1
|
Pancreatic duct-like cell line derived from pig embryonic stem cells: expression of uroplakin genes in pig pancreatic tissue. In Vitro Cell Dev Biol Anim 2019; 55:285-301. [PMID: 30868438 DOI: 10.1007/s11626-019-00336-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/12/2019] [Indexed: 02/04/2023]
Abstract
The isolation of a cell line, PICM-31D, with phenotypic characteristics like pancreatic duct cells is described. The PICM-31D cell line was derived from the previously described pig embryonic stem cell-derived exocrine pancreatic cell line, PICM-31. The PICM-31D cell line was morphologically distinct from the parental cells in growing as a monolayer rather than self-assembling into multicellular acinar-like structures. The PICM-31D cells were propagated for over a year at split ratios of 1:3 to 1:10 at each passage without change in phenotype or growth rate. Electron microscopy showed the cells to be a polarized epithelium of cuboidal cells joined by tight junction-like adhesions at their apical/lateral aspect. The cells contained numerous mucus-like secretory vesicles under their apical cell membrane. Proteomic analysis of the PICM-31D's cellular proteins detected MUC1 and MUC4, consistent with mucus vesicle morphology. Gene expression analysis showed the cells expressed pancreatic ductal cell-related transcription factors such as GATA4, GATA6, HES1, HNF1A, HNF1B, ONECUT1 (HNF6), PDX1, and SOX9, but little or no pancreas progenitor cell markers such as PTF1A, NKX6-1, SOX2, or NGN3. Pancreas ductal cell-associated genes including CA2, CFTR, MUC1, MUC5B, MUC13, SHH, TFF1, KRT8, and KRT19 were expressed by the PICM-31D cells, but the exocrine pancreas marker genes, CPA1 and PLA2G1B, were not expressed by the cells. However, the exocrine marker, AMY2A, was still expressed by the cells. Surprisingly, uroplakin proteins were prominent in the PICM-31D cell proteome, particularly UPK1A. Annexin A1 and A2 proteins were also relatively abundant in the cells. The expression of the uroplakin and annexin genes was detected in the cells, although only UPK1B, UPK3B, ANXA2, and ANXA4 were detected in fetal pig pancreatic duct tissue. In conclusion, the PICM-31D cell line models the mucus-secreting ductal cells of the fetal pig pancreas.
Collapse
|
2
|
Talbot NC, Caperna TJ, Willard RR, Meekin JH, Garrett WM. Characterization of Two Subpopulations of the PICM-19 Porcine Liver Stem Cell Line for use in Cell-Based Extracorporeal Liver Assistance Devices. Int J Artif Organs 2018. [DOI: 10.1177/039139881003300603] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Two cell lines, PICM-19H and PICM-19B, were derived from the bipotent PICM-19 pig liver stem cell line and assessed for their potential application in artificial liver devices (ALD). The study included assessments of growth rate and cell density in culture, morphological features, serum protein production, γ-glutamyltranspeptidase (GGT) activity and hepatocyte detoxification functions, i.e., inducible P450 activity, ammonia clearance, and urea production. The PICM-19H cell line was derived by temperature selection at 33–34°C. After each passage, PICM-19H cells grew to a nearly confluent monolayer of cells of hepatocyte morphology, i.e., cuboidal cells with centrally located nuclei joined by biliary canaliculi. No differentiation and self-organization into multi-cellular bile ductules, as observed in the parental PICM-19 cell line, occurred within the PICM-19H cell monolayers. The PICM-19H cells contained numerous mitochondria, Golgi apparatus, smooth and rough endoplasmic reticulum, vesicular bodies and occasional lipid vacuoles. The cells had a doubling time of 48–72 h and reached a final density of 1.5 x 105 cells/cm2 at ∼10 d post-passage from a 1:6 split ratio. PICM-19H cells displayed inducible P450 activity, cleared ammonia, and produced urea in a glutamine-free medium. The PICM-19B cells were colony-cloned after spontaneous generation from the PICM-19 parental cell line. PICM-19B cells grew as a tightly knit dome-forming monolayer with no visible biliary canaliculi. Their doubling time was 48–72 h with a final cell density of 2.6 x 105 cells/cm2. Ultrastructural analysis of the PICM-19B monolayers showed the roughly cuboidal cells displayed basal-apical polarization and were joined by tight junction-like complexes. Other ultrastructure features were similar to those of PICM-19H cells except that they possessed numerous cell bodies resembling mucus vacuoles. The PICM-19B cells had relatively high levels of GGT activity, but did retain some inducible P450 activity, and some ammonia clearance and urea synthesis ability. PICM-19B cells produced markedly less serum proteins than PICM-19H cells. These data indicated that both cell lines, either together or alone, may be useful as the cellular substrate for an ALD.
