1
|
Wang H, Zeng T, Gu L, Zhu B, Du X. SbMPK13-mediated SbWRKY10 phosphorylation positively regulates SbGST40 expression required for cadmium tolerance in sorghum. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138788. [PMID: 40449216 DOI: 10.1016/j.jhazmat.2025.138788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/25/2025] [Accepted: 05/29/2025] [Indexed: 06/03/2025]
Abstract
Cadmium (Cd) stress significantly affects the growth, development, and utilization of sorghum. Although the molecular pathways responding to Cd stress in sorghum remain incompletely understood, glutathione transferase (GST) is recognized for its critical role in plant responses to heavy metals and detoxification processes. In this study, we examined the influence of SbGST40 on Cd accumulation in sorghum. Our results indicate that SbGST40 is responsive to Cd stress, with its overexpression markedly enhancing Cd tolerance in sorghum while inhibiting Cd accumulation. Furthermore, we discovered that SbWRKY10 directly interacts with the promoter region of SbGST40, thereby augmenting its transcriptional activity. Additionally, SbMPK13 directly interacts with and phosphorylates SbWRKY10. Notably, in sorghum lines that overexpress SbMPK13, the protein stability of SbWRKY10 is enhanced, further amplifying the regulatory influence of SbWRKY10 on SbGST40 expression. Collectively, our findings elucidate the role of the module comprising SbMPK13, SbWRKY10, and SbGST40, which is crucial for mediating Cd accumulation in sorghum.
Collapse
Affiliation(s)
- Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| | - Tuo Zeng
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China.
| |
Collapse
|
2
|
Chen C, Ge F, Du H, Sun Y, Sui Y, Tang S, Shen Z, Li X, Zhang H, Mei C, Xie P, Li C, Yang S, Wei H, Shi J, Zhang D, Zhao K, Yang D, Qiao Y, Luo Z, Zhang L, Khan A, Wodajo B, Wu Y, Xia R, Wu C, Liang C, Xie Q, Yu F. A comprehensive omics resource and genetic tools for functional genomics research and genetic improvement of sorghum. MOLECULAR PLANT 2025; 18:703-719. [PMID: 40055894 DOI: 10.1016/j.molp.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/05/2025] [Accepted: 03/05/2025] [Indexed: 04/04/2025]
Abstract
Sorghum, the fifth most important food crop globally, is a source of silage forage, fiber, syrup, and biofuel. Moreover, it is widely recognized as an ideal model crop for studying stress biology becaused of its ability to tolerate multiple abiotic stresses, including high salt-alkali conditions, drought, and heat. However, functional genomics studies on sorghum have been challenging, primarily due to the limited availability of genetic resources and effective genetic transformation techniques. In this study, we developed the Sorghum Genomics and Mutation Database (SGMD), aiming to advance the genetic understanding of sorghum. Our effort encompassed a telomere-to-telomere genome assembly of an inbred sorghum line, E048, yielding 729.46 Mb of sequence data representing the complete genome. Alongside the high-quality sequence data, a gene expression atlas covering 13 distinct tissues was developed. We constructed a saturated ethyl methane sulfonate mutant library comprising 13,226 independent mutants. Causal genes in chlorosis and leafy mutants from the library were easily identified by leveraging the MutMap and MutMap+ methodologies, demonstrating the powerful application of this library for identifying functional genes. To facilitate sorghum research, we performed whole-genome sequencing of 179 M2 mutant lines, resulting in 2,291,074 mutations that covered 97.54% of all genes. In addition, an Agrobacterium-mediated sorghum transformation platform was established for gene function studies. In summary, this work establishes a comprehensive platform and provides valuable resources for functional genomics investigations and genetic improvement of sorghum.
Collapse
Affiliation(s)
- Chengxuan Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengyong Ge
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huilong Du
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071002, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanchang Sun
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yi Sui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sanyuan Tang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhengwei Shen
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xuefeng Li
- Cropedit Biotech Co., Ltd., Beijing 102206, China
| | - Huili Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cuo Mei
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sen Yang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huimin Wei
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayang Shi
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kangxu Zhao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dekai Yang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Qiao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuyong Luo
- Cropedit Biotech Co., Ltd., Beijing 102206, China
| | - Li Zhang
- Cropedit Biotech Co., Ltd., Beijing 102206, China
| | - Aimal Khan
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baye Wodajo
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaorong Wu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ran Xia
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chuanyin Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengzhi Liang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Getahun A, Alemu A, Nida H, Woldesemayat AA. Multi-locus genome-wide association mapping for major agronomic and yield-related traits in sorghum (Sorghum bicolor (L.) moench) landraces. BMC Genomics 2025; 26:304. [PMID: 40155810 PMCID: PMC11951778 DOI: 10.1186/s12864-025-11458-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/06/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Sorghum is a vital cereal crop for over 750 million people, ranking 5th globally. It has multiple purposes, including food, feed, and biofuels, and is essential in Ethiopia, which has a rich genetic diversity of various agroecological zones. OBJECTIVE Explore marker-trait associations (MTAs) to identify quantitative trait nucleotides (QTNs) and new candidate genes associated with agronomic and yield contributing traits in Ethiopian sorghum landraces using multi-locus GWAS models to assist the genomic-assisted breeding strategies. METHOD This study investigates the genetic basis of agronomic traits in Ethiopian sorghum landraces through multi-locus Genome-Wide Association Studies (ML-GWAS). 216 landraces, improved varieties, and check cultivars were obtained from the Ethiopian Biodiversity Institute and the National Sorghum Improvement Program for this study. The experiment was conducted over two cropping seasons, employing an α-lattice design for phenotyping key traits such as days to flowering, days to maturity, plant height, seed number per plant, grain yield, and thousand seed weight. A mixed linear model (MLM) was used to analyze the phenotypic data and estimate the genetic parameters including variances and the broad sense heritability. GBS with the ApeKI restriction enzyme provided 50,165 high-quality SNP markers. The six ML-GWAS models identified significant QTNs with a LOD score threshold value of ≥ 4.0. The analysis revealed major QTNs associated with traits across multiple chromosomes, supported by a stringent filtering criterion that ensured reliability. Co-localization with known QTLs was explored using the Sorghum QTL Atlas database and candidate genes within significant QTN regions, providing the genetic architecture influencing agronomic performance were identified via the Phytozome platform using the biomaRt package. RESULT Pearson correlation analysis revealed significant associations among most traits, with p-values less than 0.0001, except for grain yield per plant which showed lower correlations with other traits. Genetic variability analysis indicated that days to flowering exhibited high heritability (0.7) and genetic advance (19.6%) as percent of mean, suggesting strong genetic control, while grain yield displayed extremely low h2 (0.003). A total of 351,692 SNP markers were identified across 10 sorghum chromosomes from 216 Ethiopian sorghum landraces, and we have been refining this to 50,165 filtered SNPs. Manhattan plots indicated significant marker-trait associations (MTAs) across multiple chromosomes, particularly for days to flowering and plant height. Significant QTNs were associated with key traits including flowering time, plant height, and grain yield. ML-GWAS identified 176 QTNs with varying LOD scores and phenotypic effects. Multiple genes linked to these QTNs highlight the complexity of genetic interactions of studied traits with 36 unique and 12 major QTNs. Notable SNP markers were concentrated on chromosomes 1, 2, and 3, reinforcing the importance of these regions for breeding efforts. Candidate gene analysis revealed key genes regulating flowering time, stress response, and yield traits, which could serve as targets for genetic enhancement. In our study, key candidate genes have been successfully identified, these are regulating flowering time, maturity, and stress resilience. Genes such as Sobic.001G196700 and Sobic.002G183400 are identified as critical regulators of floral development. The stress-responsive gene Sobic.005G176100 (a mannose-6-phosphate isomerase), emphasizes the importance of resilience in sorghum cultivation under adverse conditions. Additionally, Sobic.003G324400 and Sobic.004G178300 are essential for regulating plant height and seed weight, making them valuable for yield enhancement breeding programs. CONCLUSION This study enhances our understanding of the genetic diversity of Ethiopian sorghum landraces, crucial for breeding programs. It identifies key QTNs and candidate genes associated with important agronomic traits, offering insights for marker-assisted and genomic-assisted breeding. The ML-GWAS models highlight the genetic complexity of flowering time and grain yield traits, emphasizing the need for targeted breeding efforts to maximize sorghum productivity.
Collapse
Affiliation(s)
- Addisu Getahun
- College of Applied and Natural Sciences (CANS), Department of Biotechnology, Addis Ababa Science and Technology University (AASTU), Addis Ababa, Ethiopia
- Biotechnology and Bioprocess Center of Excellence, AASTU, Addis Ababa, Ethiopia
- College of Agriculture, Food and Climate Sciences, Department of Plant Sciences, Injibara University, Injibara, Ethiopia
| | - Admas Alemu
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), Almas Allé 8, Lomma, Uppsala, 750 07, Sweden
| | - Habte Nida
- Purdue University, 610 Purdue Mall, West Lafayette, IN, 47907, USA
| | - Adugna Abdi Woldesemayat
- College of Applied and Natural Sciences (CANS), Department of Biotechnology, Addis Ababa Science and Technology University (AASTU), Addis Ababa, Ethiopia.
- Biotechnology and Bioprocess Center of Excellence, AASTU, Addis Ababa, Ethiopia.
| |
Collapse
|
4
|
Nigam D, Devkar V, Dhiman P, Shakoor S, Liu D, Patil GB, Jiao Y. Emerging frontiers in sorghum genetic engineering. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17244. [PMID: 39988953 DOI: 10.1111/tpj.17244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 02/25/2025]
Abstract
Sorghum, a climate-resilient cereal, is crucial for meeting the growing demand for food and feed in arid and semi-arid regions, especially amid global population growth and climate change. Despite its natural drought tolerance and adaptability, sorghum faces challenges in increasing yield, enhancing resistance to abiotic and biotic stresses, and improving grain quality. Genetic engineering has emerged as a powerful tool to address these challenges by directly modifying genes associated with desirable traits. Recent advancements have utilized morphogenic regulators to improve transformation and regeneration efficiency in sorghum. This review explores the status of genomic resources and genetic diversity in sorghum, highlighting the advancements and challenges faced in its genetic engineering efforts. Genome editing technologies, particularly CRISPR/Cas systems, have improved key agronomic traits such as stress tolerance, nutrient use efficiency, and grain quality. However, significant obstacles still need to be addressed, including low regeneration rates, high genotype dependency, and labor-intensive transformation processes. We highlight potential strategies to overcome these barriers, such as optimizing transformation protocols, exploring alternative explants, using morphogenic regulators and advancing tissue culture techniques. Additionally, we discuss the biosafety considerations and potential applications of genetically engineered sorghum in global agriculture. This review underscores the need for ongoing innovation to unlock the potential of genetically engineered sorghum in addressing global food security challenges.
Collapse
Affiliation(s)
- Deepti Nigam
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, Texas, 79409, USA
| | - Vikas Devkar
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, Texas, 79409, USA
| | - Pallavi Dhiman
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, Texas, 79409, USA
| | - Sana Shakoor
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, Texas, 79409, USA
| | - Degao Liu
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, Texas, 79409, USA
| | - Gunvant B Patil
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, Texas, 79409, USA
| | - Yinping Jiao
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, Texas, 79409, USA
| |
Collapse
|
5
|
Chandra T, Jaiswal S, Tomar RS, Iquebal MA, Kumar D. Realizing visionary goals for the International Year of Millet (IYoM): accelerating interventions through advances in molecular breeding and multiomics resources. PLANTA 2024; 260:103. [PMID: 39304579 DOI: 10.1007/s00425-024-04520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
MAIN CONCLUSION Leveraging advanced breeding and multi-omics resources is vital to position millet as an essential "nutricereal resource," aligning with IYoM goals, alleviating strain on global cereal production, boosting resilience to climate change, and advancing sustainable crop improvement and biodiversity. The global challenges of food security, nutrition, climate change, and agrarian sustainability demand the adoption of climate-resilient, nutrient-rich crops to support a growing population amidst shifting environmental conditions. Millets, also referred to as "Shree Anna," emerge as a promising solution to address these issues by bolstering food production, improving nutrient security, and fostering biodiversity conservation. Their resilience to harsh environments, nutritional density, cultural significance, and potential to enhance dietary quality index made them valuable assets in global agriculture. Recognizing their pivotal role, the United Nations designated 2023 as the "International Year of Millets (IYoM 2023)," emphasizing their contribution to climate-resilient agriculture and nutritional enhancement. Scientific progress has invigorated efforts to enhance millet production through genetic and genomic interventions, yielding a wealth of advanced molecular breeding technologies and multi-omics resources. These advancements offer opportunities to tackle prevailing challenges in millet, such as anti-nutritional factors, sensory acceptability issues, toxin contamination, and ancillary crop improvements. This review provides a comprehensive overview of molecular breeding and multi-omics resources for nine major millet species, focusing on their potential impact within the framework of IYoM. These resources include whole and pan-genome, elucidating adaptive responses to abiotic stressors, organelle-based studies revealing evolutionary resilience, markers linked to desirable traits for efficient breeding, QTL analysis facilitating trait selection, functional gene discovery for biotechnological interventions, regulatory ncRNAs for trait modulation, web-based platforms for stakeholder communication, tissue culture techniques for genetic modification, and integrated omics approaches enabled by precise application of CRISPR/Cas9 technology. Aligning these resources with the seven thematic areas outlined by IYoM catalyzes transformative changes in millet production and utilization, thereby contributing to global food security, sustainable agriculture, and enhanced nutritional consequences.
