1
|
Zhu Z, Bai Z, Cui Y, Li X, Zhu X. The potential therapeutic effects of Panax notoginseng in osteoporosis: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156703. [PMID: 40354676 DOI: 10.1016/j.phymed.2025.156703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Accumulating evidence shows that Panax notoginseng, a well-known medicinal herb, has an ideal effect on prevention and treatment of skeletal diseases. In this study, we reviewed clinical applications of clinical application as well as phytochemistry, pharmacokinetics, pharmacology in improving bone quality and toxicity of Panax notoginseng. PURPOSE Review the phytochemistry, pharmacokinetics, pharmacology involved in the improving bone metabolism and toxicity of Panax notoginseng and evaluate its potential as a traditional Chinese herbal medicine for osteoporosis. METHODS Several databases were consulted, including PubMed, China National Knowledge Infrastructure, National Science and Technology Library and Web of Science. The following words or phrases were used alone or in combinations in the titles and/or abstracts: "","Panax notoginseng", "Sanqi", "osteoporosis", "bone", "osteoblast", "osteoclast", "phytochemistry", "pharmacology" and "pharmacokinetics". Altogether 160 papers were cited. RESULTS 8 clinical trials of Panax notoginseng alone for the treatment of osteoporosis were identified, most of which used traditional Chinese patent medicines to treat osteoporosis fractures. In these clinical trials, Panax notoginseng preparations have achieved relatively good therapeutic effects. However, more rigorous large-scale experiments are expected to prove their efficacy. Phytochemistry study showed that saponins, flavonoids, polysaccharides are the main active ingredients extracted from Panax notoginseng and the transformation of saponins during the processing explains the different effects of raw and cooked Panax notoginseng. The pharmacokinetics data reveals that protopanaxdiol-type (ppd-type) saponins possesses higher bioavailability than protopanaxtriol-type(ppt-type) saponins and ppd-type saponins such as ginsenoside Ra3, Rb1, and Rd can represent suitable pharmacokinetic markers for Panax notoginseng extracts. The data from animal experiments demonstrates that Panax notoginseng can improve bone quality in ovariectomized, diabetic, hyperlipidemia, radiation-induced, and arthritis rats through the regulation of anti-adipogenesis, anti-inflammation, anti-oxidation, angiogenesis and estrogenic effects. In vitro experiments, the activities of improving bone quality of Panax notoginseng and its ingredients may be attributed to the regulation of multiple signaling pathways, including Wnt/β-catenin, BMP/BMP-R, AMPK/mTOR, GPER/PI3K/AKT, etc. Acute and chronic toxicity as well as genotoxicity studies show that Panax notoginseng is well tolerated while long term use may lead to liver and kidney toxicity. CONCLUSIONS Panax notoginseng is a superior medicinal herb that contains multiple active ingredients and could play a potential role in the prevention and treatment of osteoporosis. Further studies should concentrate on developing Panax notoginseng products with higher curative effect and bioavailability.
Collapse
Affiliation(s)
- Zijun Zhu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Zhenyu Bai
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Yan Cui
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Xiaoyun Li
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510630, PR China
| | - XiaoFeng Zhu
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, PR China; School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510630, PR China.
