1
|
Beilankouhi EAV, Maghsoodi MS, Sani MZ, Khosroshahi NS, Zarezadeh R, Nargesi MM, Safaralizadeh R, Valilo M. miRNAs that regulate apoptosis in breast cancer and cervical cancer. Cell Biochem Biophys 2024; 82:1993-2006. [PMID: 38969951 DOI: 10.1007/s12013-024-01405-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
In today's world, one of the main problems is cancer, which still has a long way to go to cure it, and it brings a lot of financial and emotional costs to the people of society and governments. Breast cancer (BC) and cervical cancer (CC), two of the most common cancers, are caused by several genetic and environmental factors in women. These two cancers' involvement rate is higher than other cancers in women. microRNAs (miRNAs) are non-coding RNA molecules with a length of 18 to 24 nucleotides, which play an important role in post-translational changes. miRNAs themselves are divided into two categories, oncomiRs and tumor suppressors. OncomiRs have a part in tumor expansion and tumor suppressors prevent tumor development and progress. miRNAs can control cellular processes by regulating various pathways including autophagy, apoptosis, and signaling. Apoptosis is a type of programmed cell death that includes intrinsic and extrinsic pathways and is different from other cell death pathways such as necrosis and ferroptosis. Apoptosis controls the growth, differentiation, and death of cells by regulating the death of damaged and old cells, and since miRNAs are one of the factors that regulate apoptosis, and divided into two categories: pro-apoptotic and anti-apoptotic. We decided in this study to investigate the relationship between miRNAs and apoptosis in the most common women's cancers, BC and CC.
Collapse
Affiliation(s)
| | - Maral Salek Maghsoodi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Maryam Zamani Sani
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Sadi Khosroshahi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Reza Zarezadeh
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mirsaed Miri Nargesi
- Molecular Virology and Covid Unit, LabPlus, Department of Pathology and Laboratory Medicine, Auckland City Hospital, Te Whatu Ora Health New Zealand, Auckland, New Zealand
| | - Reza Safaralizadeh
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Mohammad Valilo
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Wang W, Ge L, Zhang L, Liu L, Zhang X, Ma X. MicroRNA-16 represses granulosa cell proliferation in polycystic ovarian syndrome through inhibition of the PI3K/Akt pathway by downregulation of Apelin13. HUM FERTIL 2023; 26:611-621. [PMID: 34854361 DOI: 10.1080/14647273.2021.1998661] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 08/09/2021] [Indexed: 10/19/2022]
Abstract
This study aimed to uncover the specific role of micro RNA-16 (miR-16) in granulosa cell function in polycystic ovarian syndrome (PCOS). After sample collection, the expression levels of miR-16 and Apelin13 in the granulosa cells of PCOS patients and controls were determined. Subsequently, miR-16 mimic, miR-16 inhibitor, pcDNA3.1-Apelin13, sh-Apelin13, and their corresponding negative controls were transfected into granulosa cell lines (KGN and SVOG) to monitor alterations in miR-16 expression, Apelin13, and PI3K/Akt signalling pathway-related proteins (p-Akt and Akt). MTT assay was used to detect cell viability, clone formation assay to detect cell proliferation, and flow cytometry to detect cell apoptosis rate. In addition, a luciferase assay was performed to test the targeting relationship between miR-16 and Apelin13. After miR-16 overexpression or Apelin13 knockdown was achieved in granulosa cells, granulosa cell proliferation was suppressed and cell apoptosis was enhanced. Additionally, Apelin13 is a potential target of miR-16. Functionally, overexpression of Apelin13 could partly reverse the effect of miR-16 overexpression on granulosa cell proliferation and apoptosis. Moreover, inhibits granulosa cell proliferation and enhances blocking the PI3K/Akt pathway by suppressing Apelin13. Our study revealed miR-16 regulates Apelin13 to mediate the PI3K/Akt signalling pathway and, thereby mediates PCOS progression.
Collapse
Affiliation(s)
- Wei Wang
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Key Laboratory for Reproductive Medicine and Embryo, Lanzhou, China
| | - Liang Ge
- Department of Anesthesiology, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, China
| | - Lili Zhang
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Key Laboratory for Reproductive Medicine and Embryo, Lanzhou, China
| | - Lin Liu
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Key Laboratory for Reproductive Medicine and Embryo, Lanzhou, China
| | - Xuehong Zhang
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Key Laboratory for Reproductive Medicine and Embryo, Lanzhou, China
| | - Xiaoling Ma
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Key Laboratory for Reproductive Medicine and Embryo, Lanzhou, China
| |
Collapse
|
3
|
Zhao J, Chang L, Tu J, Sun B, Wei X. Evaluation of Annexins Family as Potential Biomarker for Predicting Progression and Prognosis in Clear Renal Cell Carcinoma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8748434. [PMID: 39290334 PMCID: PMC11407897 DOI: 10.1155/2022/8748434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 09/19/2024]
Abstract
Background Annexins family (ANXAs), as a Ca2+-dependent phospholipid-binding protein superfamily, participates in a wide variety of biological activities and has been reported to be dysregulated in numerous types of human cancers. Evidence from cell lines and human tissues indicates that ANAXs are involved in kidney clear renal cell carcinoma (KIRC) tumorigenesis. However, their prognostic value and expression pattern associated with KIRC remain to be elucidated. Methods We visited public databases, including ONCOMINE, Gene Expression Profiling Interactive Analysis (GEPIA), Kaplan-Meier plotter, cBioPortal, and GeneMANIA, to conduct comprehensive bioinformatics analysis and tried to detect basic relationships between each Annexins family member and KIRC. Results We found that the expression level of ANXA1/2/4/5/6/7/8/13 in clear renal cell carcinoma tissue was higher than that in the kidney tissue, while the expression level of ANXA3/9/11 in the former was lower than that in the latter. The expression level of ANXA7/8/13 is related to the stage of the tumour. Survival analysis using the Kaplan-Meier plotter database showed that a high transcription level of ANXA2/5/8/10 is related to a low overall survival rate (OS) in predicting KIRC patients. In contrast, high ANXA3/4/7/9/11/13 levels are associated with a high OS in these patients. Conclusions Our study implies that ANXA4/8/13 are potential targets of precision therapy for patients with KIRC and that ANXA2/5/8/10 are new biomarkers for the prognosis of KIRC.
Collapse
Affiliation(s)
- Jiyu Zhao
- Department of Urology, ChuiYangLiu Hospital Affiliated to Tsinghua University, 100021 Beijing, China
| | - Luchen Chang
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, 300060 Tianjin, China
| | - Jianping Tu
- Department of Urology, The Third Hospital of Xiamen, 361199 Xiamen, Fujian, China
| | - Bei Sun
- Department of Outpatient Office, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, 300060 Tianjin, China
| | - Xi Wei
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, 300060 Tianjin, China
| |
Collapse
|
4
|
Hu D, Li Z, Zheng B, Lin X, Pan Y, Gong P, Zhuo W, Hu Y, Chen C, Chen L, Zhou J, Wang L. Cancer-associated fibroblasts in breast cancer: Challenges and opportunities. Cancer Commun (Lond) 2022; 42:401-434. [PMID: 35481621 PMCID: PMC9118050 DOI: 10.1002/cac2.12291] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/06/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment is proposed to contribute substantially to the progression of cancers, including breast cancer. Cancer-associated fibroblasts (CAFs) are the most abundant components of the tumor microenvironment. Studies have revealed that CAFs in breast cancer originate from several types of cells and promote breast cancer malignancy by secreting factors, generating exosomes, releasing nutrients, reshaping the extracellular matrix, and suppressing the function of immune cells. CAFs are also becoming therapeutic targets for breast cancer due to their specific distribution in tumors and their unique biomarkers. Agents interrupting the effect of CAFs on surrounding cells have been developed and applied in clinical trials. Here, we reviewed studies examining the heterogeneity of CAFs in breast cancer and expression patterns of CAF markers in different subtypes of breast cancer. We hope that summarizing CAF-related studies from a historical perspective will help to accelerate the development of CAF-targeted therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Dengdi Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Zhaoqing Li
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Bin Zheng
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Xixi Lin
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Yuehong Pan
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Peirong Gong
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Wenying Zhuo
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China.,Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Yujie Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Cong Chen
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Lini Chen
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Jichun Zhou
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Linbo Wang
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| |
Collapse
|
5
|
Visser H, Thomas AD. MicroRNAs and the DNA damage response: How is cell fate determined? DNA Repair (Amst) 2021; 108:103245. [PMID: 34773895 DOI: 10.1016/j.dnarep.2021.103245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022]
Abstract
It is becoming clear that the DNA damage response orchestrates an appropriate response to a given level of DNA damage, whether that is cell cycle arrest and repair, senescence or apoptosis. It is plausible that the alternative regulation of the DNA damage response (DDR) plays a role in deciding cell fate following damage. MicroRNAs (miRNAs) are associated with the transcriptional regulation of many cellular processes. They have diverse functions, affecting, presumably, all aspects of cell biology. Many have been shown to be DNA damage inducible and it is conceivable that miRNA species play a role in deciding cell fate following DNA damage by regulating the expression and activation of key DDR proteins. From a clinical perspective, miRNAs are attractive targets to improve cancer patient outcomes to DNA-damaging chemotherapy. However, cancer tissue is known to be, or to become, well adapted to DNA damage as a means of inducing chemoresistance. This frequently results from an altered DDR, possibly owing to miRNA dysregulation. Though many studies provide an overview of miRNAs that are dysregulated within cancerous tissues, a tangible, functional association is often lacking. While miRNAs are well-documented in 'ectopic biology', the physiological significance of endogenous miRNAs in the context of the DDR requires clarification. This review discusses miRNAs of biological relevance and their role in DNA damage response by potentially 'fine-tuning' the DDR towards a particular cell fate in response to DNA damage. MiRNAs are thus potential therapeutic targets/strategies to limit chemoresistance, or improve chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Hartwig Visser
- Centre for Research in Biosciences, University of the West of England, Frenchay Campus, Bristol BS16 1QY, United Kingdom
| | - Adam D Thomas
- Centre for Research in Biosciences, University of the West of England, Frenchay Campus, Bristol BS16 1QY, United Kingdom.