Collapse
Affiliation(s)
- Tilak Chandra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Rukam Singh Tomar
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, 110012, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| |
Collapse
|
6
|
Zhang L, Meng S, Liu Y, Han F, Xu T, Zhao Z, Li Z. Advances in and Perspectives on Transgenic Technology and CRISPR-Cas9 Gene Editing in Broccoli. Genes (Basel) 2024; 15:668. [PMID: 38927604 PMCID: PMC11203320 DOI: 10.3390/genes15060668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
Broccoli, a popular international Brassica oleracea crop, is an important export vegetable in China. Broccoli is not only rich in protein, vitamins, and minerals but also has anticancer and antiviral activities. Recently, an Agrobacterium-mediated transformation system has been established and optimized in broccoli, and transgenic transformation and CRISPR-Cas9 gene editing techniques have been applied to improve broccoli quality, postharvest shelf life, glucoraphanin accumulation, and disease and stress resistance, among other factors. The construction and application of genetic transformation technology systems have led to rapid development in broccoli worldwide, which is also good for functional gene identification of some potential traits in broccoli. This review comprehensively summarizes the progress in transgenic technology and CRISPR-Cas9 gene editing for broccoli over the past four decades. Moreover, it explores the potential for future integration of digital and smart technologies into genetic transformation processes, thus demonstrating the promise of even more sophisticated and targeted crop improvements. As the field continues to evolve, these innovations are expected to play a pivotal role in the sustainable production of broccoli and the enhancement of its nutritional and health benefits.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (S.M.); (Y.L.); (F.H.); (T.X.)
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Sufang Meng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (S.M.); (Y.L.); (F.H.); (T.X.)
| | - Yumei Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (S.M.); (Y.L.); (F.H.); (T.X.)
| | - Fengqing Han
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (S.M.); (Y.L.); (F.H.); (T.X.)
| | - Tiemin Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (S.M.); (Y.L.); (F.H.); (T.X.)
- Shouguang R&D Center of Vegetables, CAAS, Shouguang 262700, China;
| | - Zhiwei Zhao
- Shouguang R&D Center of Vegetables, CAAS, Shouguang 262700, China;
| | - Zhansheng Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (S.M.); (Y.L.); (F.H.); (T.X.)
- Shouguang R&D Center of Vegetables, CAAS, Shouguang 262700, China;
| |
Collapse
|
7
|
Wang G, Long Y, Jin X, Yang Z, Dai L, Yang Y, Lu G, Sun B. SbMYC2 mediates jasmonic acid signaling to improve drought tolerance via directly activating SbGR1 in sorghum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:72. [PMID: 38446239 DOI: 10.1007/s00122-024-04578-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024]
Abstract
KEY MESSAGE SbMYC2 functions as a key regulator under JA signaling in enhancing drought tolerance of sorghum through direct activating SbGR1. Drought stress is one of the major threats to crop yield. In response to drought stress, functions of basic helix-loop-helix (bHLH) transcription factors (TFs) have been reported in Arabidopsis and rice, but little is known for sorghum. Here, we characterized the function of SbMYC2, a bHLH TF in sorghum, and found that SbMYC2 responded most significantly to PEG-simulated drought stress and JA treatments. Overexpression of SbMYC2 significantly enhanced drought tolerance in Arabidopsis, rice and sorghum. In addition, it reduced reactive oxygen species (ROS) accumulation and increased chlorophyll content in sorghum leaves. While silencing SbMYC2 by virus-induced gene silencing (VIGS) resulted in compromised drought tolerance of sorghum seedlings. Moreover, SbMYC2 can directly activate the expression of GLUTATHIONE-DISULFIDE REDUCTASE gene SbGR1. SbGR1 silencing led to significantly weakened drought tolerance of sorghum, and higher ROS accumulation and lower chlorophyll content in sorghum leaves were detected. In addition, SbMYC2 can interact with SbJAZs, suppressors of JA signaling, and thus can mediate JA signaling to activate SbGR1, thereby regulating sorghum's tolerance to drought stress. Overall, our findings demonstrate that bHLH TF SbMYC2 plays an important role in sorghum's response to drought stress, thus providing one theoretical basis for genetic enhancement of sorghum and even rice.
Collapse
Affiliation(s)
- Guangling Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yufei Long
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xueying Jin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhen Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Lingyan Dai
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang Province, China
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Guihua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, 223300, China.
| | - Bo Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
8
|
Li J, Pan W, Zhang S, Ma G, Li A, Zhang H, Liu L. A rapid and highly efficient sorghum transformation strategy using GRF4-GIF1/ternary vector system. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1604-1613. [PMID: 38038993 DOI: 10.1111/tpj.16575] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Sorghum is an important crop for food, forage, wine and biofuel production. To enhance its transformation efficiency without negative developmental by-effects, we investigated the impact of GRF4-GIF1 chimaera and GRF5 on sorghum transformation. Both GRF4-GIF1 and GRF5 effectively improved the transformation efficiency of sorghum and accelerated the transformation process of sorghum to less than 2 months which was not observed when using BBM-WUS. As agrobacterium effectors increase the ability of T-DNA transfer into plant cells, we checked whether ternary vector system can additively enhance sorghum transformation. The combination of GRF4-GIF1 with helper plasmid pVS1-VIR2 achieved the highest transformation efficiency, reaching 38.28%, which is 7.71-fold of the original method. Compared with BBM-WUS, overexpressing GRF4-GIF1 caused no noticeable growth defects in sorghum. We further developed a sorghum CRISPR/Cas9 gene-editing tool based on this GRF4-GIF1/ternary vector system, which achieved an average gene mutation efficiency of 41.36%, and null mutants were created in the T0 generation.
Collapse
Affiliation(s)
- Junpeng Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, 266237, Qingdao, China
| | - Wenbo Pan
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, 261325, Weifang, China
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Ministry of Education & Guangdong Provincial Key Laboratory of Laser Life Science, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Shuai Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, 266237, Qingdao, China
| | - Guojing Ma
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, 266237, Qingdao, China
| | - Aixia Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, 266237, Qingdao, China
| | - Huawei Zhang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, 261325, Weifang, China
| | - Lijing Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, 266237, Qingdao, China
| |
Collapse
|
9
|
Baloch FS, Altaf MT, Liaqat W, Bedir M, Nadeem MA, Cömertpay G, Çoban N, Habyarimana E, Barutçular C, Cerit I, Ludidi N, Karaköy T, Aasim M, Chung YS, Nawaz MA, Hatipoğlu R, Kökten K, Sun HJ. Recent advancements in the breeding of sorghum crop: current status and future strategies for marker-assisted breeding. Front Genet 2023; 14:1150616. [PMID: 37252661 PMCID: PMC10213934 DOI: 10.3389/fgene.2023.1150616] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Sorghum is emerging as a model crop for functional genetics and genomics of tropical grasses with abundant uses, including food, feed, and fuel, among others. It is currently the fifth most significant primary cereal crop. Crops are subjected to various biotic and abiotic stresses, which negatively impact on agricultural production. Developing high-yielding, disease-resistant, and climate-resilient cultivars can be achieved through marker-assisted breeding. Such selection has considerably reduced the time to market new crop varieties adapted to challenging conditions. In the recent years, extensive knowledge was gained about genetic markers. We are providing an overview of current advances in sorghum breeding initiatives, with a special focus on early breeders who may not be familiar with DNA markers. Advancements in molecular plant breeding, genetics, genomics selection, and genome editing have contributed to a thorough understanding of DNA markers, provided various proofs of the genetic variety accessible in crop plants, and have substantially enhanced plant breeding technologies. Marker-assisted selection has accelerated and precised the plant breeding process, empowering plant breeders all around the world.
Collapse
Affiliation(s)
- Faheem Shehzad Baloch
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Muhammad Tanveer Altaf
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Waqas Liaqat
- Department of Field Crops, Faculty of Agriculture, Çukurova University, Adana, Türkiye
| | - Mehmet Bedir
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Gönül Cömertpay
- Eastern Mediterranean Agricultural Research Institute, Adana, Türkiye
| | - Nergiz Çoban
- Eastern Mediterranean Agricultural Research Institute, Adana, Türkiye
| | - Ephrem Habyarimana
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India
| | - Celaleddin Barutçular
- Department of Field Crops, Faculty of Agriculture, Çukurova University, Adana, Türkiye
| | - Ibrahim Cerit
- Eastern Mediterranean Agricultural Research Institute, Adana, Türkiye
| | - Ndomelele Ludidi
- Plant Stress Tolerance Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
- DSI-NRF Centre of Excellence in Food Security, University of the Western Cape, Bellville, South Africa
| | - Tolga Karaköy
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Muhammad Aasim
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju, Republic of Korea
| | | | - Rüştü Hatipoğlu
- Kırşehir Ahi Evran Universitesi Ziraat Fakultesi Tarla Bitkileri Bolumu, Kırşehir, Türkiye
| | - Kağan Kökten
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Hyeon-Jin Sun
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
10
|
Chen W, Zheng Y, Wang J, Wang Z, Yang Z, Chi X, Dai L, Lu G, Yang Y, Sun B. Ethylene-responsive SbWRKY50 suppresses leaf senescence by inhibition of chlorophyll degradation in sorghum. THE NEW PHYTOLOGIST 2023; 238:1129-1145. [PMID: 36683397 DOI: 10.1111/nph.18757] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The onset of leaf de-greening and senescence is governed by a complex regulatory network including environmental cues and internal factors such as transcription factors (TFs) and phytohormones, in which ethylene (ET) is one key inducer. However, the detailed mechanism of ET signalling for senescence regulation is still largely unknown. Here, we found that the WRKY TF SbWRKY50 from Sorghum bicolor L., a direct target of the key component ETHYLENE INSENSITIVE 3 in ET signalling, functioned for leaf senescence repression. The clustered regularly interspaced short palindromic repeats/CRISPR-associated protein9-edited SbWRKY50 mutant (SbWRKY5O-KO) of sorghum displayed precocious senescent phenotypes, while SbWRKY50 overexpression delayed age-dependent and dark-induced senescence in sorghum. SbWRKY50 negatively regulated chlorophyll degradation through direct binding to the promoters of several chlorophyll catabolic genes. In addition, SbWRKY50 recruited the Polycomb repressive complex 1 through direct interaction with SbBMI1A, to induce histone 2A mono-ubiquitination accumulation on the chlorophyll catabolic genes for epigenetic silencing and thus delayed leaf senescence. Especially, SbWRKY50 can suppress early steps of chlorophyll catabolic pathway via directly repressing SbNYC1 (NON-YELLOW COLORING 1). Other senescence-related hormones could also influence leaf senescence through repression of SbWRKY50. Hence, our work shows that SbWRKY50 is an essential regulator downstream of ET and SbWRKY50 also responds to other phytohormones for senescence regulation in sorghum.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yuchen Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jingyi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zijing Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhen Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xiaoyu Chi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Lingyan Dai
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, China
| | - Guihua Lu
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huai'an, 223300, China
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Bo Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
11
|
Johnson K, Cao Chu U, Anthony G, Wu E, Che P, Jones TJ. Rapid and highly efficient morphogenic gene-mediated hexaploid wheat transformation. FRONTIERS IN PLANT SCIENCE 2023; 14:1151762. [PMID: 37063202 PMCID: PMC10090459 DOI: 10.3389/fpls.2023.1151762] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/15/2023] [Indexed: 05/29/2023]
Abstract
The successful employment of morphogenic regulator genes, Zm-Baby Boom (ZmBbm) and Zm-Wuschel2 (ZmWus2), for Agrobacterium-mediated transformation of maize (Zea mays L.) and sorghum (Sorghum bicolor L.) has been reported to improve transformation by inducing rapid somatic embryo formation. Here, we report two morphogenic gene-mediated wheat transformation methods, either with or without morphogenic and marker gene excision. These methods yield independent-transformation efficiency up to 58% and 75%, respectively. In both cases, the tissue culture duration for generating transgenic plants was significantly reduced from 80 to nearly 50 days. In addition, the transformation process was significantly simplified to make the procedure less labor-intensive, higher-throughput, and more cost-effective by eliminating the requirement for embryonic axis excision, bypassing the necessity for prolonged dual-selection steps for callus formation, and obviating the prerequisite of cytokinin for shoot regeneration. Furthermore, we have demonstrated the flexibility of the methods and generated high-quality transgenic events across multiple genotypes using herbicide (phosphinothricin, ethametsulfuron)- and antibiotic (G418)-based selections.
