1
|
Sinke L, Beekman M, Raz Y, Gehrmann T, Moustakas I, Boulinguiez A, Lakenberg N, Suchiman E, Bogaards FA, Bizzarri D, van den Akker EB, Waldenberger M, Butler‐Browne G, Trollet C, de Groot CPGM, Heijmans BT, Slagboom PE. Tissue-specific methylomic responses to a lifestyle intervention in older adults associate with metabolic and physiological health improvements. Aging Cell 2025; 24:e14431. [PMID: 39618079 PMCID: PMC11984676 DOI: 10.1111/acel.14431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/24/2024] [Accepted: 11/14/2024] [Indexed: 04/12/2025] Open
Abstract
Across the lifespan, diet and physical activity profiles substantially influence immunometabolic health. DNA methylation, as a tissue-specific marker sensitive to behavioral change, may mediate these effects through modulation of transcription factor binding and subsequent gene expression. Despite this, few human studies have profiled DNA methylation and gene expression simultaneously in multiple tissues or examined how molecular levels react and interact in response to lifestyle changes. The Growing Old Together (GOTO) study is a 13-week lifestyle intervention in older adults, which imparted health benefits to participants. Here, we characterize the DNA methylation response to this intervention at over 750 thousand CpGs in muscle, adipose, and blood. Differentially methylated sites are enriched for active chromatin states, located close to relevant transcription factor binding sites, and associated with changing expression of insulin sensitivity genes and health parameters. In addition, measures of biological age are consistently reduced, with decreases in grimAge associated with observed health improvements. Taken together, our results identify responsive molecular markers and demonstrate their potential to measure progression and finetune treatment of age-related risks and diseases.
Collapse
Affiliation(s)
- Lucy Sinke
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
| | - Marian Beekman
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
| | - Yotam Raz
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
| | - Thies Gehrmann
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
- Department of Bioscience Engineering, Research Group Environmental Ecology and Applied MicrobiologyUniversity of AntwerpAntwerpBelgium
| | - Ioannis Moustakas
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
- Sequencing Analysis Support Core, Department of Biomedical Data SciencesLeiden University Medical CenterLeidenThe Netherlands
| | - Alexis Boulinguiez
- Myology Center for Research, U974Sorbonne Université, INSERM, AIM, GH Pitié Salpêtrière Bat BabinskiParisFrance
| | - Nico Lakenberg
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
| | - Eka Suchiman
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
| | - Fatih A. Bogaards
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
- Division of Human NutritionWageningen University and ResearchWageningenThe Netherlands
| | - Daniele Bizzarri
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
- Delft Bioinformatics Lab, Pattern Recognition and BioinformaticsDelftThe Netherlands
| | - Erik B. van den Akker
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
- Delft Bioinformatics Lab, Pattern Recognition and BioinformaticsDelftThe Netherlands
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Institute of EpidemiologyHelmholtz Munich, German Research Center for Environmental HealthNeuherbergGermany
- German Center for Cardiovascular Research (DZHK)Partner Site Munich Heart AllianceMunichGermany
| | - Gillian Butler‐Browne
- Myology Center for Research, U974Sorbonne Université, INSERM, AIM, GH Pitié Salpêtrière Bat BabinskiParisFrance
| | - Capucine Trollet
- Myology Center for Research, U974Sorbonne Université, INSERM, AIM, GH Pitié Salpêtrière Bat BabinskiParisFrance
| | - C. P. G. M. de Groot
- Division of Human NutritionWageningen University and ResearchWageningenThe Netherlands
| | - Bastiaan T. Heijmans
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
| | - P. Eline Slagboom
- Molecular Epidemiology, Department of Biomedical Data SciencesLeiden University Medical CentreLeidenThe Netherlands
| |
Collapse
|
2
|