| |
Collapse
|
2
|
Su W, Liang Z, Pan D, Zhang L, Zhang Y, Yuan T, Gao X, Su H, Zhang H. Therapeutic effect of notoginseng saponins before and after fermentation on blood deficiency rats. Exp Ther Med 2024; 27:143. [PMID: 38476921 PMCID: PMC10928825 DOI: 10.3892/etm.2024.12431] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 01/12/2024] [Indexed: 03/14/2024] Open
Abstract
Notoginseng saponins (NS) are the active ingredients in Panax notoginseng (Burk.) F.H. Chen (PN). NS can be transformed depending on how the extract is processed. Fermentation has been shown to produce secondary ginsenosides with increased bioavailability. However, the therapeutic effect of fermented NS (FNS) requires further study. The present study compared the compositions and activities of FNS and NS in blood deficiency rats, which resembles the symptoms of anemia in modern medicine, induced by acetylphenylhydrazine and cyclophosphamide. A total of 32 rats were randomly divided into control, model, FNS and NS groups. A blood deficiency model was established and then treatment was orally administered for 21 days. The results of component analysis indicated that some saponins transformed during the fermentation process resulting in a decrease of notoginsenoside R1, and ginsenosides Rg1, Rb1 and Re, and an increase in ginsenosides Rd, Rh2, compound K, protopanaxadiol and protopanaxatriol. The animal results showed that both FNS and NS increased the number of white blood cells (WBCs), red blood cells, hemoglobin, platelets and reticulocytes, and the levels of granulocyte-macrophage colony-stimulating factor (GM-CSF), erythropoietin (EPO) and thrombopoietin (TPO), decreased the G0/G1 phase and increased G2/M phase, and decreased the apoptosis rate of bone marrow (BM) cells, which suggested a contribution to the recovery of hematopoietic function of the BM cells. FNS and NS increased the protein expression levels of the cytokines IL-4, IL-10, IL-12, IL-13, TGF-β, IL-6, IFN-γ and TNF-α, and the mRNA expression levels of transcription factors GATA binding protein 3 and T-box expressed in T cell (T-bet). FNS and NS treatment also increased the number of CD4+ T cells, and decreased the enlargement of the rat spleen and thymus atrophy, which indicated a protective effect on the organs of the immune system. The results of the present study demonstrated that compared with NS, FNS showed an improved ability to increase the levels of WBCs, lymphocytes, GM-CSF, EPO, TPO, aspartate aminotransferase, IL-10, IL-12, IL-13 and TNF-α, and the mRNA expression levels of T-bet, and decrease alanine aminotransferase levels. The differences seen for FNS treatment could arise from their improved bioavailability compared with NS, due to the larger proportion of hydrophobic ginsenosides produced during fermentation.
Collapse
Affiliation(s)
- Wenjie Su
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Zuguo Liang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Daian Pan
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Lancao Zhang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Yuyao Zhang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Tongyi Yuan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Xiang Gao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - Hang Su
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
| | - He Zhang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
3
|
Rinderknecht H, Mayer A, Histing T, Ehnert S, Nüssler A. Herbal Extracts of Ginseng and Maqui Berry Show Only Minimal Effects on an In Vitro Model of Early Fracture Repair of Smokers. Foods 2023; 12:2960. [PMID: 37569229 PMCID: PMC10419284 DOI: 10.3390/foods12152960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Smoking is a major risk factor for delayed fracture healing, affecting several aspects of early fracture repair, including inflammation, osteogenesis, and angiogenesis. Panax ginseng (GE) and maqui berry extract (MBE) were shown in our previous studies to reduce smoke-induced cellular damage in late bone-healing in vitro models. We aimed here to analyze their effects on the early fracture repair of smokers in a 3D co-culture model of fracture hematomas and endothelial cells. Both extracts did not alter the cellular viability at concentrations of up to 100 µg/mL. In early fracture repair in vitro, they were unable to reduce smoking-induced inflammation and induce osteo- or chondrogenicity. Regarding angiogenesis, smoking-induced stress in HUVECs could not be counteracted by both extracts. Furthermore, smoking-impaired tube formation was not restored by GE but was harmed by MBE. However, GE promoted angiogenesis initiation under smoking conditions via the Angpt/Tie2 axis. To summarize, cigarette smoking strikingly affected early fracture healing processes in vitro, but herbal extracts at the applied doses had only a limited effect. Since both extracts were shown before to be very effective in later stages of fracture healing, our data suggest that their early use immediately after fracture does not appear to negatively impact later beneficial effects.
Collapse
Affiliation(s)
| | | | | | | | - Andreas Nüssler
- Siegfried-Weller Institute for Trauma Research, BG Trauma Center, University of Tuebingen, Schnarrenbergstrasse 95, 72070 Tuebingen, Germany; (H.R.); (A.M.); (T.H.); (S.E.)