Collapse
|
12
|
Jin X, Zheng Y, Wang J, Chen W, Yang Z, Chen Y, Yang Y, Lu G, Sun B. SbNAC9 Improves Drought Tolerance by Enhancing Scavenging Ability of Reactive Oxygen Species and Activating Stress-Responsive Genes of Sorghum. Int J Mol Sci 2023; 24:ijms24032401. [PMID: 36768724 PMCID: PMC9917103 DOI: 10.3390/ijms24032401] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Drought stress severely threatens the yield of cereal crops. Therefore, understanding the molecular mechanism of drought stress response of plants is crucial for developing drought-tolerant cultivars. NAC transcription factors (TFs) play important roles in abiotic stress of plants, but the functions of NAC TFs in sorghum are largely unknown. Here, we characterized a sorghum NAC gene, SbNAC9, and found that SbNAC9 can be highly induced by polyethylene glycol (PEG)-simulated dehydration treatments. We therefore investigated the function of SbNAC9 in drought stress response. Sorghum seedlings overexpressing SbNAC9 showed enhanced drought-stress tolerance with higher chlorophyll content and photochemical efficiency of PSII, stronger root systems, and higher reactive oxygen species (ROS) scavenging capability than wild-type. In contrast, sorghum seedlings with silenced SbNAC9 by virus-induced gene silencing (VIGS) showed weakened drought stress tolerance. Furthermore, SbNAC9 can directly activate a putative peroxidase gene SbC5YQ75 and a putative ABA biosynthesis gene SbNCED3. Silencing SbC5YQ75 and SbNCED3 led to compromised drought tolerance and reduced ABA content of sorghum seedlings, respectively. Therefore, our findings revealed the important role of SbNAC9 in response to drought stress in sorghum and may shed light on genetic improvement of other crop species under drought-stress conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guihua Lu
- Correspondence: (G.L.); (B.S.); Tel.: +86-13805172133 (G.L.); +86-25-89681986 (B.S.)
| | - Bo Sun
- Correspondence: (G.L.); (B.S.); Tel.: +86-13805172133 (G.L.); +86-25-89681986 (B.S.)
| |
Collapse
|
13
|
Kaur R, Donoso T, Scheske C, Lefsrud M, Singh J. Highly Efficient and Reproducible Genetic Transformation in Pea for Targeted Trait Improvement. ACS AGRICULTURAL SCIENCE & TECHNOLOGY 2022; 2:780-787. [PMID: 35991689 PMCID: PMC9384215 DOI: 10.1021/acsagscitech.2c00084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A reproducible tissue culture protocol is required to establish an efficient genetic transformation system in highly recalcitrant pea genotypes. High-quality callus with superior regeneration ability was induced and regenerated on optimized media enriched with copper sulfate and cytokinins, 6-benzylaminopurine and indole-3-acetic acid. This successful regeneration effort led to the development of a highly efficient transformation system for five pea genotypes using immature and mature seeds. The new transformation protocol included the addition of elevated glucose and sucrose concentrations for cocultivation and inoculation media to improve callus induction and regeneration, thus resulting in consistent transformation frequencies. Using the Agrobacterium strain AGL1, a transformation frequency of up to 47% was obtained for the pea genotype Greenfeast, using either of two different selection marker genes, PAT or NPT, sourced from two different vectors. Sixty-two transgenic pea events were able to survive kanamycin and phosphinothricin selection. A total of 30 transgenic events for Greenfeast, 15 for CN 43016, 9 for snap pea, and 5 for CN 31237 are reported herein. Two additional transgenic events were recovered from particle gun bombardment experiments. Quantitative RT-PCR analysis confirmed the transgenic status of pea plants, indicating elevated expression of relevant genes cloned into the transformation constructs.
Collapse
Affiliation(s)
- Rajvinder Kaur
- Department
of Bioresource Engineering, McGill University, 21111 Rue Lakeshore, Sainte-Anne-de-Bellevue, Quebec, Montreal H9X 3V9, Canada
| | - Thomas Donoso
- Department
of Plant Science, McGill University, 21111 Rue Lakeshore, Sainte-Anne-de-Bellevue, Quebec, Montreal H9X 3V9, Canada
| | - Chelsea Scheske
- Department
of Bioresource Engineering, McGill University, 21111 Rue Lakeshore, Sainte-Anne-de-Bellevue, Quebec, Montreal H9X 3V9, Canada
| | - Mark Lefsrud
- Department
of Bioresource Engineering, McGill University, 21111 Rue Lakeshore, Sainte-Anne-de-Bellevue, Quebec, Montreal H9X 3V9, Canada
| | - Jaswinder Singh
- Department
of Plant Science, McGill University, 21111 Rue Lakeshore, Sainte-Anne-de-Bellevue, Quebec, Montreal H9X 3V9, Canada
| |
Collapse
|
14
|
Takanashi H, Kajiya-Kanegae H, Nishimura A, Yamada J, Ishimori M, Kobayashi M, Yano K, Iwata H, Tsutsumi N, Sakamoto W. DOMINANT AWN INHIBITOR Encodes the ALOG Protein Originating from Gene Duplication and Inhibits AWN Elongation by Suppressing Cell Proliferation and Elongation in Sorghum. PLANT & CELL PHYSIOLOGY 2022; 63:901-918. [PMID: 35640621 DOI: 10.1093/pcp/pcac057] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
The awn, a needle-like structure extending from the tip of the lemma in grass species, plays a role in environmental adaptation and fitness. In some crops, awns appear to have been eliminated during domestication. Although numerous genes involved in awn development have been identified, several dominant genes that eliminate awns are also known to exist. For example, in sorghum (Sorghum bicolor), the dominant awn-inhibiting gene has been known since 1921; however, its molecular features remain uncharacterized. In this study, we conducted quantitative trait locus analysis and a genome-wide association study of awn-related traits in sorghum and identified DOMINANT AWN INHIBITOR (DAI), which encodes the ALOG family protein on chromosome 3. DAI appeared to be present in most awnless sorghum cultivars, likely because of its effectiveness. Detailed analysis of the ALOG protein family in cereals revealed that DAI originated from a duplication of its twin paralog (DAIori) on chromosome 10. Observations of immature awns in near-isogenic lines revealed that DAI inhibits awn elongation by suppressing both cell proliferation and elongation. We also found that only DAI gained a novel function to inhibit awn elongation through an awn-specific expression pattern distinct from that of DAIori. Interestingly, heterologous expression of DAI with its own promoter in rice inhibited awn elongation in the awned cultivar Kasalath. We found that DAI originated from gene duplication, providing an interesting example of gain-of-function that occurs only in sorghum but shares its functionality with rice and sorghum.
Collapse
Affiliation(s)
- Hideki Takanashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Hiromi Kajiya-Kanegae
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
- Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization, Kouwa Nishi-Shimbashi Bldg. 5f, 2-14-1 Nishi-Shimbashi, Minato-ku, Tokyo 105-0003, Japan
| | - Asuka Nishimura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Junko Yamada
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Motoyuki Ishimori
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Masaaki Kobayashi
- Department of Life Sciences, Faculty of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, 214-8571 Japan
| | - Kentaro Yano
- Department of Life Sciences, Faculty of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa, 214-8571 Japan
| | - Hiroyoshi Iwata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Nobuhiro Tsutsumi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046 Japan
| |
Collapse
|
15
|
Kumar S, Liu ZB, Sanyour-Doyel N, Lenderts B, Worden A, Anand A, Cho HJ, Bolar J, Harris C, Huang L, Xing A, Richardson A. Efficient gene targeting in soybean using Ochrobactrum haywardense-mediated delivery of a marker-free donor template. PLANT PHYSIOLOGY 2022; 189:585-594. [PMID: 35191500 PMCID: PMC9157123 DOI: 10.1093/plphys/kiac075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/24/2022] [Indexed: 05/24/2023]
Abstract
Gene targeting (GT) for precise gene insertion or swap into pre-defined genomic location has been a bottleneck for expedited soybean precision breeding. We report a robust selectable marker-free GT system in soybean, one of the most economically important crops. An efficient Oh H1-8 (Ochrobactrum haywardense H1-8)-mediated embryonic axis transformation method was used for the delivery of CRISPR-Cas9 components and donor template to regenerate T0 plants 6-8 weeks after transformation. This approach generated up to 3.4% targeted insertion of the donor sequence into the target locus in T0 plants, with ∼ 90% mutation rate observed at the genomic target site. The GT was demonstrated in two genomic sites using two different donor DNA templates without the need for a selectable marker within the template. High-resolution Southern-by-Sequencing analysis identified T1 plants with precise targeted insertion and without unintended plasmid DNA. Unlike previous low-frequency GT reports in soybean that involved particle bombardment-mediated delivery and extensive selection, the method described here is fast, efficient, reproducible, does not require a selectable marker within the donor DNA, and generates nonchimeric plants with heritable GT.
Collapse
Affiliation(s)
| | | | | | | | | | - Ajith Anand
- Corteva Agriscience, Johnston, Iowa 50131, USA
| | | | - Joy Bolar
- Corteva Agriscience, Johnston, Iowa 50131, USA
| | | | | | - Aiqiu Xing
- Corteva Agriscience, Johnston, Iowa 50131, USA
| | | |
Collapse
|
16
|
Wuschel2 enables highly efficient CRISPR/Cas-targeted genome editing during rapid de novo shoot regeneration in sorghum. Commun Biol 2022; 5:344. [PMID: 35410430 PMCID: PMC9001672 DOI: 10.1038/s42003-022-03308-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/23/2022] [Indexed: 12/04/2022] Open
Abstract
For many important crops including sorghum, use of CRISPR/Cas technology is limited not only by the delivery of the gene-modification components into a plant cell, but also by the ability to regenerate a fertile plant from the engineered cell through tissue culture. Here, we report that Wuschel2 (Wus2)-enabled transformation increases not only the transformation efficiency, but also the CRISPR/Cas-targeted genome editing frequency in sorghum (Sorghum bicolor L.). Using Agrobacterium-mediated transformation, we have demonstrated Wus2-induced direct somatic embryo formation and regeneration, bypassing genotype-dependent callus formation and significantly shortening the tissue culture cycle time. This method also increased the regeneration capacity that resulted in higher transformation efficiency across different sorghum varieties. Subsequently, advanced excision systems and “altruistic” transformation technology have been developed to generate high-quality morphogenic gene-free and/or selectable marker-free sorghum events. Finally, we demonstrate up to 6.8-fold increase in CRISPR/Cas9-mediated gene dropout frequency using Wus2-enabled transformation, compared to without Wus2, across various targeted loci in different sorghum genotypes. Che et al. use Wuschel2-enabled genome transformation to induce somatic embryo formation in sorghum, a grain used in human food. Their approach not only overcomes the genotype-dependent barrier for genetic transformation without the introduction of morphogenic genes, but also increases the frequency of CRISPR/Castargeted genome editing.
Collapse
|
17
|
Che P, Wu E, Simon MK, Anand A, Lowe K, Gao H, Sigmund AL, Yang M, Albertsen MC, Gordon-Kamm W, Jones TJ. Wuschel2 enables highly efficient CRISPR/Cas-targeted genome editing during rapid de novo shoot regeneration in sorghum. Commun Biol 2022; 5:344. [PMID: 35410430 DOI: 10.1101/2021.06.21.449302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/23/2022] [Indexed: 05/26/2023] Open
Abstract
For many important crops including sorghum, use of CRISPR/Cas technology is limited not only by the delivery of the gene-modification components into a plant cell, but also by the ability to regenerate a fertile plant from the engineered cell through tissue culture. Here, we report that Wuschel2 (Wus2)-enabled transformation increases not only the transformation efficiency, but also the CRISPR/Cas-targeted genome editing frequency in sorghum (Sorghum bicolor L.). Using Agrobacterium-mediated transformation, we have demonstrated Wus2-induced direct somatic embryo formation and regeneration, bypassing genotype-dependent callus formation and significantly shortening the tissue culture cycle time. This method also increased the regeneration capacity that resulted in higher transformation efficiency across different sorghum varieties. Subsequently, advanced excision systems and "altruistic" transformation technology have been developed to generate high-quality morphogenic gene-free and/or selectable marker-free sorghum events. Finally, we demonstrate up to 6.8-fold increase in CRISPR/Cas9-mediated gene dropout frequency using Wus2-enabled transformation, compared to without Wus2, across various targeted loci in different sorghum genotypes.