Cavagnero KJ, Li F, Dokoshi T, Nakatsuji T, O’Neill AM, Aguilera C, Liu E, Shia M, Osuoji O, Hata T, Gallo RL. CXCL12+ dermal fibroblasts promote neutrophil recruitment and host defense by recognition of IL-17. J Exp Med 2024; 221:e20231425. [PMID: 38393304 PMCID: PMC10890925 DOI: 10.1084/jem.20231425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/17/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The skin provides an essential barrier for host defense through rapid action of multiple resident and recruited cell types, but the complex communication network governing these processes is incompletely understood. To define these cell-cell interactions more clearly, we performed an unbiased network analysis of mouse skin during invasive S. aureus infection and revealed a dominant role for CXCL12+ fibroblast subsets in neutrophil communication. These subsets predominantly reside in the reticular dermis, express adipocyte lineage markers, detect IL-17 and TNFα, and promote robust neutrophil recruitment through NFKBIZ-dependent release of CXCR2 ligands and CXCL12. Targeted deletion of Il17ra in mouse fibroblasts resulted in greatly reduced neutrophil recruitment and increased infection by S. aureus. Analogous human CXCL12+ fibroblast subsets abundantly express neutrophil chemotactic factors in psoriatic skin that are subsequently decreased upon therapeutic targeting of IL-17. These findings show that CXCL12+ dermal immune acting fibroblast subsets play a critical role in cutaneous neutrophil recruitment and host defense.
Collapse
Affiliation(s)
- Kellen J. Cavagnero
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Fengwu Li
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Tatsuya Dokoshi
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Teruaki Nakatsuji
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Alan M. O’Neill
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Carlos Aguilera
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Edward Liu
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Michael Shia
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Olive Osuoji
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Tissa Hata
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| | - Richard L. Gallo
- Department of Dermatology, University of California, San Diego. La Jolla, CA, USA
| |
Collapse
|
3
|
Cero C, Shu W, Reese AL, Douglas D, Maddox M, Singh AP, Ali SL, Zhu AR, Katz JM, Pierce AE, Long KT, Nilubol N, Cypess RH, Jacobs JL, Tian F, Cypess AM. Standardized In Vitro Models of Human Adipose Tissue Reveal Metabolic Flexibility in Brown Adipocyte Thermogenesis. Endocrinology 2023; 164:bqad161. [PMID: 37944134 PMCID: PMC11032247 DOI: 10.1210/endocr/bqad161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/10/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Functional human brown and white adipose tissue (BAT and WAT) are vital for thermoregulation and nutritional homeostasis, while obesity and other stressors lead, respectively, to cold intolerance and metabolic disease. Understanding BAT and WAT physiology and dysfunction necessitates clinical trials complemented by mechanistic experiments at the cellular level. These require standardized in vitro models, currently lacking, that establish references for gene expression and function. We generated and characterized a pair of immortalized, clonal human brown (hBA) and white (hWA) preadipocytes derived from the perirenal and subcutaneous depots, respectively, of a 40-year-old male individual. Cells were immortalized with hTERT and confirmed to be of a mesenchymal, nonhematopoietic lineage based on fluorescence-activated cell sorting and DNA barcoding. Functional assessments showed that the hWA and hBA phenocopied primary adipocytes in terms of adrenergic signaling, lipolysis, and thermogenesis. Compared to hWA, hBA were metabolically distinct, with higher rates of glucose uptake and lactate metabolism, and greater basal, maximal, and nonmitochondrial respiration, providing a mechanistic explanation for the association between obesity and BAT dysfunction. The hBA also responded to the stress of maximal respiration by using both endogenous and exogenous fatty acids. In contrast to certain mouse models, hBA adrenergic thermogenesis was mediated by several mechanisms, not principally via uncoupling protein 1 (UCP1). Transcriptomics via RNA-seq were consistent with the functional studies and established a molecular signature for each cell type before and after differentiation. These standardized cells are anticipated to become a common resource for future physiological, pharmacological, and genetic studies of human adipocytes.