| |
Collapse
|
6
|
Footprints of microRNAs in Cancer Biology. Biomedicines 2021; 9:biomedicines9101494. [PMID: 34680611 PMCID: PMC8533183 DOI: 10.3390/biomedicines9101494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs involved in post-transcriptional gene regulation. Over the past years, various studies have demonstrated the role of aberrant miRNA expression in the onset of cancer. The mechanisms by which miRNA exerts its cancer-promoting or inhibitory effects are apparent through the various cancer hallmarks, which include selective proliferative advantage, altered stress response, vascularization, invasion and metastasis, metabolic rewiring, the tumor microenvironment and immune modulation; therefore, this review aims to highlight the association between miRNAs and the various cancer hallmarks by dissecting the mechanisms of miRNA regulation in each hallmark separately. It is hoped that the information presented herein will provide further insights regarding the role of cancer and serve as a guideline to evaluate the potential of microRNAs to be utilized as biomarkers and therapeutic targets on a larger scale in cancer research.
Collapse
|
7
|
Salimimoghadam S, Taefehshokr S, Loveless R, Teng Y, Bertoli G, Taefehshokr N, Musaviaroo F, Hajiasgharzadeh K, Baradaran B. The role of tumor suppressor short non-coding RNAs on breast cancer. Crit Rev Oncol Hematol 2020; 158:103210. [PMID: 33385514 DOI: 10.1016/j.critrevonc.2020.103210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 12/11/2022] Open
Abstract
Characterized by remarkable levels of aggression and malignancy, BC remains one of the leading causes of death in females world wide. Accordingly, significant efforts have been made to develop early diagnostic tools, increase treatment efficacy, and improve patient prognosis. Hopefully, many of the molecular mechanisms underlying BC have been detected and show promising targeting potential. In particular, short and long non-coding RNAs (ncRNAs) are a class of endogenous BC controllers and include a number of different species including microRNAs, Piwi-interacting RNAs, small nucleolar RNA, short interfering RNAs, and tRNA-derivatives. In this review, we discuss the tumor suppressing roles of ncRNAs in the context of BC, and the mechanisms by which ncRNAs target tumor hallmarks, including apoptosis, proliferation, invasion, metastasis, epithelial-mesenchymal transition, angiogenesis, and cell cycle progression, in addition to their diagnostic and prognostic significance in cancer treatment.
Collapse
Affiliation(s)
| | - Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reid Loveless
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA; Georgia Cancer Center, Augusta University, Augusta, GA, USA.
| | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA; Georgia Cancer Center, Augusta University, Augusta, GA, USA.
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Milan, Italy.
| | - Nima Taefehshokr
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada.
| | | | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Irani S, Paknejad M, Soleimani M, Soleimani A. Evaluation of miR-34a Effect on CCND1 mRNA Level and Sensitization of Breast Cancer Cell Lines to Paclitaxel. IRANIAN BIOMEDICAL JOURNAL 2020; 24:361-9. [PMID: 32660221 PMCID: PMC7601542 DOI: 10.29252/ibj.24.6.356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/18/2020] [Indexed: 01/08/2023]
Abstract
Background A growing body of literature has revealed the effective role of miR-34a, as a tumor suppressor and regulator of expression of multiple targets in tumorigenesis and cancer progression. This study aimed at evaluating the potential effects of miR-34a alone or in combination with paclitaxel on breast cancer cells. Methods After miR-34a transduction by lentiviral vectors in two MCF-7 and MDA-MB-231 cell lines of breast cancer, effects of the elevated expression of miR-34a in the cell viability and the cell proliferation were determined using MTT assay in treated and untreated cells with paclitaxel. The mRNA level of the CCND1 (Cyclin D1)gene was then measured in the two cell lines using the qRT-PCR assay. Finally, the influence of miR-34a and paclitaxel on apoptosis and cell cycle progression were examined by flow cytometry. Results The CCND1 mRNA expression levels were significantly down-regulated by overexpressed lentiviral miR-34a in MCF-7 and MDA-MB-231 cells. Combined treatment by miR-34a and paclitaxel reduced the cell viability and proliferation compared to single-drug treatment. In addition, the cell cycle arrest appeared at two phases by the combination of miR-34a and paclitaxel in MDA-MB-231 cells. Conclusion Our results suggest that miR34a, in combination with paclitaxel, has a potential for decreasing the cell viability and proliferation. Moreover, it can reduce the expression of CCND1 mRNA independent of the paclitaxel effect.
Collapse
Affiliation(s)
- Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahsa Paknejad
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Azam Soleimani
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| |
Collapse
|
9
|
Tian Y, Cui L, Lin C, Wang Y, Liu Z, Miao X. LncRNA CDKN2B-AS1 relieved inflammation of ulcerative colitis via sponging miR-16 and miR-195. Int Immunopharmacol 2020; 88:106970. [PMID: 33182065 DOI: 10.1016/j.intimp.2020.106970] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/13/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND This study was aimed to explore the differential expression of lncRNA CDKN2B-AS1-miR-195-5p/miR-16-5p axis in ulcerative colitis (UC) and its role in regulating UC pathogenesis. METHODS One hundred and eighty-seven UC patients and one hundred and fifty-two healthy volunteers were recruited, and their blood samples were collected. Inflammatory cytokines in serum were determined with ELISA, and lncRNA CDKN2B-AS1, miR-195-5p and miR-16-5p levels were detected with RT-PCR. Then pcDNA3.1-CDKN2B-AS1, si-CDKN2B-AS1, miR-195-5p mimic, miR-195-5p inhibitor, miR-16-5p mimic and miR-16-5p inhibitor were transfected into HT29 cells, and proliferation and apoptosis of the cells were assessed. Dual-luciferase reporter gene assay was implemented to identify the sponging relationship between lncRNA CDKN2B-AS1 and miR-195-5p/miR-16-5p. RESULTS CDKN2B-AS1 level was negatively correlated with levels of inflammatory cytokines, including TNF-α, IL-6 and sIL-2R, yet miR-16-5p and miR-195-5p levels were negatively correlated with the CDKN2B-AS1 level. The CDKN2B-AS1 combined with miR-16-5p and miR-195-5p also achieved an optimum efficacy in differentiating between light and medium UC, light and severe UC, as well as medium and heavy UC. Furthermore, pcDNA3.1-CDKN2B-AS1 depressed expressions of IFN-γ, IL-8, IL-1β and TNF-α in HT29 cells (P < 0.05), and strengthened proliferation of the cells (P < 0.05). CDKN2B-AS1 also sponged and regulated miR-16-5p and miR-195-5p in HT29 cells, and miR-16-5p and miR-195-5p could reverse the effect of CDKN2B-AS1 on inflammatory cytokine production, barrier function and apoptosis of HT29 cells (P < 0.05). CONCLUSION LncRNA CDKN2B-AS1 regulated inflammation of UC by sponging miR-195-5p and miR-16-5p, providing an alternative for diagnosis and treatment of UC.