Collapse
Affiliation(s)
- Ping Che
- Corteva Agriscience, Johnston, IA, 50131, USA.
| | - Emily Wu
- Corteva Agriscience, Johnston, IA, 50131, USA
| | | | - Ajith Anand
- Corteva Agriscience, Johnston, IA, 50131, USA
| | - Keith Lowe
- Corteva Agriscience, Johnston, IA, 50131, USA
| | - Huirong Gao
- Corteva Agriscience, Johnston, IA, 50131, USA
| | | | - Meizhu Yang
- Corteva Agriscience, Johnston, IA, 50131, USA
| | | | | | | |
Collapse
|
18
|
Aregawi K, Shen J, Pierroz G, Sharma MK, Dahlberg J, Owiti J, Lemaux PG. Morphogene-assisted transformation of Sorghum bicolor allows more efficient genome editing. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:748-760. [PMID: 34837319 PMCID: PMC8989502 DOI: 10.1111/pbi.13754] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 05/08/2023]
Abstract
Sorghum bicolor (L.) Moench, the fifth most important cereal worldwide, is a multi-use crop for feed, food, forage and fuel. To enhance the sorghum and other important crop plants, establishing gene function is essential for their improvement. For sorghum, identifying genes associated with its notable abiotic stress tolerances requires a detailed molecular understanding of the genes associated with those traits. The limits of this knowledge became evident from our earlier in-depth sorghum transcriptome study showing that over 40% of its transcriptome had not been annotated. Here, we describe a full spectrum of tools to engineer, edit, annotate and characterize sorghum's genes. Efforts to develop those tools began with a morphogene-assisted transformation (MAT) method that led to accelerated transformation times, nearly half the time required with classical callus-based, non-MAT approaches. These efforts also led to expanded numbers of amenable genotypes, including several not previously transformed or historically recalcitrant. Another transformation advance, termed altruistic, involved introducing a gene of interest in a separate Agrobacterium strain from the one with morphogenes, leading to plants with the gene of interest but without morphogenes. The MAT approach was also successfully used to edit a target exemplary gene, phytoene desaturase. To identify single-copy transformed plants, we adapted a high-throughput technique and also developed a novel method to determine transgene independent integration. These efforts led to an efficient method to determine gene function, expediting research in numerous genotypes of this widely grown, multi-use crop.
Collapse
Affiliation(s)
- Kiflom Aregawi
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCAUSA
| | - Jianqiang Shen
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCAUSA
| | - Grady Pierroz
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCAUSA
| | - Manoj K. Sharma
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCAUSA
| | - Jeffery Dahlberg
- University of California Ag & Natural ResourcesKearney Agricultural Research & Extension CenterParlierCAUSA
| | - Judith Owiti
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCAUSA
| | - Peggy G. Lemaux
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCAUSA
| |
Collapse
|
19
|
Silva TN, Thomas JB, Dahlberg J, Rhee SY, Mortimer JC. Progress and challenges in sorghum biotechnology, a multipurpose feedstock for the bioeconomy. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:646-664. [PMID: 34644381 PMCID: PMC8793871 DOI: 10.1093/jxb/erab450] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/10/2021] [Indexed: 05/09/2023]
Abstract
Sorghum [Sorghum bicolor (L.) Moench] is the fifth most important cereal crop globally by harvested area and production. Its drought and heat tolerance allow high yields with minimal input. It is a promising biomass crop for the production of biofuels and bioproducts. In addition, as an annual diploid with a relatively small genome compared with other C4 grasses, and excellent germplasm diversity, sorghum is an excellent research species for other C4 crops such as maize. As a result, an increasing number of researchers are looking to test the transferability of findings from other organisms such as Arabidopsis thaliana and Brachypodium distachyon to sorghum, as well as to engineer new biomass sorghum varieties. Here, we provide an overview of sorghum as a multipurpose feedstock crop which can support the growing bioeconomy, and as a monocot research model system. We review what makes sorghum such a successful crop and identify some key traits for future improvement. We assess recent progress in sorghum transformation and highlight how transformation limitations still restrict its widespread adoption. Finally, we summarize available sorghum genetic, genomic, and bioinformatics resources. This review is intended for researchers new to sorghum research, as well as those wishing to include non-food and forage applications in their research.
Collapse
Affiliation(s)
- Tallyta N Silva
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jason B Thomas
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, USA
| | - Jeff Dahlberg
- Joint BioEnergy Institute, Emeryville, CA, USA
- UC-ANR-KARE, 9240 S. Riverbend Ave, Parlier, CA, USA
| | - Seung Y Rhee
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, USA
- Correspondence: or
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, SA, Australia
- Correspondence: or
| |
Collapse
|
20
|
Scavuzzo-Duggan T, Varoquaux N, Madera M, Vogel JP, Dahlberg J, Hutmacher R, Belcher M, Ortega J, Coleman-Derr D, Lemaux P, Purdom E, Scheller HV. Cell Wall Compositions of Sorghum bicolor Leaves and Roots Remain Relatively Constant Under Drought Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:747225. [PMID: 34868130 PMCID: PMC8632824 DOI: 10.3389/fpls.2021.747225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Renewable fuels are needed to replace fossil fuels in the immediate future. Lignocellulosic bioenergy crops provide a renewable alternative that sequesters atmospheric carbon. To prevent displacement of food crops, it would be advantageous to grow biofuel crops on marginal lands. These lands will likely face more frequent and extreme drought conditions than conventional agricultural land, so it is crucial to see how proposed bioenergy crops fare under these conditions and how that may affect lignocellulosic biomass composition and saccharification properties. We found that while drought impacts the plant cell wall of Sorghum bicolor differently according to tissue and timing of drought induction, drought-induced cell wall compositional modifications are relatively minor and produce no negative effect on biomass conversion. This contrasts with the cell wall-related transcriptome, which had a varied range of highly variable genes (HVGs) within four cell wall-related GO categories, depending on the tissues surveyed and time of drought induction. Further, many HVGs had expression changes in which putative impacts were not seen in the physical cell wall or which were in opposition to their putative impacts. Interestingly, most pre-flowering drought-induced cell wall changes occurred in the leaf, with matrix and lignin compositional changes that did not persist after recovery from drought. Most measurable physical post-flowering cell wall changes occurred in the root, affecting mainly polysaccharide composition and cross-linking. This study couples transcriptomics to cell wall chemical analyses of a C4 grass experiencing progressive and differing drought stresses in the field. As such, we can analyze the cell wall-specific response to agriculturally relevant drought stresses on the transcriptomic level and see whether those changes translate to compositional or biomass conversion differences. Our results bolster the conclusion that drought stress does not substantially affect the cell wall composition of specific aerial and subterranean biomass nor impede enzymatic hydrolysis of leaf biomass, a positive result for biorefinery processes. Coupled with previously reported results on the root microbiome and rhizosphere and whole transcriptome analyses of this study, we can formulate and test hypotheses on individual gene candidates' function in mediating drought stress in the grass cell wall, as demonstrated in sorghum.
Collapse
Affiliation(s)
- Tess Scavuzzo-Duggan
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Joint BioEnergy Institute, Emeryville, CA, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Nelle Varoquaux
- Department of Statistics, University of California, Berkeley, Berkeley, CA, United States
- Berkeley Institute for Data Science, University of California, Berkeley, Berkeley, CA, United States
| | - Mary Madera
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - John P. Vogel
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- DOE Joint Genome Institute, Berkeley, CA, United States
| | - Jeffery Dahlberg
- Kearney Agricultural Research and Extension Center, University of California, Parlier, Parlier, CA, United States
| | - Robert Hutmacher
- West Side Research and Extension Center, University of California, Five Points, Five Points, CA, United States
| | - Michael Belcher
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Joint BioEnergy Institute, Emeryville, CA, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jasmine Ortega
- Joint BioEnergy Institute, Emeryville, CA, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Devin Coleman-Derr
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service, Albany, CA, United States
| | - Peggy Lemaux
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Elizabeth Purdom
- Department of Statistics, University of California, Berkeley, Berkeley, CA, United States
| | - Henrik V. Scheller
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Joint BioEnergy Institute, Emeryville, CA, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
21
|
Zhang Y, Qin C, Liu S, Xu Y, Li Y, Zhang Y, Song Y, Sun M, Fu C, Qin Z, Dai S. Establishment of an efficient Agrobacterium-mediated genetic transformation system in halophyte Puccinellia tenuiflora. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:55. [PMID: 37309401 PMCID: PMC10236038 DOI: 10.1007/s11032-021-01247-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/25/2021] [Indexed: 06/14/2023]
Abstract
Alkaligrass (Puccinellia tenuiflora) is a monocotyledonous halophyte pasture, which has strong tolerance to saline-alkali, drought, and chilling stresses. We have reported a high-quality chromosome-level genome and stress-responsive proteomic results in P. tenuiflora. However, the gene/protein function investigations are still lacking, due to the absent of genetic transformation system in P. tenuiflora. In this study, we established a higher efficient Agrobacterium-mediated transformation for P. tenuiflora using calluses induced from seeds. Agrobacterium strain EHA105 harbors pANIC 6B vectors that contain GUS reporter gene and Hyg gene for screening. Ten mg·L-1 hygromycin was used for selecting transgenic calluses. The optimized condition of vacuum for 10 min, ultrasonication for 10 min, and then vacuum for 10 min was used for improvement of conversion efficiency. Besides, 300 mg·L-1 timentin was the optimum antibiotics in transformation. PCR amplification exhibited that GUS gene has been successfully integrated into the chromosome of P. tenuiflora. Histochemical GUS staining and qRT-PCR analysis indicated that GUS gene has stably expressed with ß-glucuronidase activity in transgene seedlings. All these demonstrated that we have successfully established an Agrobacterium-mediated transformation system of P. tenuiflora, which provides a good platform for further gene function analysis and lays a solid foundation for molecular breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01247-8.
Collapse
Affiliation(s)
- Yue Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234 China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040 China
| | - Chunxiao Qin
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234 China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040 China
| | - Shijia Liu
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234 China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040 China
| | - Yue Xu
- Shandong Technology Innovation Center of Synthetic Biology, Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266000 China
| | - Ying Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040 China
| | - Yongxue Zhang
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234 China
| | - Yingying Song
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234 China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040 China
| | - Meihong Sun
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234 China
| | - Chunxiang Fu
- Shandong Technology Innovation Center of Synthetic Biology, Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266000 China
| | - Zhi Qin
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234 China
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234 China
| |
Collapse
|
22
|
Wang L, Gao L, Liu G, Meng R, Liu Y, Li J. An efficient sorghum transformation system using embryogenic calli derived from mature seeds. PeerJ 2021; 9:e11849. [PMID: 34430078 PMCID: PMC8349514 DOI: 10.7717/peerj.11849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/02/2021] [Indexed: 11/20/2022] Open
Abstract
Significant progress has been made on sorghum transformation in the last decades; however, the transformation process has been constrained by the availability of immature embryos because most of the researchers have utilized immature embryos as favorable explants. Although immature embryos have been proven to be optimal for tissue culture and transformation, isolation of immature embryos is time-consuming, labor-intensive, and limited by warm weather. In this study, we developed an efficient genetic transformation system using mature seeds as explants. The nptII and gus gene, used as the selective marker and report gene respectively, have been co-transformed by particle bombardment. After optimization of tissue culture, the G418 concentration, and transgenic, the average transformation frequency at 13.33% was achieved routinely. The transgenic events and transgene copy numbers were determined by PCR and RT-PCR, respectively. The geneticin selection and GUS staining on T1 seedlings confirmed that the transgenic plants were heritable. Our results demonstrated that the efficient sorghum transformation system has been established using mature seeds as explants. This transformation system will promote sorghum research on genetic engineering and genome editing without seasonal weather conditions restriction and explant resources restriction.
Collapse
Affiliation(s)
- Lihua Wang
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Li Gao
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Guoquan Liu
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - Ruirui Meng
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Yanlong Liu
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Jieqin Li
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| |
Collapse
|
23
|
Che P, Chang S, Simon MK, Zhang Z, Shaharyar A, Ourada J, O'Neill D, Torres-Mendoza M, Guo Y, Marasigan KM, Vielle-Calzada JP, Ozias-Akins P, Albertsen MC, Jones TJ. Developing a rapid and highly efficient cowpea regeneration, transformation and genome editing system using embryonic axis explants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:817-830. [PMID: 33595147 DOI: 10.1101/738971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/11/2021] [Indexed: 05/21/2023]
Abstract
Cowpea (Vigna unguiculata (L.) Walp.) is one of the most important legume crops planted worldwide, but despite decades of effort, cowpea transformation is still challenging due to inefficient Agrobacterium-mediated transfer DNA delivery, transgenic selection and in vitro shoot regeneration. Here, we report a highly efficient transformation system using embryonic axis explants isolated from imbibed mature seeds. We found that removal of the shoot apical meristem from the explants stimulated direct multiple shoot organogenesis from the cotyledonary node tissue. The application of a previously reported ternary transformation vector system provided efficient Agrobacterium-mediated gene delivery, while the utilization of spcN as selectable marker enabled more robust transgenic selection, plant recovery and transgenic plant generation without escapes and chimera formation. Transgenic cowpea plantlets developed exclusively from the cotyledonary nodes at frequencies of 4% to 37% across a wide range of cowpea genotypes. CRISPR/Cas-mediated gene editing was successfully demonstrated. The transformation principles established here could also be applied to other legumes to increase transformation efficiencies.