Collapse
Affiliation(s)
- Neil C. Talbot
- US Department of Agriculture, Agricultural Research Service, Animal and Natural Resources Institute, Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Beltsville, Maryland - USA
| | - Thomas J. Caperna
- US Department of Agriculture, Agricultural Research Service, Animal and Natural Resources Institute, Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Beltsville, Maryland - USA
| | - Ryan R. Willard
- US Department of Agriculture, Agricultural Research Service, Animal and Natural Resources Institute, Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Beltsville, Maryland - USA
| | - John H. Meekin
- HepaLife Technologies, Inc., Boston, Massachusetts - USA
| | - Wesley M. Garrett
- US Department of Agriculture, Agricultural Research Service, Animal and Natural Resources Institute, Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Beltsville, Maryland - USA
| |
Collapse
|
3
|
Feeder-cell-independent culture of the pig embryonic stem cell-derived exocrine pancreatic cell line, PICM-31. In Vitro Cell Dev Biol Anim 2018; 54:321-330. [PMID: 29442225 DOI: 10.1007/s11626-017-0218-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/22/2017] [Indexed: 10/18/2022]
Abstract
The adaptation to feeder-independent growth of a pig embryonic stem cell-derived pancreatic cell line is described. The parental PICM-31 cell line, previously characterized as an exocrine pancreas cell line, was colony-cloned two times in succession resulting in the derivative cell line, PICM-31A1. PICM-31A1 cells were adapted to growth on a polymerized collagen matrix using feeder cell-conditioned medium and were designated PICM-31FF. Like the parental cells, the PICM-31FF cells were small and grew relatively slowly in closely knit colonies that eventually coalesced into a continuous monolayer. The PICM-31FF cells were extensively cultured: 40 passages at 1:2, 1:3, and finally 1:5 split ratios over a 1-yr period. Ultrastructure analysis showed the cells' epithelial morphology and revealed that they retained their secretory granules typical of pancreas acinar cells. The cells maintained their expression of digestive enzymes, including carboxypeptidase A1 (CPA1), amylase 2A (AMY2A), and phospholipase A2 (PLA2G1B). Alpha-fetoprotein (AFP), a fetal cell marker, continued to be expressed by the cells as was the pancreas alpha cell-associated gene, transthyretin. Several pancreas-associated developmental genes were also expressed by the cells, including pancreatic and duodenal homeobox 1 (PDX1) and pancreas-specific transcription factor, 1a (PTF1A). Proteomic analysis of cellular proteins confirmed the cells' production of digestive enzymes and showed that the cells expressed cytokeratin-8 and cytokeratin-18. The PICM-31FF cell line provides an in vitro model of fetal pig pancreatic exocrine cells without the complicating presence of feeder cells.