Collapse
Affiliation(s)
- Yuanyuan Tian
- Department of Gastroenterology, Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou City, Hainan Province 570311, China
| | - Lujia Cui
- Department of Gastroenterology, Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou City, Hainan Province 570311, China
| | - Cheng Lin
- Department of Gastroenterology, Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou City, Hainan Province 570311, China
| | - Yuxuan Wang
- Department of Gastroenterology, Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou City, Hainan Province 570311, China
| | - Zhanju Liu
- Department of Pathology, Haikou Hospital of Traditional Chinese Medicine, Haikou City, Hainan Province 570216, China
| | - Xinpu Miao
- Department of Gastroenterology, Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou City, Hainan Province 570311, China.
| |
Collapse
|
10
|
Saikia M, Paul S, Chakraborty S. Role of microRNA in forming breast carcinoma. Life Sci 2020; 259:118256. [DOI: 10.1016/j.lfs.2020.118256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/19/2022]
|
11
|
Liu JJ, Tang MM, Zhu ML, Xie CX, Kang PF, Ling X, Zhang H, Wang XJ, Tang B. Docosahexaenoic acid inhibits Ca 2+ influx and downregulates CaSR by upregulating microRNA-16 in pulmonary artery smooth muscle cells. J Biochem Mol Toxicol 2020; 34:e22573. [PMID: 32659049 DOI: 10.1002/jbt.22573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/25/2020] [Accepted: 06/23/2020] [Indexed: 11/10/2022]
Abstract
Docosahexaenoic acid (DHA) is reported to have the potential to ameliorate pulmonary arterial hypertension (PAH), while the specific mechanism is still obscure. This study aims to investigate the function of DHA in pulmonary artery smooth muscle cells (PASMCs) and explore the underlying mechanism. In our study, DHA was used to incubate PASMCs. Cytosolic-free Ca2+ concentration ([Ca2+ ]cyt) was measured using Fluo-3 AM method. Real-time polymerase chain reaction was used to detect microRNA-16 (miR-16) and calcium-sensing receptor (CaSR) messenger RNA expression levels. CCK-8 assay, BrdU assay, and Transwell assay were employed to detect the effects of DHA on proliferation and migration of PASMCs. CaSR was confirmed as a direct target of miR-16 using dual-luciferase assay, polymerase chain reaction, and Western blot analysis. It was found that DHA significantly inhibited PASMC proliferation and migration and decreased [Ca2+ ]cyt. After transfection of miR-16 mimics, proliferation and migration ability of PASMCs were significantly inhibited, whereas opposite effects were observed after miR-16 inhibition. [Ca2+ ]cyt was also inhibited by miR-16 transfection. DHA then promoted the expression of miR-16, and the effects of DHA on PASMCs were annulled when miR-16 was inhibited. CaSR was identified as a direct target of miR-16. CaSR was inhibited directly by miR-16 and indirectly by DHA. In conclusion, DHA inhibits the proliferation and migration of PASMCs, and probably ameliorates PAH via regulating miR-16/CaSR axis.
Collapse
Affiliation(s)
- Jin-Jun Liu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, China
| | - Ming-Ming Tang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, China
| | - Ming-Li Zhu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, China
| | - Cai-Xia Xie
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, China
| | - Pin-Fang Kang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, China
| | - Xuan Ling
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, China
| | - Heng Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, China
| | - Xiao-Jing Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, China
| | - Bi Tang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, China
| |
Collapse
|
12
|
Tamaddon M, Shokri G, Hosseini Rad SMA, Rad I, Emami Razavi À, Kouhkan F. Involved microRNAs in alternative polyadenylation intervene in breast cancer via regulation of cleavage factor "CFIm25". Sci Rep 2020; 10:11608. [PMID: 32665581 PMCID: PMC7360588 DOI: 10.1038/s41598-020-68406-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 06/24/2020] [Indexed: 12/22/2022] Open
Abstract
Cleavage factor “CFIm25”, as a key repressor at proximal poly (A) site, negatively correlates to cell proliferation and tumorigenicity in various cancers. Hence, understanding CFIm25 mechanism of action in breast cancer would be a great benefit. To this aim four steps were designed. First, potential miRNAs that target 3′-UTR of CFIm25 mRNA, retrieved from Targetscan web server. Second, screened miRNAs were profiled in 100 breast cancer and 100 normal adjacent samples. Third, miRNAs that their expression was inversely correlated to the CFIm25, overexpressed in MDA-MB-231 cell line, and their effect on proliferation and migration monitored via MTT and wound healing assays, respectively. Fourth, interaction of miRNAs of interest with 3′-UTR of CFIm25 confirmed via luciferase assay and western blot. Our results indicate that CFIm25 considerably down-regulates in human breast cancer tissue. qRT-PCR assay, luciferase test, and western blotting confirm that CFIm25 itself could be directly regulated by oncomiRs such as miR-23, -24, -27, -135, -182 and -374. Besides, according to MTT and wound healing assays of cell lines, CFIm25 knockdown intensifies cell growth, proliferation and migration. Our results also confirm indirect impact of CFIm25 on regulation of mRNA’s 3′–UTR length, which then control corresponding miRNAs’ action. miRNAs directly control CFIm25 expression level, which then tunes expression of the oncogenes and tumor proliferation. Therefore, regulation of CFIm25 expression level via miRNAs is expected to improve treatment responses in breast cancer.
Collapse
Affiliation(s)
- Mona Tamaddon
- Stem Cell Technology Research Center, No. 9, East 2nd, St., Farhang Blvd., Saadat Abad St., Tehran, 1997775555, Iran
| | - Gelareh Shokri
- Stem Cell Technology Research Center, No. 9, East 2nd, St., Farhang Blvd., Saadat Abad St., Tehran, 1997775555, Iran
| | | | - Iman Rad
- Stem Cell Technology Research Center, No. 9, East 2nd, St., Farhang Blvd., Saadat Abad St., Tehran, 1997775555, Iran
| | - Àmirnader Emami Razavi
- Ìran National Tumor Bank, Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Kouhkan
- Stem Cell Technology Research Center, No. 9, East 2nd, St., Farhang Blvd., Saadat Abad St., Tehran, 1997775555, Iran.
| |
Collapse
|
13
|
Yang Y, Zhao F. MicroRNA-16 inhibits the growth and metastasis of human glioma cells via modulation of PI3K/AKT/mTOR signalling pathway. Arch Med Sci 2020; 20:839-846. [PMID: 39050153 PMCID: PMC11264078 DOI: 10.5114/aoms.2020.95653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 01/18/2020] [Indexed: 07/27/2024] Open
Abstract
Introduction Gliomas are lethal cancers accounting for significant human mortality across the globe. MicroRNAs (miRs) have shown potential to act as therapeutic targets for the treatment of cancer. Herein the role and therapeutic implications of miR-16 in glioma were investigated. Material and methods Expression analysis was carried out by qRT-PCR. Cell-Titer-Glo assay (Promega) was used for the determination of cell proliferation. DAPI, AO/EB, and annexin V/PI assays were used to detect apoptosis. Wound healing and Transwell assays were used for cell migration and invasion, respectively. Western blot analysis was used for the determination of protein expression. Results The study revealed that miR-16 was significantly suppressed in the human glioma cells. Ectopic expression of miR-16 in U118 MG cells inhibited the proliferation via induction of apoptosis. The apoptosis induction was also accompanied by an upsurge of Bax and depletion of Bcl-2. The overexpression of miR-16 also inhibited the migration and invasion of the glioma U118 MG cells, as evident from the wound healing and transwell assays, which were accompanied by the inhibition of metalloproteinase-2 and -9 (MMP-2 and MMP-9). The effects of miR-16 overexpression were also examined on the PI3K/AKT/mTOR signalling pathway. The results showed that miR-16 overexpression inhibited the phosphorylation of the p70S6K, AKT, and mTOR at Ser473, Ser2448, and Thr389, respectively, with no apparent effects on the total PI3K and AKT. Conclusions miR-16 acts as tumour suppressor in glioma and may severe as therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Yan Yang
- Department of Clinical Pharmacy, No. 1 People’s Hospital, Jining, Shandong, China
| | - Feng Zhao
- Department of Neurosurgery, Jining No. 1 People’s Hospital, Jining, Shandong, China
| |
Collapse
|
14
|
Shariatnasery M, Irani S, Soleimani M, Goodarzi N, Dinarvand R. Synergistic effect of microRNA and albumin-bound nanoparticles for inhibition of glioblastoma cancer cell proliferation. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000318306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
| | | | | | | | - Rassoul Dinarvand
- Tehran University of Medical Sciences, Iran; Tehran University of Medical Sciences, Iran
| |
Collapse
|
15
|
Gao X, Wang M, Zhang Y, Xu Z, Ding J, Tang J. MicroRNA-16 sensitizes drug-resistant breast cancer cells to Adriamycin by targeting Wip1 and Bcl-2. Oncol Lett 2019; 18:2897-2906. [PMID: 31452770 PMCID: PMC6676408 DOI: 10.3892/ol.2019.10637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/12/2019] [Indexed: 12/14/2022] Open
Abstract
Clinical evidence indicates that drug resistance is a major obstacle in the treatment of breast cancer (BC). Drug resistance results in the disease being uncontrollable, and leads to high mortality rates. The aim of the present study was to investigate the chemosensitizing effect of microRNA (miR)-16 on Adriamycin (ADM)-resistant BC cells and the associated mechanisms. BC tumors from 40 patients were collected and reverse transcription-quantitative PCR was used to examine the expression of miR-16. ADM-sensitive (MCF-7/S) and -resistant (MCF-7/A) BC cell lines were used to determine the expression of miR-16 prior to and following transfection with miR-16 mimics or inhibitor. The effects of increased and decreased miR-16 expression on the chemosensitivity of BC cells to ADM was analyzed using MTT, colony survival and flow cytometry assays. miR-16 was found to regulate wild-type p53-induced phosphatase 1 (Wip1) and Bcl-2 expression, as confirmed by western blotting, immunofluorescence staining and luciferase reporter assays. miR-16 expression in drug-resistant tumor tissues and cells was decreased, compared with that the drug-sensitive equivalents. Overexpression of miR-16 in MCF-7/A was associated with a sharp downregulation of Wip1 and Bcl-2 expression, leading to increased ADM-induced cell apoptosis and sensitization of MCF-7/A cells to ADM treatment. Taken together, the results demonstrate that miR-16 may serve as an effective chemosensitizing target to enhance the effects of chemotherapy in drug-resistant BC cells with high Wip1 and Bcl-2 expression. This provides a novel approach to improving the chemotherapeutic efficacy in drug-resistant BC via regulation of miRs.
