1
|
Watanabe K, Imanishi S, Kayukawa T, Tateishi K. Establishment of 27 cell lines derived from various insects. In Vitro Cell Dev Biol Anim 2025:10.1007/s11626-025-01031-4. [PMID: 40198433 DOI: 10.1007/s11626-025-01031-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/19/2024] [Indexed: 04/10/2025]
Abstract
Insect cell lines are valuable for basic and applied biological research. In this study, we established 27 cell lines from various insect species, including Hemiptera: Nilaparvata lugens, Coleoptera: Sitophilus oryzae, Hymenoptera: Allantus luctifer and Trichogramma ssp., Diptera: Culicoides oxystoma, Lepidoptera: Spodoptera litura, Mythimna separata, Bombyx mori, Agrius convolvuli, Plodia interpunctella, and Cryptophlebia horii. This is the first report of cell lines derived from A. luctifer, C. oxystoma, A. convolvuli, and C. horii. Additionally, cell lines from S. litura and M. separata were established from different tissues including the hemocytes, fat bodies, embryos, and Malpighian tubules. Eighteen cell lines were successfully adapted to commercial culture media, with the population doubling time ranging from 1 to 8 d. The identities of the cell lines were confirmed using DNA barcoding. These established cell lines could be valuable for various research applications.
Collapse
Affiliation(s)
- Kazuyo Watanabe
- Division of Insect Advanced Technology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2, Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Shigeo Imanishi
- Division of Insect Advanced Technology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2, Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Takumi Kayukawa
- Division of Insect Advanced Technology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2, Owashi, Tsukuba, Ibaraki, 305-8634, Japan.
| | - Ken Tateishi
- Division of Insect Advanced Technology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2, Owashi, Tsukuba, Ibaraki, 305-8634, Japan.
| |
Collapse
|
2
|
Kalita AI, Keller Valsecchi CI. Dosage compensation in non-model insects - progress and perspectives. Trends Genet 2025; 41:76-98. [PMID: 39341686 DOI: 10.1016/j.tig.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024]
Abstract
In many multicellular eukaryotes, heteromorphic sex chromosomes are responsible for determining the sexual characteristics and reproductive functions of individuals. Sex chromosomes can cause a dosage imbalance between sexes, which in some species is re-equilibrated by dosage compensation (DC). Recent genomic advances have extended our understanding of DC mechanisms in insects beyond model organisms such as Drosophila melanogaster. We review current knowledge of insect DC, focusing on its conservation and divergence across orders, the evolutionary dynamics of neo-sex chromosomes, and the diversity of molecular mechanisms. We propose a framework to uncover DC regulators in non-model insects that relies on integrating evolutionary, genomic, and functional approaches. This comprehensive approach will facilitate a deeper understanding of the evolution and essentiality of gene regulatory mechanisms.
Collapse
|
3
|
He X, Lu L, Huang P, Yu B, Peng L, Zou L, Ren Y. Insect Cell-Based Models: Cell Line Establishment and Application in Insecticide Screening and Toxicology Research. INSECTS 2023; 14:104. [PMID: 36835673 PMCID: PMC9965340 DOI: 10.3390/insects14020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
During the past decades, research on insect cell culture has grown tremendously. Thousands of lines have been established from different species of insect orders, originating from several tissue sources. These cell lines have often been employed in insect science research. In particular, they have played important roles in pest management, where they have been used as tools to evaluate the activity and explore the toxic mechanisms of insecticide candidate compounds. This review intends to first briefly summarize the progression of insect cell line establishment. Then, several recent studies based on insect cell lines coupled with advanced technologies are introduced. These investigations revealed that insect cell lines can be exploited as novel models with unique advantages such as increased efficiency and reduced cost compared with traditional insecticide research. Most notably, the insect cell line-based models provide a global and in-depth perspective to study the toxicology mechanisms of insecticides. However, challenges and limitations still exist, especially in the connection between in vitro activity and in vivo effectiveness. Despite all this, recent advances have suggested that insect cell line-based models promote the progress and sensible application of insecticides, which benefits pest management.
Collapse
|
4
|
Herran B, Sugimoto TN, Watanabe K, Imanishi S, Tsuchida T, Matsuo T, Ishikawa Y, Kageyama D. Cell-based analysis reveals that sex-determining gene signals in Ostrinia are pivotally changed by male-killing Wolbachia. PNAS NEXUS 2022; 2:pgac293. [PMID: 36712932 PMCID: PMC9837667 DOI: 10.1093/pnasnexus/pgac293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Wolbachia, a maternally transmitted bacterium, shows male-killing, an adaptive phenotype for cytoplasmic elements, in various arthropod species during the early developmental stages. In lepidopteran insects, lethality of males is accounted for by improper dosage compensation in sex-linked genes owing to Wolbachia-induced feminization. Herein, we established Ostrinia scapulalis cell lines that retained sex specificity per the splicing pattern of the sex-determining gene doublesex (Osdsx). We found that Wolbachia transinfection in male cell lines enhanced the female-specific splice variant of Osdsx (OsdsxF ) while suppressing the male-specific variant (OsdsxM ), indicating that Wolbachia affects sex-determining gene signals even in vitro. Comparative transcriptome analysis isolated only two genes that behave differently upon Wolbachia infection. The two genes were respectively homologous to Masculinizer (BmMasc) and zinc finger-2 (Bmznf-2), male-specifically expressed sex-determining genes of the silkworm Bombyx mori that encode CCCH-type zinc finger motif proteins. By using cultured cells and organismal samples, OsMasc and Osznf-2 were found to be sex-determining genes of O. scapulalis that are subjected to sex-specific alternative splicing depending upon the chromosomal sex, developmental stage, and infection status. Overall, our findings expound the cellular autonomy in insect sex determination and the mechanism through which sex is manipulated by intracellular selfish microbes.