Collapse
|
4
|
Abstract
OBJECTIVES The aim of this study was to identify an epithelial cell line isolated from the spontaneous differentiation of totipotent pig epiblast cells. METHODS PICM-31 and its colony-cloned derivative cell line, PICM-31A, were established from the culture and differentiation of an epiblast mass isolated from an 8-day-old pig blastocyst. The cell lines were analyzed by transmission electron microscopy, marker gene expression, and mass spectroscopy-based proteomics. RESULTS The PICM-31 cell lines were continuously cultured and could be successively colony cloned. They spontaneously self-organized into acinarlike structures. Transmission electron microscopy indicated that the cell lines' cells were epithelial and filled with secretory granules. Candidate gene expression analysis of the cells showed an exocrine pancreatic profile that included digestive enzyme expression, for example, carboxypeptidase A1, and expression of the fetal marker, α-fetoprotein. Pancreatic progenitor marker expression included pancreatic and duodenal homeobox 1, NK6 homeobox 1, and pancreas-specific transcription factor 1a, but not neurogenin 3. Proteomic analysis of cellular proteins confirmed the cells' production of digestive enzymes and showed that the cells expressed cytokeratins 8 and 18. CONCLUSIONS The PICM-31 cell lines provide in vitro models of fetal pig pancreatic exocrine cells. They are the first demonstration of continuous cultures, that is, cell lines, of nontransformed pig pancreas cells.
Collapse
|
5
|
Talbot NC, Wang L, Garrett WM, Caperna TJ, Tang Y. Establishment and characterization of feeder cell-dependent bovine fetal liver cell lines. In Vitro Cell Dev Biol Anim 2015; 52:314-326. [DOI: 10.1007/s11626-015-9982-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/16/2015] [Indexed: 12/24/2022]
|
6
|
Kitani H, Yoshioka M, Takenouchi T, Sato M, Yamanaka N. Characterization of the liver-macrophages isolated from a mixed primary culture of neonatal swine hepatocytes. RESULTS IN IMMUNOLOGY 2014; 4:1-7. [PMID: 24707456 PMCID: PMC3973824 DOI: 10.1016/j.rinim.2014.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 12/13/2022]
Abstract
We recently developed a novel procedure to obtain liver-macrophages in sufficient number and purity using a mixed primary culture of rat and bovine hepatocytes. In this study, we aim to apply this method to the neonatal swine liver. Swine parenchymal hepatocytes were isolated by a two-step collagenase perfusion method and cultured in T75 culture flasks. Similar to the rat and bovine cells, the swine hepatocytes retained an epithelial cell morphology for only a few days and progressively changed into fibroblastic cells. After 5–13 days of culture, macrophage-like cells actively proliferated on the mixed fibroblastic cell sheet. Gentle shaking of the culture flask followed by the transfer and brief incubation of the culture supernatant resulted in a quick and selective adhesion of macrophage-like cells to a plastic dish surface. After rinsing dishes with saline, the attached macrophage-like cells were collected at a yield of 106 cells per T75 culture flask at 2–3 day intervals for more than 3 weeks. The isolated cells displayed a typical macrophage morphology and were strongly positive for macrophage markers, such as CD172a, Iba-1 and KT022, but negative for cytokeratin, desmin and a-smooth muscle actin, indicating a highly purified macrophage population. The isolated cells exhibited phagocytosis of polystyrene microbeads and a release of inflammatory cytokines upon lipopolysaccharide stimulation. This shaking and attachment method is applicable to the swine liver and provides a sufficient number of macrophages without any need of complex laboratory equipments.