| |
Collapse
|
4
|
Xie W, Wang X, Xiao T, Cao Y, Wu Y, Yang D, Zhang S. Protective Effects and Network Analysis of Ginsenoside Rb1 Against Cerebral Ischemia Injury: A Pharmacological Review. Front Pharmacol 2021; 12:604811. [PMID: 34276353 PMCID: PMC8283782 DOI: 10.3389/fphar.2021.604811] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/13/2021] [Indexed: 12/30/2022] Open
Abstract
Ischemic stroke is a leading cause of death and disability worldwide. Currently, only a limited number of drugs are available for treating ischemic stroke. Hence, studies aiming to explore and develop other potential strategies and agents for preventing and treating ischemic stroke are urgently needed. Ginseng Rb1 (GRb1), a saponin from natural active ingredients derived from traditional Chinese medicine (TCM), exerts neuroprotective effects on the central nervous system (CNS). We conducted this review to explore and summarize the protective effects and mechanisms of GRb1 on cerebral ischemic injury, providing a valuable reference and insights for developing new agents to treat ischemic stroke. Our summarized results indicate that GRb1 exerts significant neuroprotective effects on cerebral ischemic injury both in vivo and in vitro, and these network actions and underlying mechanisms are mediated by antioxidant, anti-inflammatory, and antiapoptotic activities and involve the inhibition of excitotoxicity and Ca2+ influx, preservation of blood–brain barrier (BBB) integrity, and maintenance of energy metabolism. These findings indicate the potential of GRb1 as a candidate drug for treating ischemic stroke. Further studies, in particular clinical trials, will be important to confirm its therapeutic value in a clinical setting.
Collapse
Affiliation(s)
- Weijie Xie
- Shanghai Mental Health Centre, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyue Wang
- Shanghai Mental Health Centre, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tianbao Xiao
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yibo Cao
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yumei Wu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dongsheng Yang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Song Zhang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Panax Notoginseng Saponins Prevent Bone Loss by Promoting Angiogenesis in an Osteoporotic Mouse Model. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8412468. [PMID: 33415157 PMCID: PMC7752278 DOI: 10.1155/2020/8412468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/06/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022]
Abstract
With the aging of the population and the extension of life expectancy, osteoporosis is becoming a global epidemic. Although there are several drugs used to treat osteoporosis in clinical practice, such as parathyroid hormone or bisphosphonates, they all have some serious side effects. Therefore, a safer drug is called for osteoporosis, especially for the prevention in the early stage of the disease, not only the treatment in the later stage. Panax notoginseng saponin (PNS), a traditional Chinese herb, has been used as anti-ischemic drug due to its function on improving vascular circulation. In order to verify whether Panax notoginseng saponins (PNS) could be used to prevent osteoporosis, ovariectomy (OVX) was induced in female C57BL/C6J mice, followed by orally administration with 40 mg/kg/d, 80 mg/kg/d, and 160 mg/kg/d of three different dosages of PNS for 9 weeks. Serum biochemical analysis, micro-CT, histological evaluation, and immunostaining of markers of osteogenesis and angiogenesis were performed in the sham, osteoporotic (OVX), and treatment (OVX+PNS) groups. Micro-CT and histological evaluation showed that compared to sham group, the bone mass of OVX group reduced significantly, while it was significantly restored in the moderate-dose PNS (40 mg/kg and 80 mg/kg) treatment groups. The expression of CD31 and osteocalcin (OCN) in the bone tissue of treatment group also increased, suggesting that PNS activated osteogenesis and angiogenesis, which subsequently increased the bone mass. These results confirmed the potential function of PNS on the prevention of osteoporosis. However, in the high dose of PNS (160 mg/kg) group, the antiosteoportic effect had been eliminated, which also suggested the importance of proper dose of PNS for the prevention and treatment of osteoporosis in postmenopausal women.
Collapse
|
6
|
Qu J, Xu N, Zhang J, Geng X, Zhang R. Panax notoginseng saponins and their applications in nervous system disorders: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1525. [PMID: 33313270 PMCID: PMC7729308 DOI: 10.21037/atm-20-6909] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Panax notoginseng saponins (PNS), also called "sanqi" in Chinese, are the main active ingredients which are extracted from the root of Panax notoginseng (Burk.) F. H. Chen., and they have been traditionally used as a medicine in China for hundreds of years with magical medicinal value. PNS have varied biological functions, such as anti-inflammatory effects, anti-cancer effects, anti-neurotoxicity, and the prevention of diabetes. Nervous system disorders, a spectrum of diseases originating from the nervous system, have a significant impact on all aspects of patients' lives. Due to the dramatic gains in global life expectancy, the prevalence of nervous system disorders is growing gradually. Even if the mechanism of these diseases is still not clear, they are mainly characterized by neuronal dysfunction and neuronal death. Consequently, it is essential to find measures to slow down or prevent the onset of these diseases. At present, traditional Chinese medicines, as well as their active components, have gained widespread popularity in preventing and treating these diseases because of their merits, especially PNS. In this review, we predominantly address the recent advances in PNS researches and their biological functions, and highlight their applications in nervous system disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), and stroke.
