1
|
Gowtham A, Kaundal RK. Exploring the ncRNA landscape in exosomes: Insights into wound healing mechanisms and therapeutic applications. Int J Biol Macromol 2025; 292:139206. [PMID: 39732230 DOI: 10.1016/j.ijbiomac.2024.139206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Exosomal non-coding RNAs (ncRNAs), including miRNAs, lncRNAs, and circRNAs, have emerged as crucial modulators in cellular signaling, influencing wound healing processes. Stem cell-derived exosomes, which serve as vehicles for these ncRNAs, show remarkable therapeutic potential due to their ability to modulate wound healing stages, from initial inflammation to collagen formation. These ncRNAs act as molecular signals, regulating gene expression and protein synthesis necessary for cellular responses in healing. Wound healing is a complex, staged process involving inflammation, hemostasis, fibroblast proliferation, angiogenesis, and tissue remodeling. Stem cell-derived exosomal ncRNAs enhance these stages by reducing excessive inflammation, promoting anti-inflammatory responses, guiding fibroblast and keratinocyte maturation, enhancing vascularization, and ensuring organized collagen deposition. Their molecular cargo, particularly ncRNAs, specifically targets pathways to aid chronic wound repair and support scarless regeneration. This review delves into the unique composition and signaling roles of Stem cell-derived exosomes and ncRNAs, highlighting their impact across wound healing stages and their potential as innovative therapeutics. Understanding the interaction between exosomal ncRNAs and cellular signaling pathways opens new avenues in regenerative medicine, positioning Stem cell-derived exosomes and their ncRNAs as promising molecular-level interventions in wound healing.
Collapse
Affiliation(s)
- A Gowtham
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India.
| |
Collapse
|
2
|
Abdelkader MAE, Mediatrice H, Lin D, Lin Z, Aggag SA. Mitigating Oxidative Stress and Promoting Cellular Longevity with Mushroom Extracts. Foods 2024; 13:4028. [PMID: 39766971 PMCID: PMC11727512 DOI: 10.3390/foods13244028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/28/2024] [Accepted: 12/07/2024] [Indexed: 01/15/2025] Open
Abstract
Oxidative stress can disrupt the body's ability to fight harmful free radicals, leading to premature aging and various health complications. This study investigated the antioxidant and anti-aging properties of four medicinal and edible mushrooms: Ganoderma lucidum, Hericium erinaceus, Pleurotus ostreatus, and Agaricus bisporus. The antioxidant activity of mushroom extracts was evaluated using (DPPH-ABTS-Reducing power). The anti-aging effects were assessed using Human Skin Fibroblasts (HSF) cells subjected to D-galactose-induced aging (30 g/L/72 h) and treated with mushroom extracts (0.03-0.25 mg/mL/72 h). The results demonstrated that all mushrooms have significant antioxidant and anti-aging properties, with low concentrations of extracts (0.03 mg/mL) effectively promoting cell proliferation at an 87% rate in the Agaricus bisporus extract, enhancing cell cycle progression by reducing the arrested cells in the G0/G1 phase to 75%, and promoting DNA synthesis in S phase by more than 16.36% in the Hericium erinaceus extract. Additionally, the extracts reduced DNA damage and Reactive Oxygen Species (ROS) levels, protecting cells from oxidative stress and potentially contributing to anti-aging effects. The mushrooms also exhibited immunomodulatory and anti-inflammatory effects by upregulating the IL-2, IL-4, and downregulating IL-6 expression, indicating their potential to promote general health. These findings suggest the potential of mushroom extracts as natural agents for reducing the negative effects of aging while promoting cellular health. Further research is required to explore the specific bioactive compounds responsible for these beneficial effects and to evaluate their efficacy in vivo.
Collapse
Affiliation(s)
- Menna-Allah E. Abdelkader
- China National Engineering Research Center of Juncao Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-A.E.A.); (H.M.); (Z.L.)
- Department of Genetics, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt;
| | - Hatungimana Mediatrice
- China National Engineering Research Center of Juncao Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-A.E.A.); (H.M.); (Z.L.)