Collapse
Key Words
- Attachment
- CK, cytokeratin
- DAPI, 4′,6-diamidino-2-phenylindole
- DES, desmin
- DMEM, Dulbecco’s modified Eagle’s medium
- ELISA, enzyme-linked immunosorbent assay
- EMT, epithelial to mesenchymal transition
- FACS, fluorescent activated cell sorter
- Hepatocyte culture
- Isolation
- LPS, lipopolysaccharide
- M-CSF, macrophage colony-stimulating factor
- Macrophages
- SMA, α-smooth muscle actin
- Shaking
- Swine
Collapse
Affiliation(s)
- Hiroshi Kitani
- Animal Immune and Cell Biology Research Unit, National Institute of Agrobiological Sciences, Ohwashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | - Miyako Yoshioka
- Safety Research Team, National Institute of Animal Health, Kannondai 3-1-5, Tsukuba, Ibaraki 305-0856, Japan
| | - Takato Takenouchi
- Animal Immune and Cell Biology Research Unit, National Institute of Agrobiological Sciences, Ohwashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | - Mitsuru Sato
- Animal Immune and Cell Biology Research Unit, National Institute of Agrobiological Sciences, Ohwashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | - Noriko Yamanaka
- Safety Research Team, National Institute of Animal Health, Kannondai 3-1-5, Tsukuba, Ibaraki 305-0856, Japan
| |
Collapse
|
7
|
Talbot NC, Caperna TJ. A feeder-cell independent subpopulation of the PICM-19 pig liver stem cell line capable of long-term growth and extensive expansion. Cytotechnology 2013; 66:1-7. [PMID: 23397443 DOI: 10.1007/s10616-013-9541-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 01/21/2013] [Indexed: 01/28/2023] Open
Abstract
A method for the feeder-independent culture of PICM-19 pig liver stem cell line was recently devised, but the cell line's growth was finite and the cells essentially ceased dividing after approximately 20 passages over a 1 year culture period. Here we report the isolation, continuous culture, and initial characterization of a spontaneously arising feeder-independent PICM-19 subpopulation, PICM-19FF, that maintained replication rate and hepatocyte functions over an extended culture period. PICM-19FF cells grew to 90-98 % confluency after each passage at 2 week intervals, and the cells maintained a high cell density after 2 years and 48 passages in culture (average of 2.6 × 10(6) cells/T25 flask or 1 × 10(5) cells/cm(2)). Morphologically, the PICM-FF cells closely resembled the finite feeder-independent PICM-19 cultures previously reported, and, as before, no spontaneous formation of 3D multicellular ductules occurred in the cells' monolayer. Their bipotent stem cell nature was therefore not evident. Over extensive passage, cytochrome P450 (EROD) activity was maintained, although urea production was reduced on a per mg protein basis at later passages. Two other attributes of fetal hepatocytes, γ-glutamyl transpeptidase activity and serum-protein secretion, were also shown to be maintained by the PICM-19FF cells. The PICM-19FF cells therefore appear to have indefinite growth potential as a feeder-independent cell line and this should enhance the experimental usefulness of the cell line, in general, and may also improve its application to toxicological/pharmacological assays and artificial liver devices.
Collapse
Affiliation(s)
- Neil C Talbot
- US Department of Agriculture, Beltsville Agricultural Research Center, Animal Biosciences and Biotechnology Laboratory, Bldg. 200, Rm. 13, BARC-East, Beltsville, MD, 20705, USA,
| | | |
Collapse
|
8
|
Talbot NC, Caperna TJ, Garrett WM. Growth and Development Symposium: Development, characterization, and use of a porcine epiblast-derived liver stem cell line: ARS-PICM-19. J Anim Sci 2012; 91:66-77. [PMID: 23148238 DOI: 10.2527/jas.2012-5748] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Totipotent embryonic stem cell lines have not been established from ungulates; however, we have developed a somatic stem cell line from the in vitro culture of pig epiblast cells. The cell line, ARS-PICM-19, was isolated via colony cloning and was found to spontaneously differentiate into hepatic parenchymal epithelial cell types, namely hepatocytes and bile duct cells. Hepatocytes form as monolayers and bile duct cells as 3-dimensional bile ductules. Transmission electron microscopy revealed that the ductules were composed of radially arranged, monociliated cells with their cilia projecting into the lumen of the ductule whereas hepatocytes were arranged in monolayers with lateral canalicular structures containing numerous microvilli and connected by tight junctions and desmosomes. Extensive Golgi and rough endoplasmic reticulum networks were also present, indicative of active protein synthesis. Analysis of conditioned medium by 2-dimensional electrophoresis and mass spectrometry indicated a spectrum of serum-protein secretion by the hepatocytes. The PICM-19 cell line maintains a range of inducible cytochrome P450 activities and, most notably, is the only nontransformed cell line that synthesizes urea in response to ammonia challenge. The PICM-19 cell line has been used for several biomedical- and agricultural-related purposes, such as the in vitro replication of hepatitis E virus, a zoonotic virus of pigs, and a spaceflight experiment to evaluate somatic stem cell differentiation and liver cell function in microgravity. The cell line was also evaluated as a platform for toxicity testing and has been used in a commercial artificial liver rescue device bioreactor. A PICM-19 subclone, PICM-19H, which only differentiates into hepatocytes, was isolated and methods are currently under development to grow PICM-19 cells without feeder cells. Feeder-cell-independent growth will facilitate the study of mesenchymal-parenchymal interactions that influence the divergent differentiation of the PICM-19 cells, enhance our ability to genetically modify the cells, and provide a better model system to investigate porcine hepatic metabolism.