Collapse
Affiliation(s)
- Xitao Gao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.,Lianyungang Clinical College of Nanjing Medical University, The First People Hospital of Lianyungang City, Lianyungang, Jiangsu 222001, P.R. China
| | - Mei Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yanyan Zhang
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Zhi Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jiaji Ding
- Department of Burns and Plastic Surgery, Xuzhou No. 1 People's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
16
|
Tomar D, Yadav AS, Kumar D, Bhadauriya G, Kundu GC. Non-coding RNAs as potential therapeutic targets in breast cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194378. [PMID: 31048026 DOI: 10.1016/j.bbagrm.2019.04.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022]
Abstract
Paradigm shifting studies especially involving non-coding RNAs (ncRNAs) during last few decades have significantly changed the scientific perspectives regarding the complexity of cellular signalling pathways. Several studies have shown that the non-coding RNAs, initially ignored as transcriptional noise or products of erroneous transcription; actually regulate plethora of biological phenomena ranging from developmental processes to various diseases including cancer. Current strategies that are employed for the management of various cancers including that of breast fall short when their undesired side effects like Cancer Stem Cells (CSC) enrichment, low recurrence-free survival and development of drug resistance are taken into consideration. This review aims at exploring the potential role of ncRNAs as therapeutics in breast cancer, by providing a comprehensive understanding of their mechanism of action and function and their crucial contribution in regulating various aspects of breast cancer progression such as cell proliferation, angiogenesis, EMT, CSCs, drug resistance and metastasis. In addition, we also provide information about various strategies that can be employed or are under development to explore them as potential moieties that may be used for therapeutic intervention in breast cancer.
Collapse
Affiliation(s)
- Deepti Tomar
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India.
| | - Amit S Yadav
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India.
| | - Dhiraj Kumar
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| | - Garima Bhadauriya
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India.
| |
Collapse
|
17
|
Bao J, Hou C, Zhao Y, Geng X, Samalo M, Yang H, Bian M, Huo D. An enzyme-free sensitive electrochemical microRNA-16 biosensor by applying a multiple signal amplification strategy based on Au/PPy-rGO nanocomposite as a substrate. Talanta 2018; 196:329-336. [PMID: 30683372 DOI: 10.1016/j.talanta.2018.12.082] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/20/2018] [Accepted: 12/25/2018] [Indexed: 01/07/2023]
Abstract
In present study, a sensitive and effective electrochemical microRNA (miRNA) sensing platform is successfully developed by integrating gold nanoparticles/polypyrrole-reduced graphene oxide (Au/PPy-rGO), catalyzed hairpin assembly (CHA) and hybridization chain reaction (HCR) multiple signal amplification strategy. Firstly, Au/PPy-rGO was employed onto a bare GCE by electrodeposition that can greatly enhanced conductivity and effectively immobilize probes. Then, the thiolated capture probes (SH-CP) were self-assembled on the Au/PPy-rGO modified GCE via Au-S bond. The target miRNA triggered the dynamic assembly of the two hairpin substrates (H1 and H2), leading to the cyclicality of the target miRNA and the formation of H1-H2 complexes without the assistance of enzyme. Subsequently, the newly emerging DNA fragment of H2 triggered the HCR when a mixture solution (hairpins H3 and H4) and produced dsDNA polymers. Finally, a substantial amount of methylene blue (MB) as signal indicator was intercalated into the minor groove of the long dsDNA polymers to achieve detected electrochemical signal. The fabricated sensor is able to detect miRNA-16 (model target) with concentration range from 10 fM to 5 nM with a low detection limit (LOD) of 1.57 fM (S/N = 3). Current research suggests that the developed multiple signal amplification platform has a great potential for the applications in the field of biomedical research and clinical analysis.
Collapse
Affiliation(s)
- Jing Bao
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Changjun Hou
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
| | - Yanan Zhao
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Xintong Geng
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Mickey Samalo
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Huisi Yang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Minghong Bian
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Danqun Huo
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, PR China.
| |
Collapse
|
18
|
Tavakolpour V, Shokri G, Naser Moghadasi A, Mozafari Nahavandi P, Hashemi M, Kouhkan F. Increased expression of mir-301a in PBMCs of patients with relapsing-remitting multiple sclerosis is associated with reduced NKRF and PIAS3 expression levels and disease activity. J Neuroimmunol 2018; 325:79-86. [PMID: 30316680 DOI: 10.1016/j.jneuroim.2018.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/28/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022]
Abstract
Most of the multiple sclerosis (MS) patients are initially diagnosed with relapsing remitting multiple sclerosis (RRMS). Th17 cells and macrophages have been shown to play critical roles in pathogenesis of MS and initiation of CNS tissue damage. MiR-301a have recently been exposed as an activator of STAT3 in Th17 cells as well as an activator of NF-κB in macrophages by targeting PIAS3 and NKRF correspondingly. However, the possible role of miR-301a in RRMS has not yet been elucidated. Herewith, for the first time, we have studied the expression of miR-301a, NKRF and PIAS3 by quantitative real-time PCR and western blotting method in peripheral blood mononuclear cells (PBMCs) of 71 RRMS patients, including two groups of patients in relapse phase (n = 44) and a group of remitting phase patients (n = 28) in comparison to healthy volunteers (n = 28). In this work, we demonstrate a significant upregulation of miR-301a in relapse phase of MS patients compared to healthy controls and remitting phase patients (P < .05). Our findings also showed a striking decrease of NKRF and PIAS3 expression in relapse phase patients, in contrast to miR-301a and, NF-κB and STAT3 downstream genes (SKA2 and RORc) (P < .05). Subsequently, using luciferase reporter system we confirmed that miR-301a directly targets the mRNA encoding PIAS3 and NKRF proteins. We also showed that miR-301a increasing expression is correlated with down-regulation of PIAS3 and NKRF expression in RRMS patients. Our findings suggest that miR-301a, PIAS3 and NKRF play crucial roles in RRMS and could be considered as promising therapeutic targets.
Collapse
Affiliation(s)
- Vahid Tavakolpour
- Stem Cell Technology Research Center, Tehran, Iran; Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | | | | | | | - Mehrdad Hashemi
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
19
|
Xu M, Gan T, Ning H, Wang L. MicroRNA Functions in Thymic Biology: Thymic Development and Involution. Front Immunol 2018; 9:2063. [PMID: 30254640 PMCID: PMC6141719 DOI: 10.3389/fimmu.2018.02063] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 08/21/2018] [Indexed: 01/02/2023] Open
Abstract
During the entire processes of thymus organogenesis, maturation, and involution, gene regulation occurs post-transcriptionally via recently discovered microRNA (miRNA) transcripts. Numerous reports indicate that miRNAs may be involved in the construction of a normal thymic microenvironment, which constitutes a critical component to support T lymphocyte development. MiRNAs are also expressed in thymic stromal cells including thymic epithelial cells (TECs) during maturation and senescence. This review focuses on the function of miRNAs in thymic development and involution. A better understanding of these processes will provide new insights into the regulatory network of TECs and further comprehension of how genes control TECs to maintain the thymic microenvironment during thymus development and aging, thus supporting a normal cellular immune system.