- Rwanda Agriculture and Animal Resources Development Board, P.O. Box 5016 Kigali, Rwanda
| | - Dongmei Lin
- China National Engineering Research Center of Juncao Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-A.E.A.); (H.M.); (Z.L.)
| | - Zhanxi Lin
- China National Engineering Research Center of Juncao Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-A.E.A.); (H.M.); (Z.L.)
| | - Sarah A. Aggag
- Department of Genetics, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt;
| |
Collapse
|
3
|
Lu Y, Pan G, Wei Z, Li Y, Pan X. Role of fibroblast autophagy and proliferation in skin anti-aging. Exp Gerontol 2024; 196:112559. [PMID: 39182739 DOI: 10.1016/j.exger.2024.112559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Skin, as the outermost protective barrier of the body, becomes damaged with age and exposure to external stimuli. Dermal fibroblasts age and undergo apoptosis, which decreases collagen, collagen fibers, elastic fibers, hyaluronic acid, etc., leading skin to loss of elasticity and appearance of wrinkles. Skin aging is complex, involving several biological reactions,and various treatment methods are used to treat it. This review focuses on the importance of autophagy and cell proliferation in skin anti-aging, summarizes research progress on skin anti-aging by regulating autophagy and promoting the proliferation of dermal fibroblasts, and discusses future directions on skin anti-aging research.
Collapse
Affiliation(s)
- Yantong Lu
- Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Guangjuan Pan
- Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zhiying Wei
- Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Nanning 530200, China
| | - Yaohua Li
- Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Nanning 530200, China; The Collaborative Innovation Center of Zhuang and Yao Ethnic Medicine, Nanning 530200, China; Guangxi Engineering Research Center of Ethnic Medicine Resources and Application, Nanning 530200, China.
| | - Xiaojiao Pan
- Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Nanning 530200, China; The Collaborative Innovation Center of Zhuang and Yao Ethnic Medicine, Nanning 530200, China; Guangxi Engineering Research Center of Ethnic Medicine Resources and Application, Nanning 530200, China.
| |
Collapse
|
4
|
Fang X, Zhang S, Wu M, Luo Y, Chen X, Zhou Y, Zhang Y, Liu X, Yao X. Systemic comparison of molecular characteristics in different skin fibroblast senescent models. Chin Med J (Engl) 2024:00029330-990000000-01259. [PMID: 39329281 DOI: 10.1097/cm9.0000000000003312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Senescent human skin primary fibroblast (FB) models have been established for studying aging-related, proliferative, and inflammatory skin diseases. The aim of this study was to compare the transcriptome characteristics of human primary dermal FBs from children and the elderly with four senescence models. METHODS Human skin primary FBs were obtained from healthy children (FB-C) and elderly donors (FB-E). Senescence models were generated by ultraviolet B irradiation (FB-UVB), D-galactose stimulation (FB-D-gal), atazanavir treatment (FB-ATV), and replication exhaustion induction (FB-P30). Flow cytometry, immunofluorescence staining, real-time quantitative polymerase chain reaction, co-culturing with immune cells, and bulk RNA sequencing were used for systematic comparisons of the models. RESULTS In comparison with FB-C, FB-E showed elevated expression of senescence-related genes related to the skin barrier and extracellular matrix, proinflammatory factors, chemokines, oxidative stress, and complement factors. In comparison with FB-E, FB-UVB and FB-ATV showed higher levels of senescence and expression of the genes related to the senescence-associated secretory phenotype (SASP), and their shaped immune microenvironment highly facilitated the activation of downstream immune cells, including T cells, macrophages, and natural killer cells. FB-P30 was most similar to FB-E in terms of general transcriptome features, such as FB migration and proliferation, and aging-related characteristics. FB-D-gal showed the lowest expression levels of senescence-related genes. In comparisons with the single-cell RNA sequencing results, FB-E showed almost complete simulation of the transcriptional spectrum of FBs in elderly patients with atopic dermatitis, followed by FB-P30 and FB-UVB. FB-E and FB-P30 showed higher similarity with the FBs in keloids. CONCLUSIONS Each senescent FB model exhibited different characteristics. In addition to showing upregulated expression of natural senescence features, FB-UVB and FB-ATV showed high expression levels of senescence-related genes, including those involved in the SASP, and FB-P30 showed the greatest similarity with FB-E. However, D-galactose-stimulated FBs did not clearly present aging characteristics.
Collapse
Affiliation(s)
- Xiaokai Fang
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu 210042, China
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Alquraisy A, Wilar G, Mohammed AFA, El-Rayyes A, Suhandi C, Wathoni N. A Comprehensive Review of Stem Cell Conditioned Media Role for Anti-Aging on Skin. Stem Cells Cloning 2024; 17:5-19. [PMID: 39310304 PMCID: PMC11416772 DOI: 10.2147/sccaa.s480437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Various studies have been widely conducted on conditioned medium for the development of anti-aging preparations, including the utilization of stem cells, which present a promising alternative solution. This narrative review aims to understand the latest developments in various conditioned medium stem cell applications for anti-aging on the skin. A search of the Scopus database yielded publications of interest. The research focused on articles published without restrictions on the year. After finding 68 articles in the search results, they moved on to the checking phase. Upon comprehensive literature review, 23 articles met the inclusion criteria, while 45 articles were deemed ineligible for participation in this research. The results of the review indicate that conditioned medium from various stem cells has demonstrated success in reducing risk factors for skin aging, as proven in various tests. The successful reduction of the risk of skin aging has been established in vitro, in vivo, and in clinical trials. Given the numerous studies on the progress of exploring and utilizing conditioned medium, it is expected to provide a solution to the problem of skin aging.