Collapse
Affiliation(s)
- N C Talbot
- USDA, ARS, Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA.
| | | | | |
Collapse
|
9
|
Cytochrome P450 expression profile of the PICM-19H pig liver cell line: potential application to rapid liver toxicity assays. In Vitro Cell Dev Biol Anim 2011; 46:11-9. [PMID: 19915937 DOI: 10.1007/s11626-009-9244-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 09/30/2009] [Indexed: 10/20/2022]
Abstract
Liver in vitro models are needed to replace animal models for rapid assessment of drug biotransformation and toxicity. The PICM-19 pig liver stem cell line may fulfill this need since these cells have activities associated with xenobiotic phase I and II metabolism lacking in other liver cell lines. The objective of this study was to characterize phase I and II metabolic functions of a PICM-19 derivative cell line, PICM-19H, compared to the tumor-derived human HepG2 C3A cell line and primary cultures of adult porcine hepatocytes. Following exposure of PICM-19H cells to either 3-methylcholanthrene, rifampicin or phenobarbital, the induced activities of cytochrome P450 (CYP450) isozymes CYP-1A, -2, and-3A were assessed. Relative to adult porcine hepatocytes, PICM- 19H cells exhibited 30% and 43%, respectively, of CYP1A and 3A activities, while HepG2 C3A cells exhibited 7% and 0% of those activities. Fluorescent metabolites were extensively conjugated, i.e., 52% and 96% of CYP450-1A and-3A metabolites were released from medium samples following treatment with β-glucuronidase/arylsulfatase. Rifampicin induction of CYP450 isozyme activities was confirmed by conversion of testosterone to 6β-OH-, 2α-OH- and 2β-OH-testosterone, as determined by mass spectrometry. Susceptibility of PICM-19H cells to acetaminophen toxicity was determined; CD50 was calculated to be 14.9±0.9 mM. Toxicity and bioactivation of aflatoxin B1 was determined in 3-methylcholanthrenetreated cultures and untreated controls; CD50 were 1.59 μM and 31 μM, respectively. These results demonstrate the potential use of PICM-19H cells in drug biotransformation and toxicity testing and further support their use in extracorporeal artificial liver device technology.
Collapse
|
10
|
Li P, Zhang Y, Wang YM, Duan CM, Hao T, Wu BL, Wang CY. RCCS enhances EOE cell proliferation and their differentiation into ameloblasts. Mol Biol Rep 2011; 39:309-17. [PMID: 21667111 DOI: 10.1007/s11033-011-0740-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
Abstract
In this article we report on the culturing of dental enamel organ epithelia (EOE) using a rotary cell culture system (RCCS) bioreactor associated with a cytodex-3 microcarrier. This culture system enhanced the proliferation and differentiation of the EOE into ameloblasts. Primary dental EOE trypsinized from 4-day old post-natal rat pups were cultured in the RCCS associated with Cytodex-3. The results were analyzed in comparison to a conventional plate system (control). Cells grown in RCCS have shown higher viabilities (above 90%) and final cell densities in terms of cells/ml than in the control system. In the case of RCCS, 46±2 manifold increases were obtained, while significantly lower yields of 10.8±2.5 manifod were obtained for control plates. Throughout the experiments, glucose levels were maintained within the accepted physiological range. In this case, LDH levels are kept low (below 150 mmol/ml), which is in accordance with the low cell death observed in the RCCS. Scanning electron microscopy revealed cells that were spread and forming three dimensional aggregates on the surface of cytodex-3. Cells cultured in the RCCS exhibited a stronger positive immunofluorescence staining for ameloblastin than those in control plates. RT-PCR results revealed that cells cultured in RCCS have higher amelogenin mRNA levels compared to controls. We have done an exploratory study on biological characteristics and self-assembling of epithelium cellula intersitialis, which demonstrated that the special 3D environment enhanced the rat dental EOE cell proliferation and differentiation into ameloblasts. The study has revealed that RCCS could be used to study the reaction of the EOE cells, tooth enamel organ cells and mesenchymal cells under the spacial 3D culture system, which will also provide a novel hypothesis for dental regeneration.