Collapse
Affiliation(s)
- Minwen Xu
- First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tao Gan
- Department of Biotechnology, Gannan Medical University, Ganzhou, China
| | - Huiting Ning
- Department of Biotechnology, Gannan Medical University, Ganzhou, China
| | - Liefeng Wang
- Department of Biotechnology, Gannan Medical University, Ganzhou, China
| |
Collapse
|
20
|
Wang X, Li GH. MicroRNA-16 functions as a tumor-suppressor gene in oral squamous cell carcinoma by targeting AKT3 and BCL2L2. J Cell Physiol 2018; 233:9447-9457. [PMID: 30136280 PMCID: PMC6221029 DOI: 10.1002/jcp.26833] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/10/2018] [Indexed: 12/20/2022]
Abstract
Aberrant expressions of microRNAs have been reported to be strongly associated with the progression and prognosis of various tumors, including oral squamous cell carcinoma (OSCC). Recent studies on miRNA expression profiling have suggested that microRNA-16 (miR-16) may be dysregulated in OSCC. However, the tumorigenic roles and mechanisms of miR-16 in OSCC are still largely unknown. In this study, we demonstrated that miR-16 was specifically downregulated in both OSCC patients and cancer cell lines. In addition, functional roles of miR-16 in vitro suggested that the miR-16 mimic inhibited cell proliferation and induced apoptosis, whereas miR-16 inhibitor displayed the opposite effects. Luciferase reporter assay and correlation analysis showed that AKT3 and BCL2L2 were directly targeted by miR-16 and were inversely expressed with miR-16 in OSCC. Moreover, restoration of AKT3 and BCL2L2 expression could partially reverse the cell proliferation inhibition and apoptosis induction caused by miR-16. In xenograft nude mice, miR-16 mimics decreased the expression of AKT3 and BCL2L2 and reduced the tumors volumes and weights, whereas the miR-16 inhibitor exhibited adverse effects in the derived xenografts. In conclusion, the findings suggested that miR-16 functions as a tumor suppressor miRNA to inhibit cell proliferation and induce apoptosis in OSCC through decreasing the oncogenes AKT3 and BCL2L2 and that miR-16 could be a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Xi Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guang-Hui Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Zomorrod MS, Kouhkan F, Soleimani M, Aliyan A, Tasharrofi N. Overexpression of miR-133 decrease primary endothelial cells proliferation and migration via FGFR1 targeting. Exp Cell Res 2018; 369:11-16. [PMID: 29608916 DOI: 10.1016/j.yexcr.2018.02.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/02/2018] [Accepted: 02/17/2018] [Indexed: 02/07/2023]
Abstract
Angiogenesis is one of the essential hallmarks of cancer that is controlled by the balance between positive and negative regulators. FGFR1 signaling is crucial for the execution of bFGF-induced proliferation, migration, and tube formation of endothelial cells (ECs) and onset of angiogenesis on tumors. The purpose of this study is to identify whether or not miR-133 regulates FGFR1 expression and accordingly hypothesize if it plays a crucial role in modulating bFGF/FGFR1 activity in ECs and blocking tumor angiogenesis through targeting FGFR1. The influences of miR-133 overexpression on bFGF stimulated endothelial cells were assessed by cell growth curve, MTT assaying, tube formation, and migration assays. Forced expression of miR-133 caused significant reductions in bFGF-induced proliferation and migratory ability of ECs. MiR-133 Expression was negatively correlated with both mRNA and protein levels of FGFR1 in the transfected ECs isolated from peripheral blood. Moreover, overexpression of miR-133 drastically reduced the rate of cell division and disturbed capillary network formation of transfected ECs. These findings suggest that miR-133 plays an important function in bFGF-induced angiogenesis processes in ECs and provides a rationale for new therapeutic approaches to suppress tumor angiogenesis and cancer.
Collapse
Affiliation(s)
- Mina Soufi Zomorrod
- Department of Hematology and Cell Therapy, Faculty of Medical Science, Tarbiat Modares University, Tehran, lran.
| | | | - Masoud Soleimani
- Department of Hematology and Cell Therapy, Faculty of Medical Science, Tarbiat Modares University, Tehran, lran.
| | - Amir Aliyan
- Department of Hematology and Cell Therapy, Faculty of Medical Science, Tarbiat Modares University, Tehran, lran; Department of Chemistry, Rice University, Houston, TX 77054, USA.
| | - Nooshin Tasharrofi
- Stem Cell Technology Research Center, Tehran, Iran; Faculty of pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
22
|
Pirooz HJ, Jafari N, Rastegari M, Fathi‐Roudsari M, Tasharrofi N, Shokri G, Tamadon M, Sazegar H, Kouhkan F. Functional SNP in microRNA‐491‐5p binding site of MMP9 3′‐UTR affects cancer susceptibility. J Cell Biochem 2018; 119:5126-5134. [DOI: 10.1002/jcb.26471] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/31/2017] [Indexed: 12/24/2022]
Affiliation(s)
| | - Niloofar Jafari
- Department of Biology, Basic Sciences FacultyShahrekord Branch, Islamic Azad UniversityShahrekordIran
| | - Mozhdeh Rastegari
- Department of Biology, Basic Sciences FacultyShahrekord Branch, Islamic Azad UniversityShahrekordIran
| | | | - Nooshin Tasharrofi
- Stem Cell Technology Research CenterTehranIran
- Faculty of PharmacyLorestan University of Medical SciencesKhorramabadIran
- Student Research CommiteeLorestan Universsity of Medical SciencesKhorramabadIran
| | | | | | - Hossein Sazegar
- Department of Biology, Basic Sciences FacultyShahrekord Branch, Islamic Azad UniversityShahrekordIran
| | | |
Collapse
|
23
|
Tang X, Jin L, Cao P, Cao K, Huang C, Luo Y, Ma J, Shen S, Tan M, Li X, Zhou M. MicroRNA-16 sensitizes breast cancer cells to paclitaxel through suppression of IKBKB expression. Oncotarget 2018; 7:23668-83. [PMID: 26993770 PMCID: PMC5029655 DOI: 10.18632/oncotarget.8056] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/29/2016] [Indexed: 12/11/2022] Open
Abstract
Paclitaxel (Taxol) is an effective chemotherapeutic agent for treating breast cancer patients. However, chemoresistance is a major obstacle in cancer treatment. Here, we showed that overexpression of miR-16 promoted Taxol-induced cytotoxicity and apoptosis in breast cancer cells. Furthermore, IκB kinase β (IKBKB) was identified as a direct target of miR-16. Up-regulation of IKBKB suppressed Taxol-induced apoptosis and led to an increased resistance to Taxol, and restoring IKBKB expression in miR-16-overexpressing breast cancer cells recovered Taxol resistance. Moreover, miR-16 was highly expressed in Taxol-sensitive breast cancer tissues compared with Taxol-resistant tissues, and there was an inverse correlation between miR-16 expression and IKBKB expression in breast cancer tissues. The expression levels of miR-16 were negatively associated with T stages, whereas the expression of IKBKB was positively correlated with T stages, lymph node metastasis and clinical stages. Taken together, our data demonstrates that miR-16 sensitizes breast cancer cells to Taxol through the suppression of IKBKB expression, and targeting miR-16/IKBKB axis will be a promising strategy for overcoming Taxol resistance in breast cancer.
Collapse
Affiliation(s)
- Xueyuan Tang
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Long Jin
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Peiguo Cao
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ke Cao
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chenghui Huang
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yanwei Luo
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Ma
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shourong Shen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Tan
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Xiayu Li
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
24
|
MicroRNA-148a promotes apoptosis and suppresses growth of breast cancer cells by targeting B-cell lymphoma 2. Anticancer Drugs 2017; 28:588-595. [PMID: 28430743 DOI: 10.1097/cad.0000000000000498] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) contribute toward tumorigenesis through the modulation of tumor-related genes. MiR-148a has been characterized as a tumor-suppressing miRNA and its downregulation has been reported in tumors of a variety of cancers. However, the functional role of miR-148a in breast cancer is not yet fully understood. Using both in-vitro and in-vivo models, we confirmed that miR-148a acts to inhibit the proliferation of breast cancer cells. Through the use of bioinformatic approaches in miRNA target prediction, we determined that B-cell lymphoma 2 (BCL-2) is a likely target of miR-148a. The overexpression and tumorigenic effects of BCL-2 have already been confirmed in cancerous tumors of the breast. A dual-luciferase assay was performed to confirm that miR-148a targets the 3'-untranslated region of BCL-2. In this study, we first characterized the downregulation of miR-148a in breast cancer tissues. We then found that restoring expression of miR-148a suppressed the expression of BCL-2 at the level of both mRNA and protein. Upregulation of miR-148a caused a subsequent reduction of proliferation and an increase in apoptosis. In conclusion, we have confirmed the role of miR-148a as a pivotal regulator in breast cancer through its targeting of BCL-2. This evidence strongly suggests that miR-148a could prove to be a novel therapeutic target in breast cancer.
Collapse
|
25
|
Issler MVC, Mombach JCM. MicroRNA-16 feedback loop with p53 and Wip1 can regulate cell fate determination between apoptosis and senescence in DNA damage response. PLoS One 2017; 12:e0185794. [PMID: 28968438 PMCID: PMC5624635 DOI: 10.1371/journal.pone.0185794] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/19/2017] [Indexed: 01/30/2023] Open
Abstract
Cell fate regulation is an open problem whose comprehension impacts several areas of the biosciences. DNA damage induces cell cycle checkpoints that activate the p53 pathway to regulate cell fate mechanisms such as apoptosis or senescence. Experiments with different cell types show that the p53 pathway regulates cell fate through a switch behavior in its dynamics. For low DNA damage the pathway presents an oscillatory pattern associated with intense DNA damage repair while for high damage there are no oscillations and either p53 concentration increases inducing apoptosis or the cell enters a senescence state. Apoptosis and senescence phenotypes seem to have compensatory functions in tissues and the microRNA 16-1 (miR-16) is involved in the regulation of the fate between both phenotypes in cancer cells. To investigate the regulation of cell fate we developed a logical model of the G1/S checkpoint in DNA damage response that takes into account different levels of damage and contemplates the influence of miR-16 through its positive feedback loop formed with p53 and Wip1. The model reproduces the observed cellular phenotypes in experiments: oscillatory (for low DNA damage) regulated by negative feedback loops involving mainly p53 and Mdm2 and apoptotic or senescent (for high DNA damage) regulated by the positive p53/Wip1/miR-16 feedback loop. We find good agreement between the level of DNA damage and the probability of the phenotype produced according to experiments. We also find that this positive feedback makes senescent and apoptotic phenotypes to be determined stochastically (bistable), however controlling the expression level of miR-16 allows the control of fate determination as observed experimentally.