Collapse
Affiliation(s)
- Cheryl Cero
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Weiguo Shu
- American Type Culture Collection, Cell Biology R&D, 217 Perry Parkway, Gaithersburg, MD 20877, USA
| | - Amy L Reese
- American Type Culture Collection, Sequencing and Bioinformatics Center, 10801 University Blvd, Manassas, VA 20110, USA
| | - Diana Douglas
- American Type Culture Collection, Cell Biology R&D, 217 Perry Parkway, Gaithersburg, MD 20877, USA
| | - Michael Maddox
- American Type Culture Collection, Cell Biology R&D, 217 Perry Parkway, Gaithersburg, MD 20877, USA
- Current Affiliation: Vita Therapeutics, 801 W. Baltimore Street, Suite 301, Baltimore, MD 21201, USA
| | - Ajeet P Singh
- American Type Culture Collection, Sequencing and Bioinformatics Center, 10801 University Blvd, Manassas, VA 20110, USA
| | - Sahara L Ali
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander R Zhu
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jacqueline M Katz
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anne E Pierce
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kelly T Long
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Naris Nilubol
- Surgical Oncology Program, Center for Cancer Research, NCI, NIH, 10 Center Drive, Room 4-5952, Bethesda, MD 20892, USA
| | - Raymond H Cypess
- American Type Culture Collection, 10801 University Blvd, Manassas, VA 20110, USA
| | - Jonathan L Jacobs
- American Type Culture Collection, Sequencing and Bioinformatics Center, 10801 University Blvd, Manassas, VA 20110, USA
| | - Fang Tian
- American Type Culture Collection, Cell Biology R&D, 217 Perry Parkway, Gaithersburg, MD 20877, USA
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Proteogenomic Analysis Reveals Proteins Involved in the First Step of Adipogenesis in Human Adipose-Derived Stem Cells. Stem Cells Int 2021; 2021:3168428. [PMID: 34956370 PMCID: PMC8702357 DOI: 10.1155/2021/3168428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Background Obesity is characterized as a disease that directly affects the whole-body metabolism and is associated with excess fat mass and several related comorbidities. Dynamics of adipocyte hypertrophy and hyperplasia play an important role in health and disease, especially in obesity. Human adipose-derived stem cells (hASC) represent an important source for understanding the entire adipogenic differentiation process. However, little is known about the triggering step of adipogenesis in hASC. Here, we performed a proteogenomic approach for understanding the protein abundance alterations during the initiation of the adipogenic differentiation process. Methods hASC were isolated from adipose tissue of three donors and were then characterized and expanded. Cells were cultured for 24 hours in adipogenic differentiation medium followed by protein extraction. We used shotgun proteomics to compare the proteomic profile of 24 h-adipogenic, differentiated, and undifferentiated hASC. We also used our previous next-generation sequencing data (RNA-seq) of the total and polysomal mRNA fractions of hASC to study posttranscriptional regulation during the initial steps of adipogenesis. Results We identified 3420 proteins out of 48,336 peptides, of which 92 proteins were exclusively identified in undifferentiated hASC and 53 proteins were exclusively found in 24 h-differentiated cells. Using a stringent criterion, we identified 33 differentially abundant proteins when comparing 24 h-differentiated and undifferentiated hASC (14 upregulated and 19 downregulated, respectively). Among the upregulated proteins, we shortlisted several adipogenesis-related proteins. A combined analysis of the proteome and the transcriptome allowed the identification of positive correlation coefficients between proteins and mRNAs. Conclusions These results demonstrate a specific proteome profile related to adipogenesis at the beginning (24 hours) of the differentiation process in hASC, which advances the understanding of human adipogenesis and obesity. Adipogenic differentiation is finely regulated at the transcriptional, posttranscriptional, and posttranslational levels.