Collapse
Affiliation(s)
- Ayatulloh Alquraisy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Padjadjaran, Sumedang, 45363, Indonesia
| | - Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, University of Padjadjaran, Sumedang, 45363, Indonesia
| | | | - Ali El-Rayyes
- Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Cecep Suhandi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Padjadjaran, Sumedang, 45363, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|
6
|
Xiang JY, Kang L, Li ZM, Tseng SL, Wang LQ, Li TH, Li ZJ, Huang JZ, Yu NZ, Long X. Biological scaffold as potential platforms for stem cells: Current development and applications in wound healing. World J Stem Cells 2024; 16:334-352. [PMID: 38690516 PMCID: PMC11056631 DOI: 10.4252/wjsc.v16.i4.334] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/20/2024] [Accepted: 03/12/2024] [Indexed: 04/25/2024] Open
Abstract
Wound repair is a complex challenge for both clinical practitioners and researchers. Conventional approaches for wound repair have several limitations. Stem cell-based therapy has emerged as a novel strategy to address this issue, exhibiting significant potential for enhancing wound healing rates, improving wound quality, and promoting skin regeneration. However, the use of stem cells in skin regeneration presents several challenges. Recently, stem cells and biomaterials have been identified as crucial components of the wound-healing process. Combination therapy involving the development of biocompatible scaffolds, accompanying cells, multiple biological factors, and structures resembling the natural extracellular matrix (ECM) has gained considerable attention. Biological scaffolds encompass a range of biomaterials that serve as platforms for seeding stem cells, providing them with an environment conducive to growth, similar to that of the ECM. These scaffolds facilitate the delivery and application of stem cells for tissue regeneration and wound healing. This article provides a comprehensive review of the current developments and applications of biological scaffolds for stem cells in wound healing, emphasizing their capacity to facilitate stem cell adhesion, proliferation, differentiation, and paracrine functions. Additionally, we identify the pivotal characteristics of the scaffolds that contribute to enhanced cellular activity.
Collapse
Affiliation(s)
- Jie-Yu Xiang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lin Kang
- Biomedical Engineering Facility, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Zi-Ming Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Song-Lu Tseng
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Li-Quan Wang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Tian-Hao Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhu-Jun Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jiu-Zuo Huang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Nan-Ze Yu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiao Long
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
7
|
Zhao L, Tang P, Lin Y, Du M, Li H, Jiang L, Xu H, Sun H, Han J, Sun Z, Xu R, Lou H, Chen Z, Kopylov P, Liu X, Zhang Y. MiR-203 improves cardiac dysfunction by targeting PARP1-NAD + axis in aging murine. Aging Cell 2024; 23:e14063. [PMID: 38098220 PMCID: PMC10928583 DOI: 10.1111/acel.14063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/08/2023] [Accepted: 11/26/2023] [Indexed: 03/13/2024] Open
Abstract
Heart aging is a prevalent cause of cardiovascular diseases among the elderly. NAD+ depletion is a hallmark feature of aging heart, however, the molecular mechanisms that affect NAD+ depletion remain unclear. In this study, we identified microRNA-203 (miR-203) as a senescence-associated microRNA that regulates NAD+ homeostasis. We found that the blood miR-203 level negatively correlated with human age and its expression significantly decreased in the hearts of aged mice and senescent cardiomyocytes. Transgenic mice with overexpressed miR-203 (TgN (miR-203)) showed resistance to aging-induced cardiac diastolic dysfunction, cardiac remodeling, and myocardial senescence. At the cellular level, overexpression of miR-203 significantly prevented D-gal-induced cardiomyocyte senescence and mitochondrial damage, while miR-203 knockdown aggravated these effects. Mechanistically, miR-203 inhibited PARP1 expression by targeting its 3'UTR, which helped to reduce NAD+ depletion and improve mitochondrial function and cell senescence. Overall, our study first identified miR-203 as a genetic tool for anti-heart aging by restoring NAD+ function in cardiomyocytes.