Collapse
Affiliation(s)
- Ping Che
- Corteva Agriscience, Johnston, Iowa, 50131, USA
| | | | | | - Zhifen Zhang
- Department of Horticulture and Institute of Plant Breeding, Genetics & Genomics, University of Georgia Tifton Campus, Tifton, GA, 31973, USA
| | | | | | | | - Mijael Torres-Mendoza
- Group of Reproductive Development and Apomixis, UGA Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Irapuato, Guanajuato, 36821, México
| | - Yinping Guo
- Department of Horticulture and Institute of Plant Breeding, Genetics & Genomics, University of Georgia Tifton Campus, Tifton, GA, 31973, USA
| | - Kathleen M Marasigan
- Department of Horticulture and Institute of Plant Breeding, Genetics & Genomics, University of Georgia Tifton Campus, Tifton, GA, 31973, USA
| | - Jean-Philippe Vielle-Calzada
- Group of Reproductive Development and Apomixis, UGA Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Irapuato, Guanajuato, 36821, México
| | - Peggy Ozias-Akins
- Department of Horticulture and Institute of Plant Breeding, Genetics & Genomics, University of Georgia Tifton Campus, Tifton, GA, 31973, USA
| | | | | |
Collapse
|
24
|
Che P, Chang S, Simon MK, Zhang Z, Shaharyar A, Ourada J, O’Neill D, Torres‐Mendoza M, Guo Y, Marasigan KM, Vielle‐Calzada J, Ozias‐Akins P, Albertsen MC, Jones TJ. Developing a rapid and highly efficient cowpea regeneration, transformation and genome editing system using embryonic axis explants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:817-830. [PMID: 33595147 PMCID: PMC8252785 DOI: 10.1111/tpj.15202] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/11/2021] [Indexed: 05/21/2023]
Abstract
Cowpea (Vigna unguiculata (L.) Walp.) is one of the most important legume crops planted worldwide, but despite decades of effort, cowpea transformation is still challenging due to inefficient Agrobacterium-mediated transfer DNA delivery, transgenic selection and in vitro shoot regeneration. Here, we report a highly efficient transformation system using embryonic axis explants isolated from imbibed mature seeds. We found that removal of the shoot apical meristem from the explants stimulated direct multiple shoot organogenesis from the cotyledonary node tissue. The application of a previously reported ternary transformation vector system provided efficient Agrobacterium-mediated gene delivery, while the utilization of spcN as selectable marker enabled more robust transgenic selection, plant recovery and transgenic plant generation without escapes and chimera formation. Transgenic cowpea plantlets developed exclusively from the cotyledonary nodes at frequencies of 4% to 37% across a wide range of cowpea genotypes. CRISPR/Cas-mediated gene editing was successfully demonstrated. The transformation principles established here could also be applied to other legumes to increase transformation efficiencies.
Collapse
Affiliation(s)
- Ping Che
- Corteva AgriscienceJohnstonIowa50131USA
| | - Shujun Chang
- Corteva AgriscienceJohnstonIowa50131USA
- Present address:
Benson Hill Biosystems1100 Corporate Square Dr. Suite 150St. LouisMO63132USA
| | | | - Zhifen Zhang
- Department of Horticulture and Institute of Plant Breeding, Genetics & GenomicsUniversity of Georgia Tifton CampusTiftonGA31973USA
| | - Ahmed Shaharyar
- Corteva AgriscienceJohnstonIowa50131USA
- Present address:
Benson Hill Biosystems1100 Corporate Square Dr. Suite 150St. LouisMO63132USA
| | - Jesse Ourada
- Corteva AgriscienceJohnstonIowa50131USA
- Present address:
Benson Hill Biosystems1100 Corporate Square Dr. Suite 150St. LouisMO63132USA
| | | | - Mijael Torres‐Mendoza
- Group of Reproductive Development and Apomixis, UGA Laboratorio Nacional de Genómica para la BiodiversidadCINVESTAV IrapuatoGuanajuato36821México
| | - Yinping Guo
- Department of Horticulture and Institute of Plant Breeding, Genetics & GenomicsUniversity of Georgia Tifton CampusTiftonGA31973USA
| | - Kathleen M. Marasigan
- Department of Horticulture and Institute of Plant Breeding, Genetics & GenomicsUniversity of Georgia Tifton CampusTiftonGA31973USA
| | - Jean‐Philippe Vielle‐Calzada
- Group of Reproductive Development and Apomixis, UGA Laboratorio Nacional de Genómica para la BiodiversidadCINVESTAV IrapuatoGuanajuato36821México
| | - Peggy Ozias‐Akins
- Department of Horticulture and Institute of Plant Breeding, Genetics & GenomicsUniversity of Georgia Tifton CampusTiftonGA31973USA
| | | | | |
Collapse
|
25
|
Cao Chu U, Kumar S, Sigmund A, Johnson K, Li Y, Vongdeuane P, Jones TJ. Genotype-Independent Transformation and Genome Editing of Brassica napus Using a Novel Explant Material. FRONTIERS IN PLANT SCIENCE 2020; 11:579524. [PMID: 33133118 PMCID: PMC7578431 DOI: 10.3389/fpls.2020.579524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Agrobacterium-mediated transformation of canola (Brassica napus) via hypocotyl segments has been a commonly used method for the past 30 years. While the hypocotyl-based method is well-established, it is not readily adapted to elite germplasm and the prolonged process is not ideal for a production transformation setting. We developed an Agrobacterium-mediated transformation method based on epicotyl and higher stem (internodal) segments that is efficient, rapid and amenable for high-throughput transformation and genome editing. The method has been successfully implemented in multiple canola genotypes. The method appears to be genotype-independent, with varying transformation efficiencies. Internodal segment transformation was used to generate transgenic events as well as CRISPR-Cas9-mediated frameshift gene knockouts.
Collapse
|
26
|
Wang N, Arling M, Hoerster G, Ryan L, Wu E, Lowe K, Gordon-Kamm W, Jones TJ, Chilcoat ND, Anand A. An Efficient Gene Excision System in Maize. FRONTIERS IN PLANT SCIENCE 2020; 11:1298. [PMID: 32983193 PMCID: PMC7492568 DOI: 10.3389/fpls.2020.01298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/11/2020] [Indexed: 05/25/2023]
Abstract
Use of the morphogenic genes Baby Boom (Bbm) and Wuschel2 (Wus2), along with new ternary constructs, has increased the genotype range and the type of explants that can be used for maize transformation. Further optimizing the expression pattern for Bbm/Wus2 has resulted in rapid maize transformation methods that are faster and applicable to a broader range of inbreds. However, expression of Bbm/Wus2 can compromise the quality of regenerated plants, leading to sterility. We reasoned excising morphogenic genes after transformation but before regeneration would increase production of fertile T0 plants. We developed a method that uses an inducible site-specific recombinase (Cre) to excise morphogenic genes. The use of developmentally regulated promoters, such as Ole, Glb1, End2, and Ltp2, to drive Cre enabled excision of morphogenic genes in early embryo development and produced excised events at a rate of 25-100%. A different strategy utilizing an excision-activated selectable marker produced excised events at a rate of 53-68%; however, the transformation frequency was lower (13-50%). The use of inducible heat shock promoters (e.g. Hsp17.7, Hsp26) to express Cre, along with improvements in tissue culture conditions and construct design, resulted in high frequencies of T0 transformation (29-69%), excision (50-97%), usable quality events (4-15%), and few escapes (non-transgenic; 14-17%) in three elite maize inbreds. Transgenic events produced by this method are free of morphogenic and marker genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ajith Anand
- Crop Genome Engineering, Applied Science and Technology, Corteva Agriscience, Johnston, IA, United States
| |
Collapse
|
27
|
Ramkumar TR, Lenka SK, Arya SS, Bansal KC. A Short History and Perspectives on Plant Genetic Transformation. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2020; 2124:39-68. [PMID: 32277448 DOI: 10.1007/978-1-0716-0356-7_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plant genetic transformation is an important technological advancement in modern science, which has not only facilitated gaining fundamental insights into plant biology but also started a new era in crop improvement and commercial farming. However, for many crop plants, efficient transformation and regeneration still remain a challenge even after more than 30 years of technical developments in this field. Recently, FokI endonuclease-based genome editing applications in plants offered an exciting avenue for augmenting crop productivity but it is mainly dependent on efficient genetic transformation and regeneration, which is a major roadblock for implementing genome editing technology in plants. In this chapter, we have outlined the major historical developments in plant genetic transformation for developing biotech crops. Overall, this field needs innovations in plant tissue culture methods for simplification of operational steps for enhancing the transformation efficiency. Similarly, discovering genes controlling developmental reprogramming and homologous recombination need considerable attention, followed by understanding their role in enhancing genetic transformation efficiency in plants. Further, there is an urgent need for exploring new and low-cost universal delivery systems for DNA/RNA and protein into plants. The advancements in synthetic biology, novel vector systems for precision genome editing and gene integration could potentially bring revolution in crop-genetic potential enhancement for a sustainable future. Therefore, efficient plant transformation system standardization across species holds the key for translating advances in plant molecular biology to crop improvement.
Collapse
Affiliation(s)
- Thakku R Ramkumar
- Agronomy Department, IFAS, University of Florida, Gainesville, FL, USA
| | - Sangram K Lenka
- TERI-Deakin NanoBiotechnology Centre, The Energy and Resources Institute, New Delhi, India
| | - Sagar S Arya
- TERI-Deakin NanoBiotechnology Centre, The Energy and Resources Institute, New Delhi, India
| | - Kailash C Bansal
- TERI-Deakin NanoBiotechnology Centre, The Energy and Resources Institute, New Delhi, India.
| |
Collapse
|
28
|
Santos CM, Romeiro D, Silva JP, Basso MF, Molinari HBC, Centeno DC. An improved protocol for efficient transformation and regeneration of Setaria italica. PLANT CELL REPORTS 2020; 39:501-510. [PMID: 31915913 DOI: 10.1007/s00299-019-02505-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
An efficient and improved transformation method for functional genetics studies in S. italica, being a boon for the Setaria scientific community and for crop improvement. Foxtail millet (Setaria italica) is a short life cycle C4 plant, with sequenced genome, and a potential model plant for C4 species. S. italica is also important on a global food security and healthiness context due to its importance in arid and semi-arid areas. However, despite its importance, there are just few transformation protocols directed to this species. The current protocols reached about 5.5-9% of efficiency, which do not make it a valuable model organism. Different types of explants were used in the above mentioned methods, such as immature and mature inflorescence and shoot apex. However, these techniques have many limitations, such as unavailability of explants throughout the year and a crucial, laborious and considerable time-consuming selection. Aiming a simplified and efficient methodology, we adopted dry mature seeds as explants, which are available in abundance, are constant along the year and well responsive to tissue culture, in addition to a differentiated approach that reaches on an average 19.2% transformation efficiency of S. italica. Thus, we propose a protocol that optimizes the transformation efficiency of this cereal crop allowing a high increase on transformation and regeneration rates. Our transformation protocol provides an interesting tool for Setaria community research as well as enables new strategies for breeding enhanced productivity in the species.
Collapse
Affiliation(s)
- C M Santos
- Universidade Federal Do ABC, São Bernardo Do Campo, SP, Brazil
| | - D Romeiro
- Universidade Federal Do ABC, São Bernardo Do Campo, SP, Brazil
| | - J P Silva
- Universidade Federal Do ABC, São Bernardo Do Campo, SP, Brazil
| | - M F Basso
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy, Brasília, DF, Brazil
| | - H B C Molinari
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy, Brasília, DF, Brazil
| | - D C Centeno
- Universidade Federal Do ABC, São Bernardo Do Campo, SP, Brazil.
| |
Collapse
|
29
|
The Position and Complex Genomic Architecture of Plant T-DNA Insertions Revealed by 4SEE. Int J Mol Sci 2020; 21:ijms21072373. [PMID: 32235482 PMCID: PMC7177604 DOI: 10.3390/ijms21072373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 01/08/2023] Open
Abstract
The integration of T-DNA in plant genomes is widely used for basic research and agriculture. The high heterogeneity in the number of integration events per genome, their configuration, and their impact on genome integrity highlight the critical need to detect the genomic locations of T-DNA insertions and their associated chromosomal rearrangements, and the great challenge in doing so. Here, we present 4SEE, a circular chromosome conformation capture (4C)-based method for robust, rapid, and cost-efficient detection of the entire scope of T-DNA locations. Moreover, by measuring the chromosomal architecture of the plant genome flanking the T-DNA insertions, 4SEE outlines their associated complex chromosomal aberrations. Applying 4SEE to a collection of confirmed T-DNA lines revealed previously unmapped T-DNA insertions and chromosomal rearrangements such as inversions and translocations. Uncovering such events in a feasible, robust, and cost-effective manner by 4SEE in any plant of interest has implications for accurate annotation and phenotypic characterization of T-DNA insertion mutants and transgene expression in basic science applications as well as for plant biotechnology.