Collapse
Affiliation(s)
- Maria Vitória C Issler
- Department of Physics, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - José Carlos M Mombach
- Department of Physics, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
26
|
Lin WH, Li XF, Lin MX, Zhou Y, Huang HP. Novel insights into the effect of paroxetine administration in pilocarpine‑induced chronic epileptic rats. Mol Med Rep 2017; 16:8245-8252. [PMID: 28983622 DOI: 10.3892/mmr.2017.7659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 05/09/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the role of paroxetine intervention in epilepsy, and its association with the expression of serotonin transporter (SERT) and hippocampal apoptosis. Thirty adult male Sprague Dawley rats were divided into control vehicle (n=6) and epileptic (n=24) groups. Status epilepticus (SE) was induced via systemic injection of pilocarpine, and seizure activity was monitored via video electroencephalogram. The epileptic group was then randomly divided into two groups; Four weeks following SE induction, paroxetine (5 mg/kg/day; SE + paroxetine group) or normal saline (SE group) was intraperitoneally injected for 4 weeks. Brain tissue was collected to evaluate apoptosis via terminal deoxynucleotidyl transferase dUTP nick‑end labeling. SERT, B‑cell lymphoma‑2 (Bcl‑2) and brain derived neurotropic factor (BDNF) expression levels were evaluated by western blotting, and miR‑16 expression was evaluated by reverse transcription‑quantitative polymerase chain reaction. Paroxetine did not affect the mortality of the pilocarpine‑induced chronic epileptic rats. Spontaneous recurrent seizures (SSRs) were observed 7‑28 days following SE induction. The frequency and stage of the SSRs were reduced by paroxetine administration. Apoptotic cells were observed in the epileptic hippocampus. Following paroxetine intervention, the staining intensity and number of apoptotic cells were significantly decreased. Expression levels of BDNF and Bcl‑2 were lower in the SE group compared with the vehicle group. The former was not altered by paroxetine injection; however, the latter was increased. In the SE group, SERT expression was not altered in the raphe nucleus but was decreased in the hippocampus. Following paroxetine administration, SERT expression was decreased in the raphe nucleus and increased in the hippocampus. In the SE group, miR‑16 expression was decreased in the raphe nucleus and increased in the hippocampus. Following paroxetine administration, miR‑16 expression was not altered in the raphe nucleus but was reduced in the hippocampus. In conclusion, the seizures and hippocampal apoptosis observed in chronic epileptic rats were alleviated by paroxetine treatment. This effect may be associated with the reduced Bcl‑2 and BDNF expression and the modulation of SERT expression. The alterations in miR‑16 expression may provide a potential explanation for the modulation of apoptosis; however, further research is required to determine the complete underlying molecular mechanism.
Collapse
Affiliation(s)
- Wan-Hui Lin
- Department of Neurology and Geriatrics, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Xiao-Feng Li
- Department of Neurology, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Ming-Xing Lin
- Department of Pediatrics, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Ying Zhou
- Neuroscience Research Center of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Hua-Pin Huang
- Department of Neurology and Geriatrics, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
27
|
MicroRNAs Regulate Thymic Epithelium in Age-Related Thymic Involution via Down- or Upregulation of Transcription Factors. J Immunol Res 2017; 2017:2528957. [PMID: 29226156 PMCID: PMC5684555 DOI: 10.1155/2017/2528957] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/09/2017] [Accepted: 08/20/2017] [Indexed: 12/14/2022] Open
Abstract
Age-related thymic involution is primarily induced by defects in nonhematopoietic thymic epithelial cells (TECs). It is characterized by dysfunction of multiple transcription factors (TFs), such as p63 and FoxN1, and also involves other TEC-associated regulators, such as Aire. These TFs and regulators are controlled by complicated regulatory networks, in which microRNAs (miRNAs) act as a key player. miRNAs can either directly target the 3'-UTRs (untranslated regions) of the TFs to suppress TF expression or target TF inhibitors to reduce or increase TF inhibitor expression and thereby indirectly enhance or inhibit TF expression. Here, we review the current understanding and recent studies about how miRNAs are involved in age-related thymic involution via regulation of TEC-autonomous TFs. We also discuss potential strategies for targeting miRNAs to rejuvenate age-related declined thymic function.
Collapse
|
28
|
Abstract
Human cancers are characterized by a number of hallmarks, including sustained proliferative signaling, evasion of growth suppressors, activated invasion and metastasis, replicative immortality, angiogenesis, resistance to cell death, and evasion of immune destruction. As microRNAs (miRNAs) are deregulated in virtually all human cancers, they show involvement in each of the cancer hallmarks as well. In this chapter, we describe the involvement of miRNAs in cancer from a cancer hallmarks and targeted therapeutics point of view. As no miRNA-based cancer therapeutics are available to date, and the only clinical trial on miRNA-based cancer therapeutics (MRX34) was terminated prematurely due to serious adverse events, we are focusing on protein-coding miRNA targets for which targeted therapeutics in oncology are already approved by the FDA. For each of the cancer hallmarks, we selected major protein-coding players and describe the miRNAs that target them.
Collapse
Affiliation(s)
| | - George A Calin
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
29
|
Tasharrofi N, Kouhkan F, Soleimani M, Soheili ZS, Kabiri M, Mahmoudi Saber M, Dorkoosh FA. Survival Improvement in Human Retinal Pigment Epithelial Cells via Fas Receptor Targeting by miR-374a. J Cell Biochem 2017; 118:4854-4861. [PMID: 28543858 DOI: 10.1002/jcb.26160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 05/22/2017] [Indexed: 01/09/2023]
Abstract
Oxidative conditions of the eye could contribute to retinal cells loss through activating the Fas-L/Fas pathway. This phenomenon is one of the leading causes of some ocular diseases like age-related macular degeneration (AMD). By targeting proteins at their mRNA level, microRNAs (miRNAs) can regulate gene expression and cell function. The aim of the present study is to investigate Fas targeting by miR-374a and find whether it can inhibit Fas-mediated apoptosis in primary human retinal pigment epithelial (RPE) cells under oxidative stress. So, the primary human RPE cells were transfected with pre-miR-374a pLEX construct using polymeric carrier and were exposed to H2 O2 (200 μM) as an oxidant agent for induction of Fas expression. Fas expression at mRNA and protein level was evaluated by quantitative real-time PCR and Western blot analysis, respectively. These results revealed that miR-374a could prevent Fas upregulation under oxidative conditions. Moreover, Luciferase activity assay confirmed that Fas could be a direct target of miR-374a. The cell viability studies demonstrated that caspase-3 activity was negligible in miR-374a treated cells compared to the controls. Our data suggest miR-374a is a negative regulator of Fas death receptor which is able to enhance the cell survival and protect RPE cells against oxidative conditions. J. Cell. Biochem. 118: 4854-4861, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nooshin Tasharrofi
- Faculty of Pharmacy, Department of Pharmaceutical Nanotechnology, Tehran University of Medical Sciences, Tehran, Iran
- Faculty of Pharmacy, Department of Pharmaceutics, Tehran University of Medical Science, Tehran, Iran
- Stem Cell Technology Research Center, Tehran, Iran
| | | | - Masoud Soleimani
- Faculty of Medical Science, Department of Hematology, Tarbiat Modares University, Tehran, Iran
| | - Zahra-Sheila Soheili
- Faculty of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mahboubeh Kabiri
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Mohaddeseh Mahmoudi Saber
- Faculty of Pharmacy, Department of Pharmaceutical Nanotechnology, Tehran University of Medical Sciences, Tehran, Iran
- Faculty of Pharmacy, Department of Pharmaceutics, Tehran University of Medical Science, Tehran, Iran
- Faculty of Pharmacy, Nanotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Abedin Dorkoosh
- Faculty of Pharmacy, Department of Pharmaceutics, Tehran University of Medical Science, Tehran, Iran
- Faculty of Pharmacy, Medical Biomaterial Research Center (MBRC), Tehran University of Medical Science, No. 1462, Kargar Ave, Tehran, Iran
| |
Collapse
|
30
|
Lee DE, Brown JL, Rosa-Caldwell ME, Blackwell TA, Perry RA, Brown LA, Khatri B, Seo D, Bottje WG, Washington TA, Wiggs MP, Kong BW, Greene NP. Cancer cachexia-induced muscle atrophy: evidence for alterations in microRNAs important for muscle size. Physiol Genomics 2017; 49:253-260. [PMID: 28341621 DOI: 10.1152/physiolgenomics.00006.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/24/2017] [Accepted: 03/24/2017] [Indexed: 12/14/2022] Open
Abstract
Muscle atrophy is a hallmark of cancer cachexia resulting in impaired function and quality of life and cachexia is the immediate cause of death for 20-40% of cancer patients. Multiple microRNAs (miRNAs) have been identified as being involved in muscle development and atrophy; however, less is known specifically on miRNAs in cancer cachexia. The purpose of this investigation was to examine the miRNA profile of skeletal muscle atrophy induced by cancer cachexia to uncover potential miRNAs involved with this catabolic condition. Phosphate-buffered saline (PBS) or Lewis lung carcinoma cells (LLC) were injected into C57BL/6J mice at 8 wk of age. LLC animals were allowed to develop tumors for 4 wk to induce cachexia. Tibialis anterior muscles were extracted and processed to isolate small RNAs, which were used for miRNA sequencing. Sequencing results were assembled with mature miRNAs, and functions of miRNAs were analyzed by Ingenuity Pathway Analysis. LLC animals developed tumors that contributed to significantly smaller tibialis anterior muscles (18.5%) and muscle cross-sectional area (40%) compared with PBS. We found 371 miRNAs to be present in the muscle above background levels. Of these, nine miRNAs were found to be differentially expressed. Significantly altered groups of miRNAs were categorized into primary functionalities including cancer, cell-to-cell signaling, and cellular development among others. Gene network analysis predicted specific alterations of factors contributing to muscle size including Akt, FOXO3, and others. These results create a foundation for future research into the sufficiency of targeting these genes to attenuate muscle loss in cancer cachexia.
