1
|
She Z, Dong H, Li Y, Chen P, Zhou C, Wang W, Jia Z, Shi Q. MiRNA29a-3p negatively regulates ISL1-Integrin β1 axis to suppress gastric cancer progression. Exp Cell Res 2024; 443:114288. [PMID: 39490753 DOI: 10.1016/j.yexcr.2024.114288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/22/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Insulin gene enhancer protein 1 (ISL1) belongs to the LIM homeodomain transcription factor family, which is closely related to the development of several cancers. We previously found that abnormally high ISL1 expression is involved in gastric cancer (GC) metastasis. However, the specific role of ISL1 and its regulatory mechanisms in GC metastasis warrant elucidation. In this study, we found that ISL1 is highly expressed in GC tissues and positively correlated with GC development, promoting cell migration and invasion in vivo and in vitro. Moreover, miRNA29a-3p can target ISL1 and thus inhibit GC cell migration. Furthermore, ISL1 upregulates ITGB1 by binding to its enhancer; nevertheless, ISL1-ITGB1 axis expression can be regulated using miRNA29a-3p. In GC cell nuclei, ISL1 and annexin A2 (ANXA2) form a transcriptional activator complex at the ITGB1 enhancer, thus promoting ITGB1 expression. In GC cell cytoplasm, the ISL1-ANXA2 complex synergistically activates matrix metalloproteinases, thus promoting cell migration. In conclusion, ISL1 is a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Ziwei She
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Haosheng Dong
- Department of Clinical Laboratory, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, Yunnan Province, 650118, PR China
| | - Yang Li
- Department of Clinical Laboratory, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, Yunnan Province, 650118, PR China
| | - Ping Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Chunyan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China
| | - Weiping Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China.
| | - Zhuqing Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, PR China.
| | - Qiong Shi
- Department of Clinical Laboratory, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, Yunnan Province, 650118, PR China.
| |
Collapse
|
2
|
Ghasemi Gojani E, Rai S, Norouzkhani F, Shujat S, Wang B, Li D, Kovalchuk O, Kovalchuk I. Targeting β-Cell Plasticity: A Promising Approach for Diabetes Treatment. Curr Issues Mol Biol 2024; 46:7621-7667. [PMID: 39057094 PMCID: PMC11275945 DOI: 10.3390/cimb46070453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The β-cells within the pancreas play a pivotal role in insulin production and secretion, responding to fluctuations in blood glucose levels. However, factors like obesity, dietary habits, and prolonged insulin resistance can compromise β-cell function, contributing to the development of Type 2 Diabetes (T2D). A critical aspect of this dysfunction involves β-cell dedifferentiation and transdifferentiation, wherein these cells lose their specialized characteristics and adopt different identities, notably transitioning towards progenitor or other pancreatic cell types like α-cells. This process significantly contributes to β-cell malfunction and the progression of T2D, often surpassing the impact of outright β-cell loss. Alterations in the expressions of specific genes and transcription factors unique to β-cells, along with epigenetic modifications and environmental factors such as inflammation, oxidative stress, and mitochondrial dysfunction, underpin the occurrence of β-cell dedifferentiation and the onset of T2D. Recent research underscores the potential therapeutic value for targeting β-cell dedifferentiation to manage T2D effectively. In this review, we aim to dissect the intricate mechanisms governing β-cell dedifferentiation and explore the therapeutic avenues stemming from these insights.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.)
| |
Collapse
|
3
|
Liu H, Niu T, Qiu G, Cui S, Zhang D. Taurine promotes insulin synthesis by enhancing Isl-1 expression through miR-7a/RAF1/ERK1/2 pathway. In Vitro Cell Dev Biol Anim 2024; 60:23-35. [PMID: 38117455 DOI: 10.1007/s11626-023-00835-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/04/2023] [Indexed: 12/21/2023]
Abstract
It has been well established that the circulating taurine affects the insulin synthesis in pancreatic islet β-cells, whereas miR-7a and LIM-homeodomain transcription factor Isl-1 are important intracellular factors regulating insulin transcription and synthesis. However, it still remains unknown whether taurine regulates insulin synthesis by affecting miR-7a and/or Isl-1 expressions in mouse pancreatic islet β-cells. The present study was thus proposed to identify the effects of taurine on the expressions of miR-7a and/or Isl-1 and their relations to insulin synthesis in mouse pancreatic islet β-cells by using miR-7a2 knockout (KO) and taurine transporter (TauT) KO mouse models and the related in vitro experiments. The results demonstrated that taurine supplement significantly decreased the pancreas miR-7a expression, but sharply upregulated the pancreas Isl-1 and insulin expressions, and serum insulin levels. However, the enhanced effects of taurine on Isl-1 expression and insulin synthesis were mitigated in the TauT KO and miR-7a2 KO mice. In addition, our results confirmed that taurine markedly increased pancreas RAF1 and ERK1/2 expressions. Collectively, the present study firstly demonstrates that taurine regulates insulin synthesis through TauT/miR-7a/RAF1/ERK1/2/Isl-1 signaling pathway, which are crucial for our understanding the mechanisms of taurine affecting insulin synthesis, and also potential for establishing the therapeutic strategies for diabetes and the diseases related to metabolism.