Collapse
|
30
|
Nguyen DQ, Van Eck J, Eamens AL, Grof CPL. Robust and Reproducible Agrobacterium-Mediated Transformation System of the C 4 Genetic Model Species Setaria viridis. FRONTIERS IN PLANT SCIENCE 2020; 11:281. [PMID: 32231678 PMCID: PMC7082778 DOI: 10.3389/fpls.2020.00281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/25/2020] [Indexed: 05/04/2023]
Abstract
Setaria viridis (green foxtail) has been identified as a potential experimental model system to genetically and molecularly characterise the C4 monocotyledonous grasses due to its small physical size, short generation time and prolific seed production, together with a sequenced and annotated genome. Setaria viridis is the wild ancestor of the cropping species, foxtail millet (Setaria italica), with both Setaria species sharing a close evolutionary relationship with the agronomically important species, maize, sorghum, and sugarcane, as well as the bioenergy feedstocks, switchgrass, and Miscanthus. However, an efficient and reproducible transformation protocol is required to further advance the use of S. viridis to study the molecular genetics of C4 monocotyledonous grasses. An efficient and reproducible protocol was established for Agrobacterium tumefaciens-mediated transformation of S. viridis (Accession A10) regenerable callus material derived from mature seeds, a protocol that returned an average transformation efficiency of 6.3%. The efficiency of this protocol was the result of the: (i) use of mature embryo derived callus material; (ii) age of the seed used to induce callus formation; (iii) composition of the callus induction media, including the addition of the ethylene inhibitor, silver nitrate; (iv) use of a co-cultivation approach, and; (v) concentration of the selective agent. Our protocol furthers the use of S. viridis as an experimental model system to study the molecular genetics of C4 monocotyledonous grasses for the potential future development of improved C4 cropping species.
Collapse
Affiliation(s)
- Duc Quan Nguyen
- Centre for Plant Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Joyce Van Eck
- Boyce Thompson Institute, Ithaca, NY, United States
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - Andrew L. Eamens
- Centre for Plant Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Christopher P. L. Grof
- Centre for Plant Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
31
|
Hennet L, Berger A, Trabanco N, Ricciuti E, Dufayard JF, Bocs S, Bastianelli D, Bonnal L, Roques S, Rossini L, Luquet D, Terrier N, Pot D. Transcriptional Regulation of Sorghum Stem Composition: Key Players Identified Through Co-expression Gene Network and Comparative Genomics Analyses. FRONTIERS IN PLANT SCIENCE 2020; 11:224. [PMID: 32194601 PMCID: PMC7064007 DOI: 10.3389/fpls.2020.00224] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Most sorghum biomass accumulates in stem secondary cell walls (SCW). As sorghum stems are used as raw materials for various purposes such as feed, energy and fiber reinforced polymers, identifying the genes responsible for SCW establishment is highly important. Taking advantage of studies performed in model species, most of the structural genes contributing at the molecular level to the SCW biosynthesis in sorghum have been proposed while their regulatory factors have mostly not been determined. Validation of the role of several MYB and NAC transcription factors in SCW regulation in Arabidopsis and a few other species has been provided. In this study, we contributed to the recent efforts made in grasses to uncover the mechanisms underlying SCW establishment. We reported updated phylogenies of NAC and MYB in 9 different species and exploited findings from other species to highlight candidate regulators of SCW in sorghum. We acquired expression data during sorghum internode development and used co-expression analyses to determine groups of co-expressed genes that are likely to be involved in SCW establishment. We were able to identify two groups of co-expressed genes presenting multiple evidences of involvement in SCW building. Gene enrichment analysis of MYB and NAC genes provided evidence that while NAC SECONDARY WALL THICKENING PROMOTING FACTOR NST genes and SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN gene functions appear to be conserved in sorghum, NAC master regulators of SCW in sorghum may not be as tissue compartmentalized as in Arabidopsis. We showed that for every homolog of the key SCW MYB in Arabidopsis, a similar role is expected for sorghum. In addition, we unveiled sorghum MYB and NAC that have not been identified to date as being involved in cell wall regulation. Although specific validation of the MYB and NAC genes uncovered in this study is needed, we provide a network of sorghum genes involved in SCW both at the structural and regulatory levels.
Collapse
Affiliation(s)
- Lauriane Hennet
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Angélique Berger
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Noemi Trabanco
- Parco Tecnologico Padano, Lodi, Italy
- Centro de Biotecnología y Genómica de Plantas, UPM-INIA, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Emeline Ricciuti
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Jean-François Dufayard
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Stéphanie Bocs
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Denis Bastianelli
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
- CIRAD, UMR SELMET, Montpellier, France
| | - Laurent Bonnal
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
- CIRAD, UMR SELMET, Montpellier, France
| | - Sandrine Roques
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Laura Rossini
- Parco Tecnologico Padano, Lodi, Italy
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milan, Italy
| | - Delphine Luquet
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Nancy Terrier
- AGAP, CIRAD, INRAE, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - David Pot
- CIRAD, UMR AGAP, Montpellier, France
- CIRAD, INRA, Montpellier SupAgro, University of Montpellier, Montpellier, France
| |
Collapse
|
32
|
Flinn B, Dale S, Disharoon A, Kresovich S. Comparative Analysis of In Vitro Responses and Regeneration between Diverse Bioenergy Sorghum Genotypes. PLANTS (BASEL, SWITZERLAND) 2020; 9:E248. [PMID: 32075100 PMCID: PMC7076383 DOI: 10.3390/plants9020248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/24/2020] [Accepted: 02/11/2020] [Indexed: 01/09/2023]
Abstract
Sorghum has been considered a recalcitrant plant in vitro and suffers from a lack of regeneration protocols that function broadly and efficiently across a range of genotypes. This study was initiated to identify differential genotype-in vitro protocol responses across a range of bioenergy sorghum parental lines and the common grain sorghum genotype Tx430 in order to characterize response profiles for use in future genetic studies. Two different in vitro protocols, LG and WU, were used for comparisons. Distinct genotype-protocol responses were observed, and the WU protocol performed significantly better for plantlet regeneration. Most bioenergy genotypes performed as well, if not better than Tx430, with Rio and PI329311 as the top regenerating lines. Genotypes displayed protocol-dependent, differential phenolic exudation responses, as indicated by medium browning. During the callus induction phase, genotypes prone to medium browning exhibited a response on WU medium which was either equal or greater than on LG medium. Genotype- and protocol-dependent albino plantlet regeneration was also noted, with three of the bioenergy genotypes showing albino plantlet regeneration. Grassl, Rio and Pink Kafir were susceptible to albino plantlet regeneration, with the response strongly associated with the WU protocol. These bioenergy parental genotypes, and their differential responses under two in vitro protocols, provide tools to further explore and assess the role of genetic loci, candidate genes, and allelic variants in the regulation of in vitro responsiveness in sorghum.
Collapse
Affiliation(s)
- Barry Flinn
- Advanced Plant Technology Program, Clemson University, Clemson, SC 29634, USA;
| | - Savanah Dale
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA; (S.D.); (A.D.)
| | - Andrew Disharoon
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA; (S.D.); (A.D.)
| | - Stephen Kresovich
- Advanced Plant Technology Program, Clemson University, Clemson, SC 29634, USA;
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA; (S.D.); (A.D.)
| |
Collapse
|
33
|
Liu G, Massel K, Tabet B, Godwin ID. Biolistic DNA Delivery and Its Applications in Sorghum bicolor. Methods Mol Biol 2020; 2124:197-215. [PMID: 32277455 DOI: 10.1007/978-1-0716-0356-7_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Biolistic DNA delivery has been considered a universal tool for genetic manipulation to transfer exotic genes to cells or tissues due to its simplicity, versatility, and high efficiency. It has been a preferred method for investigating plant gene function in most monocot crops. The first transgenic sorghum plants were successfully regenerated through biolistic DNA delivery in 1993, with a relatively low transformation efficiency of 0.3%. Since then, tremendous progress has been made in recent years where the highest transformation efficiency was reported at 46.6%. Overall, the successful biolistic DNA delivery system is credited to three fundamental cornerstones: robust tissue culture system, effective gene expression in sorghum, and optimal parameters of DNA delivery. In this chapter, the history, application, and current development of biolistic DNA delivery in sorghum are reviewed, and the prospect of sorghum genetic engineering is discussed.
Collapse
Affiliation(s)
- Guoquan Liu
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia.
| | - Karen Massel
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - Basam Tabet
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - Ian D Godwin
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| |
Collapse
|
34
|
Ondzighi-Assoume CA, Willis JD, Ouma WK, Allen SM, King Z, Parrott WA, Liu W, Burris JN, Lenaghan SC, Stewart CN. Embryogenic cell suspensions for high-capacity genetic transformation and regeneration of switchgrass ( Panicum virgatum L.). BIOTECHNOLOGY FOR BIOFUELS 2019; 12:290. [PMID: 31890018 PMCID: PMC6913013 DOI: 10.1186/s13068-019-1632-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 12/07/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Switchgrass (Panicum virgatum L.), a North American prairie grassland species, is a potential lignocellulosic biofuel feedstock owing to its wide adaptability and biomass production. Production and genetic manipulation of switchgrass should be useful to improve its biomass composition and production for bioenergy applications. The goal of this project was to develop a high-throughput stable switchgrass transformation method using Agrobacterium tumefaciens with subsequent plant regeneration. RESULTS Regenerable embryogenic cell suspension cultures were established from friable type II callus-derived inflorescences using two genotypes selected from the synthetic switchgrass variety 'Performer' tissue culture lines 32 and 605. The cell suspension cultures were composed of a heterogeneous fine mixture culture of single cells and aggregates. Agrobacterium tumefaciens strain GV3101 was optimum to transfer into cells the pANIC-10A vector with a hygromycin-selectable marker gene and a pporRFP orange fluorescent protein marker gene at an 85% transformation efficiency. Liquid cultures gave rise to embryogenic callus and then shoots, of which up to 94% formed roots. The resulting transgenic plants were phenotypically indistinguishable from the non-transgenic parent lines. CONCLUSION The new cell suspension-based protocol enables high-throughput Agrobacterium-mediated transformation and regeneration of switchgrass in which plants are recovered within 6-7 months from culture establishment.
Collapse
Affiliation(s)
- Christine A. Ondzighi-Assoume
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN 37209 USA
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
| | - Jonathan D. Willis
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
| | - Wilson K. Ouma
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN 37209 USA
| | - Sara M. Allen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
| | - Zachary King
- Institute of Plant Breeding, Genetics& Genomics, University of Georgia, Athens, GA 30602-7272 USA
| | - Wayne A. Parrott
- Institute of Plant Breeding, Genetics& Genomics, University of Georgia, Athens, GA 30602-7272 USA
| | - Wusheng Liu
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607 USA
| | - Jason N. Burris
- Department of Food Science, University of Tennessee, Knoxville, TN 37996 USA
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN 37996 USA
| | - Scott C. Lenaghan
- Department of Food Science, University of Tennessee, Knoxville, TN 37996 USA
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN 37996 USA
| | - C. Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN 37996 USA
| |
Collapse
|
35
|
Anand A, Wu E, Li Z, TeRonde S, Arling M, Lenderts B, Mutti JS, Gordon‐Kamm W, Jones TJ, Chilcoat ND. High efficiency Agrobacterium-mediated site-specific gene integration in maize utilizing the FLP-FRT recombination system. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1636-1645. [PMID: 30706638 PMCID: PMC6662307 DOI: 10.1111/pbi.13089] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/23/2019] [Accepted: 01/27/2019] [Indexed: 05/20/2023]
Abstract
An efficient Agrobacterium-mediated site-specific integration (SSI) technology using the flipase/flipase recognition target (FLP/FRT) system in elite maize inbred lines is described. The system allows precise integration of a single copy of a donor DNA flanked by heterologous FRT sites into a predefined recombinant target line (RTL) containing the corresponding heterologous FRT sites. A promoter-trap system consisting of a pre-integrated promoter followed by an FRT site enables efficient selection of events. The efficiency of this system is dependent on several factors including Agrobacterium tumefaciens strain, expression of morphogenic genes Babyboom (Bbm) and Wuschel2 (Wus2) and choice of heterologous FRT pairs. Of the Agrobacterium strains tested, strain AGL1 resulted in higher transformation frequency than strain LBA4404 THY- (0.27% vs. 0.05%; per cent of infected embryos producing events). The addition of morphogenic genes increased transformation frequency (2.65% in AGL1; 0.65% in LBA4404 THY-). Following further optimization, including the choice of FRT pairs, a method was developed that achieved 19%-22.5% transformation frequency. Importantly, >50% of T0 transformants contain the desired full-length site-specific insertion. The frequencies reported here establish a new benchmark for generating targeted quality events compatible with commercial product development.