Collapse
Affiliation(s)
- David E Lee
- Integrative Muscle Metabolism Laboratory, University of Arkansas, Fayetteville, Arkansas
| | - Jacob L Brown
- Integrative Muscle Metabolism Laboratory, University of Arkansas, Fayetteville, Arkansas
| | - Megan E Rosa-Caldwell
- Integrative Muscle Metabolism Laboratory, University of Arkansas, Fayetteville, Arkansas
| | - Thomas A Blackwell
- Integrative Muscle Metabolism Laboratory, University of Arkansas, Fayetteville, Arkansas
| | - Richard A Perry
- Exercise Muscle Biology Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Lemuel A Brown
- Exercise Muscle Biology Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Bhuwan Khatri
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas; and
| | - Dongwon Seo
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas; and
| | - Walter G Bottje
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas; and
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, Arkansas
| | - Michael P Wiggs
- Department of Health and Kinesiology, University of Texas at Tyler, Tyler, Texas
| | - Byung-Whi Kong
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas; and
| | - Nicholas P Greene
- Integrative Muscle Metabolism Laboratory, University of Arkansas, Fayetteville, Arkansas;
| |
Collapse
|
31
|
Voccia D, Sosnowska M, Bettazzi F, Roscigno G, Fratini E, De Franciscis V, Condorelli G, Chitta R, D’Souza F, Kutner W, Palchetti I. Direct determination of small RNAs using a biotinylated polythiophene impedimetric genosensor. Biosens Bioelectron 2017; 87:1012-1019. [DOI: 10.1016/j.bios.2016.09.058] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/02/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022]
|
32
|
Peng F, Xiong L, Tang H, Peng C, Chen J. Regulation of epithelial-mesenchymal transition through microRNAs: clinical and biological significance of microRNAs in breast cancer. Tumour Biol 2016; 37:14463-14477. [DOI: 10.1007/s13277-016-5334-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 09/06/2016] [Indexed: 12/16/2022] Open
|
33
|
Ji Z, Wang G, Hou L, Liu Z, Wang J, Chao T. miR-143 inhibits proliferation and induces apoptosis of mammary epithelial cells in dairy goat. Anim Cells Syst (Seoul) 2016. [DOI: 10.1080/19768354.2016.1165288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
34
|
Wirbisky SE, Weber GJ, Schlotman KE, Sepúlveda MS, Freeman JL. Embryonic atrazine exposure alters zebrafish and human miRNAs associated with angiogenesis, cancer, and neurodevelopment. Food Chem Toxicol 2016; 98:25-33. [PMID: 27046698 DOI: 10.1016/j.fct.2016.03.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 03/26/2016] [Accepted: 03/30/2016] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are short, single-stranded RNA that regulate post-transcriptional control of mRNA translation. Knowledge on the role of these critical regulators in toxicological responses in increasing, but is still limited. Atrazine is a herbicide used throughout the Midwestern US that is reported to frequently contaminate potable water supplies above the maximum contaminant level of 3 parts per billion. Atrazine is a suspected endocrine disrupting chemical and studies have begun to investigate the genetic mechanisms of toxicity; however, studies investigating epigenetic mechanisms are limited. In this study both zebrafish and human miRNAs were significantly altered in response to an embryonic atrazine exposure of 0.3, 3, or 30 ppb in zebrafish. Altered miRNAs are known to play a role in angiogenesis, cancer, or neuronal development, differentiation, and maturation. Targeted analysis of altered human miRNAs with genes previously identified to be altered by atrazine exposure revealed several targets linked to cell cycle and cell signaling. Further analysis of hsa-miRNA-126-3p, which had altered expression in all three atrazine treatments at 72 hpf, revealed alterations also occurred at 60 hpf in the 30 ppb treatment group. Results from this study indicate miRNA deregulation in zebrafish and human miRNAs following an embryonic atrazine exposure in zebrafish.
Collapse
Affiliation(s)
- Sara E Wirbisky
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Gregory J Weber
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Kelly E Schlotman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Maria S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, 47907, USA.
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
35
|
miR-16-5p Is a Stably-Expressed Housekeeping MicroRNA in Breast Cancer Tissues from Primary Tumors and from Metastatic Sites. Int J Mol Sci 2016; 17:ijms17020156. [PMID: 26821018 PMCID: PMC4783890 DOI: 10.3390/ijms17020156] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 01/24/2023] Open
Abstract
For quantitative microRNA analyses in formalin-fixed paraffin-embedded (FFPE) tissue, expression levels have to be normalized to endogenous controls. To investigate the most stably-expressed microRNAs in breast cancer and its surrounding tissue, we used tumor samples from primary tumors and from metastatic sites. MiRNA profiling using TaqMan(®) Array Human MicroRNA Cards, enabling quantification of 754 unique human miRNAs, was performed in FFPE specimens from 58 patients with metastatic breast cancer. Forty-two (72%) samples were collected from primary tumors and 16 (28%) from metastases. In a cross-platform analysis of a validation cohort of 32 FFPE samples from patients with early breast cancer genome-wide microRNA expression analysis using SurePrintG3 miRNA (8 × 60 K)(®) microarrays from Agilent(®) was performed. Eleven microRNAs could be detected in all samples analyzed. Based on NormFinder and geNorm stability values and the high correlation (rho ≥ 0.8) with the median of all measured microRNAs, miR-16-5p, miR-29a-3p, miR-126-3p, and miR-222-3p are suitable single gene housekeeper candidates. In the cross-platform validation, 29 human microRNAs were strongly expressed (mean log2-intensity > 10) and 21 of these microRNAs including miR-16-5p and miR-29a-3p were also stably expressed (CV < 5%). Thus, miR-16-5p and miR-29a-3p are both strong housekeeper candidates. Their Normfinder stability values calculated across the primary tumor and metastases subgroup indicate that miR-29a-3p can be considered as the strongest housekeeper in a cohort with mainly samples from primary tumors, whereas miR-16-5p might perform better in a metastatic sample enriched cohort.
Collapse
|
36
|
Yin Z, Li H, Cui Z, Ren Y, Li X, Wu W, Guan P, Qian B, Rothman N, Lan Q, Zhou B. Polymorphisms in pre-miRNA genes and cooking oil fume exposure as well as their interaction on the risk of lung cancer in a Chinese nonsmoking female population. Onco Targets Ther 2016; 9:395-401. [PMID: 26855588 PMCID: PMC4727513 DOI: 10.2147/ott.s96870] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are suggested to be very important in the development of lung cancer. This study assesses the association between polymorphisms in miRNA-related (miR)-26a-1, miR-605, and miR-16-1 genes and risk of lung cancer, as well as the effect of gene-environment interaction between miRNA polymorphisms and cooking fume exposure on lung cancer. METHODS A case-control study including 268 diagnosed nonsmoking female lung cancer patients and 266 nonsmoking female controls was carried out. Three miRNA polymorphisms (miR-26a-1 rs7372209, miR-605 rs2043556, and miR-16-1 rs1022960) were analyzed. Both additive and multiplicative interactions were assessed. RESULTS MiR-16-1 rs1022960 may be associated with the risk of lung cancer. Carriers with TT genotype of miR-16-1 rs1022960 were observed to have a decreased risk of lung cancer compared with CC and CT genotype carriers (odds ratio =0.550, 95% confidence interval =0.308-0.983, P=0.044). MiR-26a-1 rs7372209 and miR-605 rs2043556 showed no statistically significant associations with lung cancer risk. There were no significant associations between the three single nucleotide polymorphisms and lung adenocarcinoma. People with exposure to both risk genotypes of miR-26a-1 rs7372209 and cooking oil fumes were more likely to develop lung cancer than those with only genetic risk factor or cooking oil fumes (odds ratios were 2.136, 1.255, and 1.730, respectively). The measures of biological interaction and logistic models indicate that gene-environment interactions were not statistically significant on additive scale or multiplicative scale. CONCLUSION MiR-16-1 rs1022960 may be associated with the risk of lung cancer in a Chinese nonsmoking female population. The interactions between miRNA polymorphisms (miR-26a-1 rs7372209, miR-605 rs2043556, and miR-16-1 rs1022960) and cooking oil fumes were not statistically significant.