Collapse
Affiliation(s)
- Jing Qu
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Na Xu
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Jianliang Zhang
- Department of Neurobiology, Beijing Institute of Brain Disorders, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repairing, Beijing Key Laboratory of Brain Major Disorders-State Key Lab Incubation Base, Beijing Neuroscience Disciplines, Beijing, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Ruihua Zhang
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Zhang Y, Cai W, Han G, Zhou S, Li J, Chen M, Li H. Panax notoginseng saponins prevent senescence and inhibit apoptosis by regulating the PI3K‑AKT‑mTOR pathway in osteoarthritic chondrocytes. Int J Mol Med 2020; 45:1225-1236. [PMID: 32124939 DOI: 10.3892/ijmm.2020.4491] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/24/2020] [Indexed: 11/05/2022] Open
Abstract
Panax notoginseng saponins (PNS) are active extracts obtained from the P. notoginseng plant. PNS exhibit various anti‑inflammatory, anti‑oxidant and anti‑aging pharmacological properties in some cells. However, the effects of PNS on senescence and apoptosis in chondrocytes have not been studied to date. In the present study, whether PNS could limit tumor necrosis factor (TNF)‑α‑induced senescence and apoptosis in chondrocytes and whether they could slow down cartilage degeneration in a surgery‑induced rat osteoarthritis (OA) model by regulating the phosphatidyl inositol 3 kinase (PI3K)‑protein kinase B (AKT)‑mammalian target of rapamycin (mTOR) signaling pathway was examined. A potential mechanism underlying these effects was further elucidated. The present in vitro experiments showed that PNS significantly inhibited senescence and apoptosis in OA chondrocytes and prevented a decrease in the mitochondrial membrane potential and excessive mitochondrial permeability. In addition, the expression levels of autophagy‑related proteins and the anti‑apoptotic protein Bcl‑2 were significantly increased in PNS‑treated OA chondrocytes, but the expression levels of Bax and caspase‑3 were decreased; these effects were concentration‑dependent. TNF‑α significantly increased the expression of p‑PI3K/p‑AKT/p‑mTOR in OA chondrocytes, whereas PNS reduced PI3K, AKT and mTOR phosphorylation. The results of the in vivo experiments demonstrated that PNS significantly inhibited the PI3K‑AKT‑mTOR signaling pathway and collagen II degradation, as well as reduced matrix metalloproteinase (MMP)‑3 and MMP‑13 expression in chondrocytes in a rat OA model, thus attenuating cartilage destruction in OA. The results obtained in the rat model were consistent with the in vitro experimental results. Furthermore, histological analyses and ultrastructural observations confirmed these results. Taken together, the results of the present study demonstrated that PNS may protect osteoarthritic chondrocytes from senescence and apoptosis by inhibiting the PI3K‑AKT pathway, thus delaying the degradation of articular cartilage.
Collapse
Affiliation(s)
- Yubiao Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Weisong Cai
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Guangtao Han
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Siqi Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jianping Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Mao Chen
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Haohuan Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
8
|
HMGB1-triggered inflammation inhibition of notoginseng leaf triterpenes against cerebral ischemia and reperfusion injury via MAPK and NF-κB signaling pathways. Biomolecules 2019; 9:biom9100512. [PMID: 31547018 PMCID: PMC6843331 DOI: 10.3390/biom9100512] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 01/01/2023] Open
Abstract
Ischemic stroke is a clinically common cerebrovascular disease whose main risks include necrosis, apoptosis and cerebral infarction, all caused by cerebral ischemia and reperfusion (I/R) injury. This process has particular significance for the treatment of stroke patients. Notoginseng leaf triterpenes (PNGL), as a valuable medicine, have been discovered to have neuroprotective effects. However, it was not confirmed that whether PNGL may possess neuroprotective effects against cerebral I/R injury. To explore the neuroprotective effects of PNGL and their underlying mechanisms, a middle cerebral artery occlusion/reperfusion (MCAO/R) model was established. In vivo results suggested that in MCAO/R model rats, PNGL pretreatment (73.0, 146, 292 mg/kg) remarkably decreased infarct volume, reduced brain water content, and improved neurological functions; moreover, PNGL (73.0, 146, 292 mg/kg) significantly alleviated blood-brain barrier (BBB) disruption and inhibited neuronal apoptosis and neuronal loss caused by cerebral I/R injury, while PNGL with a different concertation (146, 292 mg/kg) significantly reduced the concentrations of IL-6, TNF-α, IL-1 β, and HMGB1 in serums in a dose-dependent way, which indicated that inflammation inhibition could be involved in the neuroprotective effects of PNGL. The immunofluorescence and western blot analysis showed PNGL decreased HMGB1 expression, suppressed the HMGB1-triggered inflammation, and inhibited microglia activation (IBA1) in hippocampus and cortex, thus dose-dependently downregulating inflammatory cytokines including VCAM-1, MMP-9, MMP-2, and ICAM-1 concentrations in ischemic brains. Interestingly, PNGL administration (146 mg/kg) significantly downregulated the levels of p-P44/42, p-JNK1/2 and p-P38 MAPK, and also inhibited expressions of the total NF-κB and phosphorylated NF-κB in ischemic brains, which was the downstream pathway triggered by HMGB1. All of these results indicated that the protective effects of PNGL against cerebral I/R injury could be associated with inhibiting HMGB1-triggered inflammation, suppressing the activation of MAPKs and NF-κB, and thus improved cerebral I/R-induced neuropathological changes. This study may offer insight into discovering new active compounds for the treatment of ischemic stroke.