Collapse
Affiliation(s)
- Ajith Anand
- Agricultural Division of Dow DuPontCorteva Agriscience™JohnstonIAUSA
| | - Emily Wu
- Agricultural Division of Dow DuPontCorteva Agriscience™JohnstonIAUSA
| | - Zhi Li
- Agricultural Division of Dow DuPontCorteva Agriscience™JohnstonIAUSA
| | - Sue TeRonde
- Agricultural Division of Dow DuPontCorteva Agriscience™JohnstonIAUSA
| | - Maren Arling
- Agricultural Division of Dow DuPontCorteva Agriscience™JohnstonIAUSA
| | - Brian Lenderts
- Agricultural Division of Dow DuPontCorteva Agriscience™JohnstonIAUSA
| | - Jasdeep S. Mutti
- Agricultural Division of Dow DuPontCorteva Agriscience™JohnstonIAUSA
| | | | - Todd J. Jones
- Agricultural Division of Dow DuPontCorteva Agriscience™JohnstonIAUSA
| | | |
Collapse
|
36
|
Sun L, Ge Y, Sparks JA, Robinson ZT, Cheng X, Wen J, Blancaflor EB. TDNAscan: A Software to Identify Complete and Truncated T-DNA Insertions. Front Genet 2019; 10:685. [PMID: 31428129 PMCID: PMC6690219 DOI: 10.3389/fgene.2019.00685] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 07/01/2019] [Indexed: 01/28/2023] Open
Abstract
Transfer (T)-DNA insertions in mutants isolated from forward genetic screens are typically identified through thermal asymmetric interlaced polymerase chain reaction (TAIL-PCR), inverse PCR, or plasmid rescue. Despite the popularity and success of these methods, they have limited capabilities, particularly in situations in which the T-DNA is truncated. Here, we present a next generation sequencing (NGS)-based platform to facilitate the identification of complete and truncated T-DNA insertions. Our method enables the detection of the corresponding T-DNA insertion orientation and zygosity as well as insertion annotation. This method, called TDNAscan, was developed to be an open source software. We expect that TDNAscan will be a valuable addition to forward genetics toolkits because it provides a solution to the problem of causal gene identification, particularly genes disrupted by truncated T-DNA insertions. We present a case study in which TDNAscan was used to determine that the recessive Arabidopsis thaliana hypersensitive to latrunculin B (hlb3) mutant isolated in a forward genetic screen of T-DNA mutagenized plants encodes a class II FORMIN.
Collapse
Affiliation(s)
- Liang Sun
- Noble Research Institute LLC, Ardmore, OK, United States
| | - Yinbing Ge
- Noble Research Institute LLC, Ardmore, OK, United States
| | - J Alan Sparks
- Noble Research Institute LLC, Ardmore, OK, United States
| | | | - Xiaofei Cheng
- Noble Research Institute LLC, Ardmore, OK, United States
| | - Jiangqi Wen
- Noble Research Institute LLC, Ardmore, OK, United States
| | | |
Collapse
|
37
|
Liu L, Schepers E, Lum A, Rice J, Yalpani N, Gerber R, Jiménez-Juárez N, Haile F, Pascual A, Barry J, Qi X, Kassa A, Heckert MJ, Xie W, Ding C, Oral J, Nguyen M, Le J, Procyk L, Diehn SH, Crane VC, Damude H, Pilcher C, Booth R, Liu L, Zhu G, Nowatzki TM, Nelson ME, Lu AL, Wu G. Identification and Evaluations of Novel Insecticidal Proteins from Plants of the Class Polypodiopsida for Crop Protection against Key Lepidopteran Pests. Toxins (Basel) 2019; 11:E383. [PMID: 31266212 PMCID: PMC6669613 DOI: 10.3390/toxins11070383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 12/12/2022] Open
Abstract
Various lepidopteran insects are responsible for major crop losses worldwide. Although crop plant varieties developed to express Bacillus thuringiensis (Bt) proteins are effective at controlling damage from key lepidopteran pests, some insect populations have evolved to be insensitive to certain Bt proteins. Here, we report the discovery of a family of homologous proteins, two of which we have designated IPD083Aa and IPD083Cb, which are from Adiantum spp. Both proteins share no known peptide domains, sequence motifs, or signatures with other proteins. Transgenic soybean or corn plants expressing either IPD083Aa or IPD083Cb, respectively, show protection from feeding damage by several key pests under field conditions. The results from comparative studies with major Bt proteins currently deployed in transgenic crops indicate that the IPD083 proteins function by binding to different target sites. These results indicate that IPD083Aa and IPD083Cb can serve as alternatives to traditional Bt-based insect control traits with potential to counter insect resistance to Bt proteins.
Collapse
Affiliation(s)
- Lu Liu
- Corteva Agriscience, Hayward, CA 94545, USA
| | | | - Amy Lum
- Corteva Agriscience, Hayward, CA 94545, USA
| | - Janet Rice
- Corteva Agriscience, Johnston, IA 50131, USA
| | | | - Ryan Gerber
- Corteva Agriscience, Johnston, IA 50131, USA
| | | | - Fikru Haile
- Corteva Agriscience, Johnston, IA 50131, USA
| | | | | | - Xiuli Qi
- Corteva Agriscience, Johnston, IA 50131, USA
| | - Adane Kassa
- Corteva Agriscience, Johnston, IA 50131, USA
| | | | | | | | | | | | - James Le
- Corteva Agriscience, Hayward, CA 94545, USA
| | - Lisa Procyk
- Corteva Agriscience, Johnston, IA 50131, USA
| | | | | | | | | | - Russ Booth
- Corteva Agriscience, Johnston, IA 50131, USA
| | - Lu Liu
- Corteva Agriscience, Johnston, IA 50131, USA
| | - Genhai Zhu
- Corteva Agriscience, Hayward, CA 94545, USA
| | | | | | - Albert L Lu
- Corteva Agriscience, Johnston, IA 50131, USA
| | - Gusui Wu
- Corteva Agriscience, Hayward, CA 94545, USA
| |
Collapse
|
38
|
Kausch AP, Nelson-Vasilchik K, Hague J, Mookkan M, Quemada H, Dellaporta S, Fragoso C, Zhang ZJ. Edit at will: Genotype independent plant transformation in the era of advanced genomics and genome editing. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:186-205. [PMID: 30824051 DOI: 10.1016/j.plantsci.2019.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/07/2018] [Accepted: 01/10/2019] [Indexed: 05/21/2023]
Abstract
The combination of advanced genomics, genome editing and plant transformation biology presents a powerful platform for basic plant research and crop improvement. Together these advances provide the tools to identify genes as targets for direct editing as single base pair changes, deletions, insertions and site specific homologous recombination. Recent breakthrough technologies using morphogenic regulators in plant transformation creates the ability to introduce reagents specific toward their identified targets and recover stably transformed and/or edited plants which are genotype independent. These technologies enable the possibility to alter a trait in any variety, without genetic disruption which would require subsequent extensive breeding, but rather to deliver the same variety with one trait changed. Regulatory issues regarding this technology will predicate how broadly these technologies will be implemented. In addition, education will play a crucial role for positive public acceptance. Taken together these technologies comprise a platform for advanced breeding which is an imperative for future world food security.
Collapse
Affiliation(s)
- Albert P Kausch
- Department of Cell and Molecular Biology, University of Rhode Island, RI 02892, USA.
| | | | - Joel Hague
- Department of Cell and Molecular Biology, University of Rhode Island, RI 02892, USA
| | - Muruganantham Mookkan
- Plant Transformation Core Facility, Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | - Stephen Dellaporta
- Yale University, New Haven, CT 06520, USA; Verinomics Inc., New Haven, CT 06520, USA
| | | | - Zhanyuan J Zhang
- Plant Transformation Core Facility, Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
39
|
Duan X, Zheng L, Sun J, Liu W, Wang W, An H. Co-culturing on dry filter paper significantly increased the efficiency of Agrobacterium-mediated transformations of maize immature embryos. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:549-560. [PMID: 30956435 PMCID: PMC6419711 DOI: 10.1007/s12298-018-00641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/30/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
In the Agrobacterium tumefaciens-mediated transformations of maize immature embryos (IEs), the common co-culturing media used are MS or N6-based (MC). Here, we used a novel co-culturing method in which maize 'Qi319' IEs inoculated with Agrobacterium-harboring target vector were placed on dry filter paper (DC) in a petri dish. To compare the effects of the DC and MC co-culturing methods on transformation efficiency, we designed three experiments: (1) A. tumefaciens strain AGL1 independently carrying two plasmids, pXQD12 and pXQD70; (2) two A. tumefaciens strains, AGL1 and EHA105, carrying pXQD12; and (3) strains AGL1 and EHA105 each independently inoculated with pXQD12 and pXQD70 for different infiltration periods, 5, 10, 15, 20 and 25 min. We used A. tumefaciens to inoculate IEs derived from maize ears 9-15 d after pollination, and then IEs were placed in petri dishes for co-culturing. The DC treatment significantly increased the percentage of IEs expressing green fluorescence protein (%GFP), indicating positive transformants. DC-treated IEs had ~ 3 to 4 times the %GFP compared with MC-treated IEs at 8 d after inoculation (3 d co-culture and 5 d restoration). The average regeneration frequency (%GFP positive regenerated calli of infected IEs) and stable transformation frequency (%GFP positive T0 plants of infected IEs) significantly increased with the DC treatment. Thus, the DC method may be used to develop a more efficient Agrobacterium-mediated transformation method for maize IEs.
Collapse
Affiliation(s)
- Xueqing Duan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| | - Liru Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| | - Jinhao Sun
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| | - Wenbo Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| | - Wenqian Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| | - Hailong An
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| |
Collapse
|
40
|
Che P, Zhao ZY, Hinds M, Rinehart K, Glassman K, Albertsen M. Evaluation of Agronomic Performance of β-Carotene Elevated Sorghum in Confined Field Conditions. Methods Mol Biol 2019; 1931:209-220. [PMID: 30652293 DOI: 10.1007/978-1-4939-9039-9_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To help alleviate vitamin A deficiency in Africa, we have developed nutritionally enhanced sorghum with stabilized high all-trans-β-carotene accumulation. Toward the finalization of this nutritionally enhanced sorghum for food production, confined field trials were conducted to determine the agronomic performance of thirteen independent transgenic events in Iowa and Hawaii. Through these trials, three leading events with no negative impact on agronomic performance were identified. The studies described in this chapter have laid the groundwork for development of the next generation of β-carotene elevated sorghum as a food product.
Collapse
Affiliation(s)
- Ping Che
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Johnston, IA, USA
| | - Zuo-Yu Zhao
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Johnston, IA, USA.
| | - Mark Hinds
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Johnston, IA, USA
| | - Kristen Rinehart
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Johnston, IA, USA
| | - Kimberly Glassman
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Johnston, IA, USA
| | - Marc Albertsen
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Johnston, IA, USA
| |
Collapse
|
41
|
Anand A, Che P, Wu E, Jones TJ. Novel Ternary Vectors for Efficient Sorghum Transformation. Methods Mol Biol 2019; 1931:185-196. [PMID: 30652291 DOI: 10.1007/978-1-4939-9039-9_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sorghum has been considered a recalcitrant crop for tissue culture and genetic transformation. A breakthrough in Agrobacterium-mediated sorghum transformation was achieved with the use of super-binary cointegrate vectors based on plasmid pSB1. However, even with pSB1, transformation capability was restricted to certain sorghum genotypes, excluding most of the important African sorghum varieties. We recently developed a ternary vector system incorporating the pVIR accessory plasmid. The ternary vector system not only doubled the transformation frequency (TF) in Tx430, but also extended the transformation capability into an important African sorghum elite variety.
Collapse
Affiliation(s)
- Ajith Anand
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Johnston, IA, USA.
| | - Ping Che
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Johnston, IA, USA
| | - Emily Wu
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Johnston, IA, USA
| | - Todd J Jones
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Johnston, IA, USA
| |
Collapse
|
42
|
Abstract
The application of CRISPR/Cas to introduce targeted genomic edits is powering research and discovery across the genetic frontier. Applying CRISPR/Cas in sorghum can facilitate the study of gene function and unlock our understanding of this robust crop that serves as a staple for some of the most food insecure regions on the planet. When paired with recent advances in sorghum tissue culture and Agrobacteria technology, CRISPR/Cas can be used to introduce desirable changes and natural genetic variations directly into agriculturally relevant sorghum lines facilitating product development. This chapter describes CRISPR/Cas gene editing and provides high-level strategies and expectations for applying this technology using Agrobacterium in sorghum.
Collapse
Affiliation(s)
- Jeffry D Sander
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Johnston, IA, USA.
| |
Collapse
|
43
|
Zhao ZY, Che P, Glassman K, Albertsen M. Nutritionally Enhanced Sorghum for the Arid and Semiarid Tropical Areas of Africa. Methods Mol Biol 2019; 1931:197-207. [PMID: 30652292 DOI: 10.1007/978-1-4939-9039-9_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To help alleviate malnutrition in Africa, nutritionally enhanced sorghum was developed through genetic transformation to increase pro-vitamin A (β-carotene) accumulation and stability, to improve iron and zinc bioavailability, and to improve protein digestibility. Through many years of efforts, significant achievements have been made for these goals. We generated nutritionally enhanced sorghum lines with enhanced and stabilized pro-vitamin A that provide 20-90% of the Estimated Average Requirement (EAR) for children under age 3, lines with a 90% reduction in phytate that increase iron and zinc bioavailability and provide 40-80% of the EAR for iron and zinc, and lines that show no reduction in protein digestibility after cooking compared with normal levels. Once these nutritionally enhanced sorghum lines have undergone biosafety examination and have been deregulated, they will be ready for incorporation into sorghum varieties that will benefit Africa and other areas that rely upon sorghum as a staple food.