Collapse
Affiliation(s)
- Limin Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Pingping Tang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuan Lin
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Menghan Du
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Huimin Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lintong Jiang
- Department of Pharmacy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Henghui Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Heyang Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jingjing Han
- Department of Pharmacy, Caoxian People's Hospital, Heze, China
| | - Zeqi Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Run Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Han Lou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhouxiu Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Philipp Kopylov
- Department of Preventive and Emergency Cardiology, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Xin Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, Harbin, China
| | - Yong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, Harbin, China
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, China
| |
Collapse
|
8
|
Zhou C, Zhang B, Yang Y, Jiang Q, Li T, Gong J, Tang H, Zhang Q. Stem cell-derived exosomes: emerging therapeutic opportunities for wound healing. Stem Cell Res Ther 2023; 14:107. [PMID: 37101197 PMCID: PMC10134577 DOI: 10.1186/s13287-023-03345-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
Wound healing is a dynamic and highly sequential process involving a series of overlapping spatial and temporal phases, including hemostasis, inflammation, proliferation, and tissue remodeling. Mesenchymal stem cells (MSCs) are multipotent stem cells with self-renewal, multidirectional differentiation potential, and paracrine regulation. Exosomes are subcellular vesicular components 30-150 nm in size and are novel carriers of intercellular communication in regulating the biological behaviors of skin cells. Compared to MSCs, MSC-derived exosomes (MSC-exos) possess lower immunogenicity, easy storage, and highly effective biological activity. MSC-exos, mainly derived from adipose-derived stem cells (ADSCs), bone marrow-derived MSCs (BMSCs), human umbilical cord MSCs (hUC-MSCs), and other stem cell types, play a role in shaping the activity of fibroblasts, keratinocytes, immune cells, and endothelial cells in diabetic wounds, inflammatory wound repair, and even wound-related keloid formation. Therefore, this study focuses on the specific roles and mechanisms of different MSC-exos in wound healing, as well as the current limitations and various perspectives. Deciphering the biological properties of MSC-exos is crucial to providing a promising cell-free therapeutic tool for wound healing and cutaneous regeneration.
Collapse
Affiliation(s)
- Chuchao Zhou
- Department of Plastic Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, 430060, China
| | - Boyu Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yanqing Yang
- Department of Plastic Surgery, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, 430060, China
| | - Qiong Jiang
- Department of Pharmacy, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, 437000, Hubei, China
| | - Tianyu Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Gong
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| | - Hongbo Tang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
9
|
Fraile M, Eiro N, Costa LA, Martín A, Vizoso FJ. Aging and Mesenchymal Stem Cells: Basic Concepts, Challenges and Strategies. BIOLOGY 2022; 11:1678. [PMID: 36421393 PMCID: PMC9687158 DOI: 10.3390/biology11111678] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 08/27/2023]
Abstract
Aging and frailty are complex processes implicating multifactorial mechanisms, such as replicative senescence, oxidative stress, mitochondrial dysfunction, or autophagy disorder. All of these mechanisms drive dramatic changes in the tissue environment, such as senescence-associated secretory phenotype factors and inflamm-aging. Thus, there is a demand for new therapeutic strategies against the devastating effects of the aging and associated diseases. Mesenchymal stem cells (MSC) participate in a "galaxy" of tissue signals (proliferative, anti-inflammatory, and antioxidative stress, and proangiogenic, antitumor, antifibrotic, and antimicrobial effects) contributing to tissue homeostasis. However, MSC are also not immune to aging. Three strategies based on MSC have been proposed: remove, rejuvenate, or replace the senescent MSC. These strategies include the use of senolytic drugs, antioxidant agents and genetic engineering, or transplantation of younger MSC. Nevertheless, these strategies may have the drawback of the adverse effects of prolonged use of the different drugs used or, where appropriate, those of cell therapy. In this review, we propose the new strategy of "Exogenous Restitution of Intercellular Signalling of Stem Cells" (ERISSC). This concept is based on the potential use of secretome from MSC, which are composed of molecules such as growth factors, cytokines, and extracellular vesicles and have the same biological effects as their parent cells. To face this cell-free regenerative therapy challenge, we have to clarify key strategy aspects, such as establishing tools that allow us a more precise diagnosis of aging frailty in order to identify the therapeutic requirements adapted to each case, identify the ideal type of MSC in the context of the functional heterogeneity of these cellular populations, to optimize the mass production and standardization of the primary materials (cells) and their secretome-derived products, to establish the appropriate methods to validate the anti-aging effects and to determine the most appropriate route of administration for each case.
Collapse
Affiliation(s)
- Maria Fraile
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
| | - Noemi Eiro
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
| | - Luis A. Costa
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
| | - Arancha Martín
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
- Department of Emergency, Hospital Universitario de Cabueñes, Los Prados, 395, 33394 Gijon, Spain
| | - Francisco J. Vizoso
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
- Department of Surgery, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33920 Gijon, Spain
| |
Collapse
|