Collapse
Affiliation(s)
- Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, People's Republic of China; Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, People's Republic of China
| | - Hang Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, People's Republic of China; Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, People's Republic of China
| | - Zhigang Cui
- China Medical University, Shenyang, People's Republic of China
| | - Yangwu Ren
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, People's Republic of China; Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, People's Republic of China
| | - Xuelian Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, People's Republic of China; Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, People's Republic of China
| | - Wei Wu
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, People's Republic of China; Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, People's Republic of China
| | - Peng Guan
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, People's Republic of China; Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, People's Republic of China
| | - Biyun Qian
- Department of Epidemiology, School of Public Health, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Baosen Zhou
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, People's Republic of China; Key Laboratory of Cancer Etiology and Intervention, University of Liaoning Province, Shenyang, People's Republic of China
| |
Collapse
|
37
|
Alarmo EL, Havunen R, Häyrynen S, Penkki S, Ketolainen J, Nykter M, Kallioniemi A. Bone morphogenetic protein 4 regulates microRNA expression in breast cancer cell lines in diverse fashion. Genes Chromosomes Cancer 2015; 55:227-36. [PMID: 26684238 DOI: 10.1002/gcc.22324] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/02/2015] [Accepted: 10/02/2015] [Indexed: 01/15/2023] Open
Abstract
Bone morphogenetic protein 4 (BMP4) is a remarkably powerful inhibitor of breast cancer cell proliferation, but it is also able to induce breast cancer cell migration in certain cellular contexts. Previous data demonstrate that BMP4 controls the transcription of a variety of protein-coding genes, but not much is known about microRNAs (miRNA) regulated by BMP4. To address this question, miRNA expression profiles following BMP4 treatment were determined in one mammary epithelial and seven breast cancer cell lines using microarrays. While the analysis revealed an extensive variation in differentially expressed miRNA across cell lines, four miRNAs (miR-16-5p, miR-106b-5p, miR-23a-3p, and miR-23b-3p) were commonly induced in a subset of breast cancer cells upon BMP4 treatment. Inhibition of their expression demonstrated an increase in BT-474 cell number, indicating that they possess tumor suppressive properties. However, with the exception of miR-106b-5p, these effects were independent of BMP4 treatment. Scratch assay with miR-16-5p and miR-106b-5p inhibitors on BMP4-treated MDA-MB-231 cells resulted in enhanced cell migration, suggesting that these miRNAs are engaged in BMP4-induced motility. Taken together, we have for the first time characterized the BMP4-induced miRNA expression profiles in breast cancer cell lines, showing that induced miRNAs contribute to the fine-tuning of proliferation and migration phenotypes.
Collapse
Affiliation(s)
- Emma-Leena Alarmo
- Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland.,Fimlab Laboratories, Tampere, Finland
| | - Riikka Havunen
- Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland.,Fimlab Laboratories, Tampere, Finland
| | - Sergei Häyrynen
- Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland
| | - Sanna Penkki
- Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland.,Fimlab Laboratories, Tampere, Finland
| | - Johanna Ketolainen
- Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland.,Fimlab Laboratories, Tampere, Finland
| | - Matti Nykter
- Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland
| | - Anne Kallioniemi
- Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere, Tampere, Finland.,Fimlab Laboratories, Tampere, Finland
| |
Collapse
|
38
|
miR-199a and miR-497 Are Associated with Better Overall Survival due to Increased Chemosensitivity in Diffuse Large B-Cell Lymphoma Patients. Int J Mol Sci 2015; 16:18077-95. [PMID: 26251897 PMCID: PMC4581236 DOI: 10.3390/ijms160818077] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 12/22/2022] Open
Abstract
Micro-RNAs (miRNAs) are short non-coding single-stranded RNA molecules regulating gene expression at the post-transcriptional level. miRNAs are involved in cell development, differentiation, apoptosis, and proliferation. miRNAs can either function as tumor suppressor genes or oncogenes in various important pathways. The expression of specific miRNAs has been identified to correlate with tumor prognosis. For miRNA expression analysis real-time PCR on 81 samples was performed, including 63 diffuse large B-cell lymphoma (DLBCL, 15 of germinal center B-cell like subtype, 17 non germinal center B-cell, 23 transformed, and eight unclassified) and 18 controls, including nine peripheral B-cells, 5 germinal-center B-cells, four lymphadenitis samples, and 4 lymphoma cell lines (RI-1, SUDHL4, Karpas, U2932). Expression levels of a panel of 11 miRNAs that have been previously involved in other types of cancer (miR-15b_2, miR-16_1*, miR-16_2, miR-16_2*, miR-27a, miR-27a*, miR-98-1, miR-103a, miR-185, miR-199a, and miR-497) were measured and correlated with clinical data. Furthermore, cell lines, lacking miR-199a and miR-497 expression, were electroporated with the two respective miRNAs and treated with standard immunochemotherapy routinely used in patients with DLBCL, followed by functional analyses including cell count and apoptosis assays. Seven miRNAs (miR-16_1*, miR-16_2*, miR-27a, miR-103, miR-185, miR-199, and miR-497) were statistically significantly up-regulated in DLBCL compared to normal germinal cells. However, high expression of miR-497 or miR-199a was associated with better overall survival (p = 0.042 and p = 0.007). Overexpression of miR-199a and miR-497 led to a statistically significant decrease in viable cells in a dose-dependent fashion after exposure to rituximab and various chemotherapeutics relevant in multi-agent lymphoma therapy. Our data indicate that elevated miR-199a and miR-497 levels are associated with improved survival in aggressive lymphoma patients most likely by modifying drug sensitivity to immunochemotherapy. This functional impairment may serve as a potential novel therapeutic target in future treatment of patients with DLBCL.
Collapse
|
39
|
MiR-371-373 cluster acts as a tumor-suppressor-miR and promotes cell cycle arrest in unrestricted somatic stem cells. Tumour Biol 2015; 36:7765-74. [PMID: 25941115 DOI: 10.1007/s13277-015-3519-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/27/2015] [Indexed: 12/20/2022] Open
Abstract
Recent advances in small RNA research have implicated microRNAs (miRNAs) as important regulators of proliferation and development. The miR-371-373 cluster is prominently expressed in human embryonic stem cells (ESCs) and rapidly decreases after cell differentiation. MiR-371-373 cluster was investigated as one of the key factors of stem cell maintenance and pluripotency in unrestricted somatic stem cells (USSCs) using a lentivirus system. Gene expression showed a dual effect on proliferation, which revealed a transient cell cycle progression and consequent repression in pluripotency factors and cell cycle genes. Cell proliferation analysis with CFU, MTT, and DNA content assays further confirmed the dual effect of cluster after prolonged exposure. Analyzing the course of action, it seems that miR-371-373 cluster acts as an onco/tumor suppressor-miR. MiR371-373 cluster acts by modulating the function of these factors and limiting the excessive cell cycle propagation upon oncogenic stimuli to protect cells from replicative stress, but also activate CDK inhibitors and transcriptional repressors of the retinoblastoma family to cause cell cycle arrest. In contrast to the previous studies, we believe that miR-371-373 cluster functions as a self-renewal miRNA to induce and maintain the pluripotent state but also to potentially inhibit dysregulated proliferation through cell cycle arrest. It seems that miR-371-373 cluster presents with a dual effect in this cellular context which may possess different actions in various cells. This not only expands the basic knowledge of the cluster but may offer a great chance for therapeutic interventions.
Collapse
|
40
|
Rad SMAH, Langroudi L, Kouhkan F, Yazdani L, Koupaee AN, Asgharpour S, Shojaei Z, Bamdad T, Arefian E. Transcription factor decoy: a pre-transcriptional approach for gene downregulation purpose in cancer. Tumour Biol 2015; 36:4871-81. [PMID: 25835969 DOI: 10.1007/s13277-015-3344-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/15/2015] [Indexed: 12/13/2022] Open
Abstract
Gene therapy as a therapeutic approach has been the dream for many scientists around the globe. Many strategies have been proposed and applied for this purpose, yet the void for a functional safe method is still apparent. Since most of the diseases are caused by undesirable upregulation (oncogenes) or downregulation (tumor suppressor genes) of genes, major gene therapy's techniques affect gene expression. Most of the methods are used in post-transcriptional level such as RNA inhibitory (RNAi) and splice-switching oligonucleotides (SSOs). RNAi blocks messenger RNA (mRNA) translation by mRNA degradation or interruption between attachments of mRNA with ribosomes' subunits. However, one of the novel methods is the usage of transcription factor targeted decoys. DNA decoys are the new generation of functional gene downregulatory oligonucleotides which compete with specific binding sites of transcription factors. Considering the exponential growth of this technique in both in vitro and in vivo studies, in this paper, we aim to line out the description, design, and application of decoys in research and therapy.
Collapse
|