Collapse
Affiliation(s)
- Zuo-Yu Zhao
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Johnston, IA, USA.
| | - Ping Che
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Johnston, IA, USA
| | - Kimberly Glassman
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Johnston, IA, USA
| | - Marc Albertsen
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Johnston, IA, USA
| |
Collapse
|
44
|
Kuriyama T, Shimada S, Matsui M. Improvement of Agrobacterium-mediated transformation for tannin-producing sorghum. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2019; 36:43-48. [PMID: 31275048 PMCID: PMC6566004 DOI: 10.5511/plantbiotechnology.19.0131a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 01/31/2019] [Indexed: 05/24/2023]
Abstract
Sorghum (Sorghum bicolor L.) ranks as the fifth most widely planted cereal in the world and is used for food as well as a biomass plant for ethanol production. Use of the TX430 non-tannin sorghum variety has enhanced Agrobacterium-mediated sorghum transformation. These protocols could not be applied, however, to other tannin producing sorghum varieties such as the BTx623 model cultivar for sorghum with full genome information of sorghum. Here we report an improved protocol for Agrobacterium-mediated genetic transformation of tannin-producing sorghum variety BTx623. We successfully developed modification of root regeneration condition for generation of transgenic plant of BTx623. We inoculated immature embryos with Agrobacterium tumefaciens strain EHA105 harboring pMDC32-35S-GFP to generate transgenic plants. In the root regeneration step, we found that regeneration from transformed calli was affected by tannin. For root regeneration, shoots that appeared were not transferred to agar plate, but instead transferred to vermiculite in a plastic pod. Direct planting of regenerated shoots into vermiculite prevented the toxic effect of tannin. Root regeneration efficiency from calli emerged shoots in vermiculite was 78.57%. Presence of sGFP transgene in the genome of transgenic plants was confirmed by PCR and sGFP expression was confirmed in transgenic plants. This improved protocol of Agrobacterium-mediated transformation for tannin-producing sorghum BTx623 could be a useful tool for functional genomics using this plant.
Collapse
Affiliation(s)
- Tomoko Kuriyama
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Setsuko Shimada
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Minami Matsui
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
45
|
Casto AL, McKinley BA, Yu KMJ, Rooney WL, Mullet JE. Sorghum stem aerenchyma formation is regulated by SbNAC_D during internode development. PLANT DIRECT 2018; 2:e00085. [PMID: 31245693 PMCID: PMC6508845 DOI: 10.1002/pld3.85] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/12/2018] [Indexed: 05/10/2023]
Abstract
Sorghum bicolor is a drought-resilient C4 grass used for production of grain, forage, sugar, and biomass. Sorghum genotypes capable of accumulating high levels of stem sucrose have solid stems that contain low levels of aerenchyma. The D-locus on SBI06 modulates the extent of aerenchyma formation in sorghum stems and leaf midribs. A QTL aligned with this locus was identified and fine-mapped in populations derived from BTx623*IS320c, BTx623*R07007, and BTx623*Standard broomcorn. Analysis of coding polymorphisms in the fine-mapped D-locus showed that genotypes that accumulate low levels of aerenchyma encode a truncated NAC transcription factor (Sobic.006G147400, SbNAC_d1), whereas parental lines that accumulate higher levels of stem aerenchyma encode full-length NAC TFs (SbNAC-D). During vegetative stem development, aerenchyma levels are low in nonelongated stem internodes, internode growing zones, and nodes. Aerenchyma levels increase in recently elongated internodes starting at the top of the internode near the center of the stem. SbNAC_D was expressed at low levels in nonelongated internodes and internode growing zones and at higher levels in regions of stem internodes that form aerenchyma. SbXCP1, a gene encoding a cysteine protease involved in programmed cell death, was induced in SbNAC_D genotypes in parallel with aerenchyma formation in sorghum stems but not in SbNAC_d1 genotypes. Several sweet sorghum genotypes encode the recessive SbNAC_d1 allele and have low levels of stem aerenchyma. Based on these results, we propose that SbNAC_D is the D-gene identified by Hilton (1916) and that allelic variation in SbNAC_D modulates the extent of aerenchyma formation in sorghum stems.
Collapse
Affiliation(s)
- Anna L. Casto
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexas
- Molecular and Environmental Plant Sciences Graduate ProgramTexas A&M UniversityCollege StationTexas
| | - Brian A. McKinley
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexas
| | - Ka Man Jasmine Yu
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexas
- Biochemistry and Biophysics Graduate ProgramTexas A&M UniversityCollege StationTexas
| | - William L. Rooney
- Department of Soil and Crop SciencesTexas A&M UniversityCollege StationTexas
| | - John E. Mullet
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexas
| |
Collapse
|
46
|
Nelson-Vasilchik K, Hague J, Mookkan M, Zhang ZJ, Kausch A. Transformation of Recalcitrant Sorghum Varieties Facilitated by Baby Boom and Wuschel2. ACTA ACUST UNITED AC 2018; 3:e20076. [PMID: 30369099 DOI: 10.1002/cppb.20076] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most reliable transformation protocols for cereal crops, including sorghum (Sorghum bicolor L. Moench), rely on the use of immature embryo explants to generate embryogenic callus cells that are then transformed using Agrobacterium- or particle-bombardment-mediated DNA delivery. Subsequent to DNA transfer, most protocols rely on selectable markers for the recovery of stably transformed callus that is then regenerated to produce T0 plants. However, these protocols require specific genotypes that are innately capable of efficient embryogenic callus initiation. Here, we describe a system that makes use of the differential expression of the morphogenic regulators Baby Boom (Bbm) and Wuschel2 (Wus2) to achieve transformation in varieties of sorghum typically recalcitrant to standard transformation methods. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
| | - Joel Hague
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island
| | - Muruganantham Mookkan
- Plant Transformation Core Facility, Division of Plant Sciences, University of Missouri, Columbia, Missouri
| | - Zhanyuan J Zhang
- Plant Transformation Core Facility, Division of Plant Sciences, University of Missouri, Columbia, Missouri
| | - Albert Kausch
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island
| |
Collapse
|
47
|
Ahmed RI, Ding A, Xie M, Kong Y. Progress in Optimization of Agrobacterium-Mediated Transformation in Sorghum ( Sorghum bicolor). Int J Mol Sci 2018; 19:E2983. [PMID: 30274323 PMCID: PMC6213730 DOI: 10.3390/ijms19102983] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 11/17/2022] Open
Abstract
This review archives the achievements made in the last two decades and presents a brief outline of some significant factors influencing the Agrobacterium-mediated transformation of Sorghum bicolor. Recently, progress in successful transformation has been made for this particular monocot crop through direct DNA delivery method and indirect method via Agrobacterium. However, lower transformation rate still proved to be a bottleneck in genetic modification of sorghum. An efficient Agrobacterium transformation system could be attained by optimizing the preliminary assays, comprising of explant source, growth media, antibiotics, Agrobacterium strains and agro-infection response of callus. The selection of competent strains for genetic transformation is also one of the key factors of consideration. Successful transformation is highly dependent on genome configuration of selected cultivar, where non-tannin genotype proved the best suited. Immature embryos from the field source have higher inherent adaptation chances than that of the greenhouse source. A higher concentration of Agrobacterium may damage the explant source. Utilization of anti-necrotic treatments and optimized tissue culture timeframe are the adequate strategies to lower down the effect of phenolic compounds. Appropriate selection of culture media vessels at different stages of tissue culture may also assist in a constructive manner. In conclusion, some aspects such as culture environment with medium composition, explant sources, and genotypes play an indispensable role in successful Agrobacterium-mediated sorghum transformation system.
Collapse
Affiliation(s)
- Rana Imtiaz Ahmed
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Anming Ding
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Minmin Xie
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yingzhen Kong
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
48
|
Acetosyringone treatment duration affects large T-DNA molecule transfer to rice callus. BMC Biotechnol 2018; 18:48. [PMID: 30092808 PMCID: PMC6085696 DOI: 10.1186/s12896-018-0459-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/31/2018] [Indexed: 11/10/2022] Open
Abstract
Background Large T-DNA fragment transfer has long been a problem for Agrobacterium-mediated transformation. Although vector systems, such as the BIBAC series, were successfully developed for the purpose, low transformation efficiencies were consistently observed. Results To gain insights of this problem in monocot transformation, we investigated the T-strand accumulation of various size of T-DNA in two kinds of binary vectors (one copy vs. multi-copy) upon acetosyringone (AS) induction and explored ways to improve the efficiency of the large T-DNA fragment transfer in Agrobacterium-mediated rice transformation. By performing immuno-precipitation of VirD2-T-strands and quantitative real-time PCR assays, we monitored the accumulation of the T-strands in Agrobacterium tumeficiens after AS induction. We further demonstrated that extension of AS induction time highly significantly improved large-size T-DNA transfer to rice cells. Conclusions Our data provide valuable information of the T-strand dynamics and its impact on large T-DNA transfer in monocots, and likely dicots as well.
Collapse
|
49
|
Che P, Anand A, Wu E, Sander JD, Simon MK, Zhu W, Sigmund AL, Zastrow‐Hayes G, Miller M, Liu D, Lawit SJ, Zhao Z, Albertsen MC, Jones TJ. Developing a flexible, high-efficiency Agrobacterium-mediated sorghum transformation system with broad application. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1388-1395. [PMID: 29327444 PMCID: PMC5999184 DOI: 10.1111/pbi.12879] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/20/2017] [Accepted: 12/27/2017] [Indexed: 05/21/2023]
Abstract
Sorghum is the fifth most widely planted cereal crop in the world and is commonly cultivated in arid and semi-arid regions such as Africa. Despite its importance as a food source, sorghum genetic improvement through transgenic approaches has been limited because of an inefficient transformation system. Here, we report a ternary vector (also known as cohabitating vector) system using a recently described pVIR accessory plasmid that facilitates efficient Agrobacterium-mediated transformation of sorghum. We report regeneration frequencies ranging from 6% to 29% in Tx430 using different selectable markers and single copy, backbone free 'quality events' ranging from 45% to 66% of the total events produced. Furthermore, we successfully applied this ternary system to develop transformation protocols for popular but recalcitrant African varieties including Macia, Malisor 84-7 and Tegemeo. In addition, we report the use of this technology to develop the first stable CRISPR/Cas9-mediated gene knockouts in Tx430.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Michael Miller
- DuPont PioneerJohnstonIAUSA
- Present address:
1969 W. Grand Canyon DrChandlerAZ85248USA
| | | | | | | | | | | |
Collapse
|
50
|
Vera-Hernández P, Ortega-Ramírez MA, Martínez Nuñez M, Ruiz-Rivas M, Rosas-Cárdenas FDF. Proline as a probable biomarker of cold stress tolerance in Sorghum (Sorghum bicolor). ACTA ACUST UNITED AC 2018. [DOI: 10.29267/mxjb.2018.3.3.77] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plants have developed physiological and molecular mechanisms to support and adapt to adverse environments. One response to abiotic stress is the accumulation of free proline (PRO). PRO can induce the expression of many genes, which have the proline-responsive element (PRE) in their promoters, nevertheless due to the complexity of interactions between stress factors and various molecular, biochemical and physiological phenomena it is still unclear whether a more efficient PRO accumulation can be considered a biomarker of tolerance in plants. In the present work, we evaluated the accumulation of PRO in two genotypes of sorghum with contrasting tolerance to cold stress. To explore the cause behind the accumulation of proline under cold stress conditions, we identified the Transcription Factors Binding Sites (TFBS) present in the promoter regions in the genes involved in the biosynthesis and degradation of proline in sorghum and other important crops, finding that the untranslated 3 'region P5CS gene contains different TFBS. We found TFBS that could allow the activation of genes involved in proline biosynthesis through the ornithine pathway under cold stress conditions, suggesting that ornithine route can be activated under cold stress conditions
Collapse
Affiliation(s)
- Pedro Vera-Hernández
- Centro de Investigación en Biotecnología Aplicada-IPN, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, Tlaxcala C.P. 90700, México
| | - Marco Antonio Ortega-Ramírez
- Centro de Investigación en Biotecnología Aplicada-IPN, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, Tlaxcala C.P. 90700, México
| | - Marcelino Martínez Nuñez
- Centro de Investigación en Biotecnología Aplicada-IPN, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, Tlaxcala C.P. 90700, México
| | - Magali Ruiz-Rivas
- Centro de Investigación en Biotecnología Aplicada-IPN, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, Tlaxcala C.P. 90700, México
| | - Flor de Fátima Rosas-Cárdenas
- Centro de Investigación en Biotecnología Aplicada-IPN, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla Km 1.5, Tlaxcala C.P. 90700, México
| |
Collapse
|