Collapse
Affiliation(s)
- Ping Li
- Department of Endodontics, College of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Caperna TJ, Blomberg LA, Garrett WM, Talbot NC. Culture of porcine hepatocytes or bile duct epithelial cells by inductive serum-free media. In Vitro Cell Dev Biol Anim 2011; 47:218-33. [PMID: 21298557 DOI: 10.1007/s11626-010-9382-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 11/22/2010] [Indexed: 01/25/2023]
Abstract
A serum-free, feeder cell-dependent, selective culture system for the long-term culture of porcine hepatocytes or cholangiocytes was developed. Liver cells were isolated from 1-wk-old pigs or young adult pigs (25 and 63 kg live weight) and were placed in primary culture on feeder cell layers of mitotically blocked mouse fibroblasts. In serum-free medium containing 1% DMSO and 1 μM dexamethasone, confluent monolayers of hepatocytes formed and could be maintained for several wk. Light and electron microscopic analysis showed hepatocytes with in vivo-like morphology, and many hepatocytes were sandwiched between the feeder cells. When isolated liver cells were cultured in medium without dexamethasone but with 0.5% DMSO, monolayers of cholangioctyes formed that subsequently self-organized into networks of multicellular ductal structures, and whose cells had monocilia projecting into the lumen of the duct. Gamma-glutamyl transpeptidase (GGT) was expressed by the cholangiocytes at their apical membranes, i.e., at the inner surface of the ducts. Cellular GGT activity increased concomitantly with the development of ductal structures. Cytochrome P-450 was determined in microsomes following addition of metyrapone to the cultures. In vivo-like levels of P-450s were found in hepatocyte monolayers while levels of P-450 were markedly reduced in cholangiocyte monolayers. Serum protein secretion in conditioned media was analyzed by Western blot and indicated that albumin, transferrin, and haptoglobin levels were maintained in hepatocytes while albumin and haptoglobin declined over time in cholangiocytes. Quantitative RT-PCR analysis showed that serum protein mRNA levels were significantly elevated in the hepatocytes monolayers in comparison to the bile ductule-containing monolayers. Further, mRNAs specific to cholangiocyte differentiation and function were significantly elevated in bile ductule monolayers in comparison to hepatocyte monolayers. The results demonstrate an in vitro model for the study of either porcine hepatocytes or cholangiocytes with in vivo-like morphology and function.
Collapse
Affiliation(s)
- Thomas J Caperna
- US Department of Agriculture, Agricultural Research Service, ANRI, Animal Biosciences and Biotechnology Laboratory, Bldg 200, Rm 201, BARC-East, 10300 Baltimore Blvd, Beltsville, MD 20705, USA.