Collapse
|
5
|
Retinal S-opsin dominance in Ansell's mole-rats (Fukomys anselli) is a consequence of naturally low serum thyroxine. Sci Rep 2018. [PMID: 29531249 PMCID: PMC5847620 DOI: 10.1038/s41598-018-22705-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mammals usually possess a majority of medium-wavelength sensitive (M-) and a minority of short-wavelength sensitive (S-) opsins in the retina, enabling dichromatic vision. Unexpectedly, subterranean rodents from the genus Fukomys exhibit an S-opsin majority, which is exceptional among mammals, albeit with no apparent adaptive value. Because thyroid hormones (THs) are pivotal for M-opsin expression and metabolic rate regulation, we have, for the first time, manipulated TH levels in the Ansell's mole-rat (Fukomys anselli) using osmotic pumps. In Ansell's mole-rats, the TH thyroxine (T4) is naturally low, likely as an adaptation to the harsh subterranean ecological conditions by keeping resting metabolic rate (RMR) low. We measured gene expression levels in the eye, RMR, and body mass (BM) in TH-treated animals. T4 treatment increased both, S- and M-opsin expression, albeit M-opsin expression at a higher degree. However, this plasticity was only given in animals up to approximately 2.5 years. Mass-specific RMR was not affected following T4 treatment, although BM decreased. Furthermore, the T4 inactivation rate is naturally higher in F. anselli compared to laboratory rodents. This is the first experimental evidence that the S-opsin majority in Ansell's mole-rats is a side effect of low T4, which is downregulated to keep RMR low.
Collapse
|
6
|
Cao K, Hao D, Wang J, Peng W, Yan Y, Cao H, Sun F, Chen H. Cold exposure induces the acquisition of brown adipocyte gene expression profiles in cattle inguinal fat normalized with a new set of reference genes for qRT-PCR. Res Vet Sci 2017; 114:1-5. [DOI: 10.1016/j.rvsc.2017.02.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 11/25/2016] [Accepted: 02/23/2017] [Indexed: 11/27/2022]
|
7
|
Singh S, Rajput YS, Barui AK, Sharma R, Datta TK. Fat accumulation in differentiated brown adipocytes is linked with expression of Hox genes. Gene Expr Patterns 2016; 20:99-105. [PMID: 26820751 DOI: 10.1016/j.gep.2016.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/23/2015] [Accepted: 01/23/2016] [Indexed: 01/30/2023]
Abstract
Homeobox (Hox) genes are involved in body plan of embryo along the anterior-posterior axis. Presence of several Hox genes in white adipose tissue (WAT) and brown adipose tissue (BAT) is indicative of involvement of Hox genes in adipogenesis. We propose that differentiation inducing agents viz. isobutyl-methyl-xanthine (IBMX), indomethacin, dexamethasone (DEX), triiodothyronine (T3) and insulin may regulate differentiation in brown adipose tissue through Hox genes. In vitro culture of brown fat stromalvascular fraction (SVF) in presence or absence of differentiation inducing agents was used for establishing relationship between fat accumulation in differentiated adipocytes and expression of Hox genes. Relative expression of Pref1, UCP1 and Hox genes was determined in different stages of adipogenesis. Presence or absence of IBMX, indomethacin and DEX during differentiation of proliferated pre-adipocytes resulted in marked differences in expression of Hox genes and lipid accumulation. In presence of these inducing agents, lipid accumulation as well as expression of HoxA1, HoxA5, HoxC4 &HoxC8 markedly enhanced. Irrespective of presence or absence of T3, insulin down regulates HoxA10. T3 results in over expression of HoxA5, HoxC4 and HoxC8 genes, whereas insulin up regulates expression of only HoxC8. Findings suggest that accumulation of fat in differentiated adipocytes is linked with expression of Hox genes.
Collapse
Affiliation(s)
- Smita Singh
- Animal Biochemistry Division, National Dairy Researikch Institute, Karnal, Haryana, 132001, India
| | - Yudhishthir S Rajput
- Animal Biochemistry Division, National Dairy Researikch Institute, Karnal, Haryana, 132001, India.
| | - Amit K Barui
- Dairy Chemistry Division, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Rajan Sharma
- Dairy Chemistry Division, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Tirtha K Datta
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|