Collapse
Affiliation(s)
| | | | - Kazuyo Watanabe
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-0851, Japan
| | - Shigeo Imanishi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba, Ibaraki 305-0851, Japan
| | - Tsutomu Tsuchida
- Faculty of Science, Academic Assembly, Toyama University, 3190 Gofuku, Toyama 930-8555, Japan
| | - Takashi Matsuo
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yukio Ishikawa
- Faculty of Agriculture, Setsunan University, 45-1 Nagaotogecho, Hirakata, Osaka 573-0101, Japan
| | | |
Collapse
|
5
|
Arya SK, Goodman CL, Stanley D, Palli SR. A database of crop pest cell lines. In Vitro Cell Dev Biol Anim 2022; 58:719-757. [PMID: 35994130 DOI: 10.1007/s11626-022-00710-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/13/2022] [Indexed: 11/27/2022]
Abstract
We have developed an online database describing the known cell lines from Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera that were developed from agricultural pests. Cell line information has been primarily obtained from previous compilations of insect cell lines. We conducted in-depth Internet literature searches and drew on Internet sources such as the Cellosaurus database (https://web.expasy.org/cellosaurus/), and inventories from cell line depositories. Here, we report on a new database of insect cell lines, which covers 719 cell lines from 86 species. We have not included cell lines developed from Drosophila because they are already known from published databases, such as https://dgrc.bio.indiana.edu/cells/Catalog. We provide the designation, tissue and species of origin, cell line developer, unique characteristics, its use in various applications, publications, and patents, and, when known, insect virus susceptibility. This information has been assembled and organized into a searchable database available at the link https://entomology.ca.uky.edu/aginsectcellsdatabase which will be updated on an ongoing basis.
Collapse
Affiliation(s)
- Surjeet Kumar Arya
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Cynthia L Goodman
- Biological Control of Insects Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Columbia, Missouri, 65203, USA
| | - David Stanley
- Biological Control of Insects Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Columbia, Missouri, 65203, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
6
|
Watanabe K, Yoshiyama M, Akiduki G, Yokoi K, Hoshida H, Kayukawa T, Kimura K, Hatakeyama M. A simple method for ex vivo honey bee cell culture capable of in vitro gene expression analysis. PLoS One 2021; 16:e0257770. [PMID: 34555120 PMCID: PMC8460014 DOI: 10.1371/journal.pone.0257770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/09/2021] [Indexed: 01/29/2023] Open
Abstract
Cultured cells are a very powerful tool for investigating biological events in vitro; therefore, cell lines have been established not only in model insect species, but also in non-model species. However, there are few reports on the establishment of stable cell lines and development of systems to introduce genes into the cultured cells of the honey bee (Apis mellifera). We describe a simple ex vivo cell culture system for the honey bee. Hemocyte cells obtained from third and fourth instar larvae were cultured in commercial Grace’s insect medium or MGM-450 insect medium for more than two weeks maintaining a normal morphology without deterioration. After an expression plasmid vector bearing the enhanced green fluorescent protein (egfp) gene driven by the immediate early 2 (IE2) viral promoter was transfected into cells, EGFP fluorescence was detected in cells for more than one week from one day after transfection. Furthermore, double-stranded RNA corresponding to a part of the egfp gene was successfully introduced into cells and interfered with egfp gene expression. A convenient and reproducible method for an ex vivo cell culture that is fully practicable for gene expression assays was established for the honey bee.
Collapse
Affiliation(s)
- Kazuyo Watanabe
- Insect Gene Function Research Unit, Division of Insect Sciences, Institute of Agrobiological Sciences, NARO, Owashi, Tsukuba, Japan
| | - Mikio Yoshiyama
- Animal Genetics Unit, Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, NARO, Ikenodai, Tsukuba, Japan
| | - Gaku Akiduki
- Insect Pest Management Group, Division of Agro-Environment Research, Kyushu Okinawa Agricultural Research Center, NARO, Koshi, Kumamoto, Japan
| | - Kakeru Yokoi
- Insect Genome Research and Engineering Unit, Division of Applied Genetics, Institute of Agrobiological Sciences, NARO, Owashi, Tsukuba, Japan
| | - Hiroko Hoshida
- Insect Genome Research and Engineering Unit, Division of Applied Genetics, Institute of Agrobiological Sciences, NARO, Owashi, Tsukuba, Japan
| | - Takumi Kayukawa
- Insect Gene Function Research Unit, Division of Insect Sciences, Institute of Agrobiological Sciences, NARO, Owashi, Tsukuba, Japan
| | - Kiyoshi Kimura
- Animal Genetics Unit, Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, NARO, Ikenodai, Tsukuba, Japan
| | - Masatsugu Hatakeyama
- Insect Genome Research and Engineering Unit, Division of Applied Genetics, Institute of Agrobiological Sciences, NARO, Owashi, Tsukuba, Japan
- * E-mail:
| |
Collapse
|