| | | | | | | |
Collapse
|
12
|
Talbot NC, Blomberg LA, Garrett WM, Caperna TJ. Feeder-independent continuous culture of the PICM-19 pig liver stem cell line. In Vitro Cell Dev Biol Anim 2010; 46:746-57. [PMID: 20607619 DOI: 10.1007/s11626-010-9336-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 06/16/2010] [Indexed: 01/28/2023]
Abstract
The PICM-19 pig liver stem cell line is a bipotent cell line, i.e., capable of forming either bile ductules or hepatocyte monolayers in vitro, that was derived from the primary culture of pig embryonic stem cells. The cell line has been strictly feeder-dependent in that cell replication, morphology, and function were lost if the cells were cultured without STO feeder cells. A method for the feeder-independent continuous culture of PICM-19 cells (FI-PICM-19) is presented. PICM-19 cells were maintained and grown without feeder cells on collagen I-coated tissue culture plastic for 26 passages (P26) with initial split ratios of 1:3 that diminished to split ratios of less than 1:2 after passage 16. Once plated, the FI-PICM-19 cells were overlaid with a 1:12 to 1:50 dilution of Matrigel or related extracellular matrix product. Growth of the cells was stimulated by daily refeedings with STO feeder-cell conditioned medium. The FI-PICM-19 cells grew to an approximate confluence of 50% prior to each passage at 2-wk intervals. Growth curve analysis showed their average cell number doubling time to be ~96 h. Morphologically, the feeder-independent cells closely resembled PICM-19 cells grown on feeder cells, and biliary canalicui were present at cell-to-cell junctions. However, no spontaneous multicellular ductules formed in the monolayers of FI-PICM-19 cells. Ultrastructural subcellular features of the FI-PICM-19 cells were similar to those of PICM-19 cells cultured on feeder cells. The FI-PICM-19 cells produced a spectrum of serum proteins and expressed many liver/hepatocyte-specific genes. Importantly, cytochrome P450 (EROD) activity, ammonia clearance, and urea production were maintained by the feeder-independent cells. This simple method for the propagation of the PICM-19 cell line without feeder cells should simplify the generation and selection of functional mutants within the population and enhances the cell line's potential for use in toxicological/pharmacological screening assays and for use in an artificial liver device.
Collapse
Affiliation(s)
- Neil C Talbot
- U. S. Department of Agriculture, Agricultural Research Service, Animal and Natural Resources Institute, Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Bldg. 200, Rm. 13, BARC-East, Beltsville, MD 20705, USA.
| | | | | | | |
Collapse
|
13
|
The effects of space flight and microgravity on the growth and differentiation of PICM-19 pig liver stem cells. In Vitro Cell Dev Biol Anim 2010; 46:502-15. [PMID: 20333478 DOI: 10.1007/s11626-010-9302-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 01/16/2010] [Indexed: 10/19/2022]
Abstract
The PICM-19 pig liver stem cell line was cultured in space for nearly 16 d on the STS-126 mission to assess the effects of spaceflight on the liver's parenchymal cells-PICM-19 cells to differentiate into either monolayers of fetal hepatocytes or 3-dimensional bile ductules (cholangiocytes). Semi-quantitative data included light microscopic assessments of final cell density, cell morphology, and response to glucagon stimulation and electron microscopic assessment of the cells' ultrastructural features and cell-to-cell connections and physical relationships. Quantitative assessments included assays of hepatocyte detoxification functions, i.e., inducible P450 activities and urea production and quantitation of the mRNA levels of several liver-related genes. Three post-passage age groups were included: 4-d-, 10-d-, and 14-d-old cultures. In comparing flight vs. ground-control cultures 17 h after the space shuttle's return to earth, no differences were found between the cultures with the exception being that some genes were differentially expressed. By light microscopy both young and older cultures, flight and ground, had grown and differentiated normally in the Opticell culture vessels. The PICM-19 cells had grown to approximately 75% confluency, had few signs of apoptosis or necrosis, and had either differentiated into monolayer patches of hepatocytes with biliary canaliculi visible between the cells or into 3-dimensional bile ductules with well-defined lumens. Ultrastructural features between flight and ground were similar with the PICM-19 cells displaying numerous mitochondria, Golgi apparatus, smooth and rough endoplasmic reticulum, vesicular bodies, and occasional lipid vacuoles. Cell-to-cell arrangements were typical in both flight and ground-control samples; biliary canaliculi were well-formed between the PICM-19 cells, and the cells were sandwiched between the STO feeder cells. PICM-19 cells displayed inducible P450 activities. They produced urea in a glutamine-free medium and produced more urea in response to ammonia. The experiment's aim to gather preliminary data on the PICM-19 cell line's suitability as an in vitro model for assessments of liver function in microgravity was demonstrated, and differences between flight and ground-control cultures were minor.