Collapse
Affiliation(s)
- Hui Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Tongjuan Niu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Guobin Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Di Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Narayan G, Ronima K R, Agrawal A, Thummer RP. An Insight into Vital Genes Responsible for β-cell Formation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1450:1-27. [PMID: 37432546 DOI: 10.1007/5584_2023_778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The regulation of glucose homeostasis and insulin secretion by pancreatic β-cells, when disturbed, will result in diabetes mellitus. Replacement of dysfunctional or lost β-cells with fully functional ones can tackle the problem of β-cell generation in diabetes mellitus. Various pancreatic-specific genes are expressed during different stages of development, which have essential roles in pancreatogenesis and β-cell formation. These factors play a critical role in cellular-based studies like transdifferentiation or de-differentiation of somatic cells to multipotent or pluripotent stem cells and their differentiation into functional β-cells. This work gives an overview of crucial transcription factors expressed during various stages of pancreas development and their role in β-cell specification. In addition, it also provides a perspective on the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Gloria Narayan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Ronima K R
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Akriti Agrawal
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
5
|
Lin X, Cheng L, Wan Y, Yan Y, Zhang Z, Li X, Wu J, Wang X, Xu M. Ang II Controls the Expression of Mapkap1 by miR-375 and Affects the Function of Islet β Cells. Endocr Metab Immune Disord Drug Targets 2023; 23:1186-1200. [PMID: 36748222 PMCID: PMC10514520 DOI: 10.2174/1871530323666230206121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/08/2023]
Abstract
BACKGROUND The RAS system is involved in the regulation of islet function, but its regulation remains unclear. OBJECTIVE This study investigates the role of an islet-specific miR-375 in the effect of RAS system on islet β-cells. METHODS miR-375 mimics and inhibitors were transfected into insulin-secreting MIN6 cells in the presence or absence of RAS component. RESULTS Compared to control, in Ang II-treated MIN6 cells, miR-375 mimic transfection results in a decrement in cell viability and Akt-Ser levels (0.739±0.05 vs. 0.883±0.06 and 0.40±0.04 vs. 0.79±0.04, respectively), while the opposite occurred in miR-375 inhibitor-transfected cells (1.032±0.11 vs. 0.883±0.06 and 0.98±0.05 vs. 0.79±0.04, respectively, P<0.05). Mechanistically, transfection of miR- 375 mimics into Ang II-treated MIN6 cells significantly reduced the expression of Mapkap1 protein (0.97±0.15 vs. 0.63±0.06, P<0.05); while miR-375 inhibitor-transfected cells elevated Mapkap1 expression level (0.35±0.11 vs. 0.90±0.05, P<0.05), without changes in mRNA expression. Transfection of miR-375 specific inhibitors TSB-Mapkap1 could elevate Mapkap1 (1.62±0.02 vs. 0.68±0.01, P<0.05), while inhibition of Mapkap1 could significantly reduce the level of Akt-Ser473 phosphorylation (0.60±0.14 vs. 1.80±0.27, P<0.05). CONCLUSION The effects of Ang II on mouse islet β cells were mediated by miR-375 through miR- 375/Mapkap 1 axis. This targeted regulation may occur by affecting Akt phosphorylation of β cells. These results may provide new ideas and a scientific basis for further development of miRNA-targeted islet protection measures.
Collapse
Affiliation(s)
- Xiuhong Lin
- Department of Clinical Nutrition, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Lin Cheng
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Yan Wan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Yuerong Yan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Zhuo Zhang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Xiaohui Li
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Jiayun Wu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Xiaoyi Wang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| | - Mingtong Xu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 Yanjiangxi Road, Guangzhou, Guangdong, 510120, People’s Republic of China, China
| |
Collapse
|