibition of GH and PRL gene transcription induced by SCFAs is mediated by Gi activation and that propionate is more potent than acetate and butyrate in inhibiting GH and PRL gene transcription. In conclusion, this study identifies a biochemical mechanism for the regulation of SCFAs on bovine GH and PRL gene transcription in DCAPCs, which may serve as one of the factors that regulate pituitary function in accordance with dietary intake.
Collapse
|