1
|
Xue T, Wang Y, Liu Y, Liu Y, Li C. Establishment and characterization of SSI cell line from Sebastes schlegelii intestine for investigating the immune response to Pathogenic Bacteria. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109993. [PMID: 39481502 DOI: 10.1016/j.fsi.2024.109993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
As a commercially valuable fish species, Sebastes schlegelii faces threats from pathogenic bacteria like Edwardsiella piscicida during aquaculture. The global host range of E. piscicida encompasses various species, yet its pathogenic mechanism remains incompletely elucidated. Cell lines offer invaluable in vitro resources for studying the pathogen pathogenicity. Here, we established and characterized a cell line derived from the intestinal tissue of the S. schlegelii, designated as SSI. SSI has undergone continuous subculturing for over 80 passages, demonstrating robust growth in DMEM supplemented with 10%-20% FBS and 20 μM HEPES at 24°C. Karyotype analysis and 18S rRNA amplification confirm its origin. SSI exhibits high transfection efficiency for exogenous DNA, making it suitable for gene expression and intestinal function analysis. E. piscicida infects SSI cells at low densities without inducing morphological changes within 6 h of infection, suggesting the potential of SSI as an in vitro model for studying E. piscicida pathogenicity. This cell line provides a valuable tool for investigating mucosal immunity and E. piscicida pathogenic mechanisms in marine fish.
Collapse
Affiliation(s)
- Ting Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yanmin Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yiping Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuping Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
2
|
Goswami M, Ovissipour R, Bomkamp C, Nitin N, Lakra W, Post M, Kaplan DL. Cell-cultivated aquatic food products: emerging production systems for seafood. J Biol Eng 2024; 18:43. [PMID: 39113103 PMCID: PMC11304657 DOI: 10.1186/s13036-024-00436-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/08/2024] [Indexed: 08/11/2024] Open
Abstract
The demand for fish protein continues to increase and currently accounts for 17% of total animal protein consumption by humans. About 90% of marine fish stocks are fished at or above maximum sustainable levels, with aquaculture propagating as one of the fastest growing food sectors to address some of this demand. Cell-cultivated seafood production is an alternative approach to produce nutritionally-complete seafood products to meet the growing demand. This cellular aquaculture approach offers a sustainable, climate resilient and ethical biotechnological approach as an alternative to conventional fishing and fish farming. Additional benefits include reduced antibiotic use and the absence of mercury. Cell-cultivated seafood also provides options for the fortification of fish meat with healthier compositions, such as omega-3 fatty acids and other beneficial nutrients through scaffold, media or cell approaches. This review addresses the biomaterials, production processes, tissue engineering approaches, processing, quality, safety, regulatory, and social aspects of cell-cultivated seafood, encompassing where we are today, as well as the road ahead. The goal is to provide a roadmap for the science and technology required to bring cellular aquaculture forward as a mainstream food source.
Collapse
Affiliation(s)
- Mukunda Goswami
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Fisheries Education, PanchMarg, Of Yari Road, Versova, Andheri West, Mumbai, 400061, India.
| | - Reza Ovissipour
- Department of Food Science and Technology, Texas A&M University, College Station, TX, 77843, USA
| | - Claire Bomkamp
- The Good Food Institute, PO Box 96503 PMB 42019, Washington, DC, 20090-6503, USA
| | - Nitin Nitin
- Department of Food Science and Technology, University of California, Davis, CA, 95616, USA
| | - Wazir Lakra
- National Academy of Agricultural Sciences, NASC, 110 012, New Delhi, India
| | - Mark Post
- Mosa Meat B.V, Maastricht, Limburg, 6229 PM, the Netherlands
- Department of Physiology, Maastricht University, Maastricht, Limburg, 6229 ER, the Netherlands
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02215, USA.
| |
Collapse
|
3
|
Xu B, Cui Y, A L, Zhang H, Ma Q, Wei F, Liang J. Transcriptomic and proteomic strategies to reveal the mechanism of Gymnocypris przewalskii scale development. BMC Genomics 2024; 25:140. [PMID: 38310220 PMCID: PMC10837935 DOI: 10.1186/s12864-024-10047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/24/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Fish scales are typical products of biomineralization and play an important role in the adaptation of fish to their environment. The Gymnocypris przewalskii scales are highly specialized, with scales embedded in only specific parts of the dermis, such as the areas around the anal fin and branchiostegite, making G. przewalskii an ideal material for biomineralization research. In this study, we aimed to unveil genes and pathways controlling scale formation through an integrated analysis of both transcriptome and proteome, of which G. przewalskii tissues of the dorsal skin (no scales) and the rump side skin (with scales) were sequenced. The sequencing results were further combined with cellular experiments to clarify the relationship between genes and signaling pathways. RESULTS The results indicated the following: (1) a total of 4,904 differentially expressed genes were screened out, including 3,294 upregulated genes and 1,610 downregulated genes (with a filtering threshold of |log2Fold-Change|> 1 and p-adjust < 0.05). The identified differentially expressed genes contained family members such as FGF, EDAR, Wnt10, and bmp. (2) A total of 535 differentially expressed proteins (DEPs) were filtered out from the proteome, with 204 DEPs downregulated and 331 DEPs upregulated (with a filtering threshold of |Fold-Change|> 1.5 and p < 0.05). (3) Integrated analyses of transcriptome and proteome revealed that emefp1, col1a1, col6a2, col16a1, krt8, and krt18 were important genes contributing to scale development and that PI3K-AKT was the most important signaling pathway involved. (4) With the use of the constructed G. przewalskii fibroblast cell line, emefp1, col1a1, col6a2, col16a1, krt8, and krt18 were confirmed to be positively regulated by the PI3K-AKT signaling pathway. CONCLUSION This study provides experimental evidence for PI3K-AKT controlled scale development in G. przewalskii and would benefit further study on stress adaptation, scale biomineralization, and the development of skin appendages.
Collapse
Affiliation(s)
- Baoke Xu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
- School of Ecological and Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
| | - Yanrong Cui
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
- School of Ecological and Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
| | - Linlin A
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
- School of Ecological and Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
| | - Haichen Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
- School of Ecological and Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
| | - Qinghua Ma
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
- School of Ecological and Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
| | - Fulei Wei
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
- School of Ecological and Environmental Engineering, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China
| | - Jian Liang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xining, 810016, People's Republic of China.
| |
Collapse
|