Collapse
|
14
|
Sheth P, Delos Santos N, Seth A, LaRusso NF, Rao RK. Lipopolysaccharide disrupts tight junctions in cholangiocyte monolayers by a c-Src-, TLR4-, and LBP-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 2007; 293:G308-18. [PMID: 17446308 DOI: 10.1152/ajpgi.00582.2006] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Bile duct epithelium forms a barrier to the backflow of bile into the liver parenchyma. However, the structure and regulation of the tight junctions in bile duct epithelium is not well understood. In the present study, we evaluated the effect of lipopolysaccharide on tight junction integrity and barrier function in normal rat cholangiocyte monolayers. Lipopolysaccharide disrupts barrier function and increases paracellular permeability in a time- and dose-dependent manner. Lipopolysaccharide induced a redistribution of tight junction proteins, occludin, claudin-1, claudin-4, and zonula occludens (ZO)-1 from the intercellular junctions and reduced the level of ZO-1. Tyrosine kinase inhibitors (genistein and PP2) prevented lipopolysaccharide-induced increase in permeability and subcellular redistribution of ZO-1. Reduced expression of c-Src, TLR4, or LBP by specific small interfering RNA attenuated lipopolysaccharide-induced permeability and redistribution of ZO-1. ML-7, a myosin light chain kinase inhibitor, attenuated LPS-induced permeability. Lipopolysaccharide treatment rapidly increased the phosphorylation of occludin and ZO-1 on tyrosine residues, which was prevented by genistein and PP2. Occludin and ZO-1 were found to be highly phosphorylated on threonine residues in intact cell monolayers. Threonine-phosphorylation of occludin was rapidly reduced by lipopolysaccharide administration. Lipopolysaccharide-induced dephosphorylation of occludin on Thr residues was prevented by genistein and PP2. In conclusion, lipopolysaccharide disrupts the tight junction of a bile duct epithelial monolayer by a c-Src-, TLR4-, LBP-, and myosin light chain kinase-dependent mechanism.
Collapse
Affiliation(s)
- P Sheth
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis, TN 38163, USA
| | | | | | | | | |
Collapse
|
15
|
Talbot NC, Powell A, Garrett W, Edwards JL, Rexroad C. Ultrastructural and karyotypic examination of in vitro produced bovine embryos developed in the sheep uterus. Tissue Cell 2000; 32:9-27. [PMID: 10798314 DOI: 10.1054/tice.1999.0083] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study examined whether development of bovine in vitro produced (IVP) blastocysts in the sheep uterus resulted in morphologically and karyotypically normal elongation stage bovine blastocysts. Seven day IVP bovine blastocysts, resulting from either in vitro maturation and fertilization, nuclear transfer (NT), or parthenogenic activation, were surgically transferred at the blastocyst stage into sheep uteri. Sheep were sacrificed after 7-9 days, and blastocysts were flushed from their uteri. One of each kind of IVP bovine blastocyst was recovered from sheep uteri for analysis by transmission electron microscopy, and nine NT blastocysts were used to establish cell cultures that were analysed for chromosome complement. TEM analysis of in vivo-derived elongation stage bovine and ovine blastocysts was done for comparative purposes. Most ultrastructural features of the 13-19 day blastocysts were similar to earlier stage blastocysts except that distinct alternative mitochondrial morphologies were found between epiblast and trophectoderm cells. Monociliated cells, presumably nodal cells, were observed in the bovine epiblast and hypoblast, and retrovirus-like particles were elaborated by cells in these same areas. Development in the sheep uterus of IVP bovine blastocysts resulted in the presence of crystalloid bodies in the trophectoderm cells, and apoptotic and necrotic cells were observed in the epiblast tissue. Thus, in vivo incubation in the sheep uterus allowed nearly normal development to the elongated blastocyst stage and may be useful for assessment of NT bovine blastocyst developmental competence. Cell cultures derived from the NT blastocysts had normal chromosome complements suggesting that activation by ionomycin and 6-dimethyl-aminopurine did not cause detrimental changes in ploidy in those blastocysts that developed.
Collapse
Affiliation(s)
- N C Talbot
- USDA, ARS, LPSI, Gene Evaluation and Mapping Laboratory, Beltsville Agricultural Research Center, MD 20705, USA.
| | | | | | | | | |
Collapse
|