Collapse
|
9
|
Zhou X, Razmovski-Naumovski V, Kam A, Chang D, Li CG, Chan K, Bensoussan A. Synergistic study of a Danshen (Salvia Miltiorrhizae Radix et Rhizoma) and Sanqi (Notoginseng Radix et Rhizoma) combination on cell survival in EA.hy926 cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:50. [PMID: 30791910 PMCID: PMC6385400 DOI: 10.1186/s12906-019-2458-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 02/13/2019] [Indexed: 02/07/2023]
Abstract
Background This study investigated the protective effects of the Danshen (DS) and Sanqi (SQ) herb pair on cell survival in the human cardiovascular endothelial (EA.hy926) cell line exposed to injury. Methods Nine combination ratios of Danshen-Sanqi extracts (DS-SQ) were screened for their protective effects in the EA.hy926 cell line against two different cellular impairments induced by DL-homocysteine (Hcy) – adenosine (Ado) – tumour necrosis factors (TNF) and oxidative stress (H2O2), respectively. The type of interaction (synergistic, antagonistic, additive) between DS and SQ was analysed using a combination index (CI) model. The effects of key bioactive compounds from DS and SQ were tested using the same models. The compound from each herb that demonstrated the most potent activity in cell viability was combined to evaluate their synergistic/antagonistic interaction using CI. Results DS-SQ ratios of 6:4 (50–300 μg/mL) produced synergistic effects (CI < 1) in restoring cell viability, reducing lactate dehydrogenase (LDH) leakage and caspase-3 expressions against Hcy-Ado-TNF. Additionally, DS-SQ 6:4 (50–150 μg/mL) was found to synergistically protect endothelial cells from impaired cellular injury induced by oxidative damage (H2O2) by restoring reduced cell viability and inhibiting excessive expression of reactive oxygen species (ROS). In particular, the combination of salvianolic acid A (SA) and ginsenoside Rb1 (Rb1) at 4:6 (1–150 μM) showed synergistic effects in preventing cytotoxic effects caused by Hcy-Ado-TNF (CI < 1). This simplified combination also demonstrated synergistic effects on H2O2-induced oxidative damage on EA.hy926 cells. Conclusions This study provides scientific evidence to support the traditional use of the DS-SQ combination on protecting endothelial cells through their synergistic interactions. Electronic supplementary material The online version of this article (10.1186/s12906-019-2458-z) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Zheng M, Zhao M, Tang L, Zhang C, Song L, Wang W. Ginsenoside Rg1 attenuates hypoxia and hypercapnia-induced vasoconstriction in isolated rat pulmonary arterial rings by reducing the expression of p38. J Thorac Dis 2016; 8:1513-23. [PMID: 27499938 DOI: 10.21037/jtd.2016.05.71] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a fatal disease characterized by increased pulmonary arteriolar resistance. Pulmonary vasoconstriction has been proved to play a significant role in PAH. We previously reported that Panax notoginseng saponins (PNS) might attenuate hypoxia and hypercapnia-induced pulmonary vasoconstriction (HHPV). METHODS In the present study, our specific objective was to investigate the role of ginsenoside Rg1, a major component of PNS, in this process and the possible underlying mechanism. The second order pulmonary rings isolated from the Sprague-Dawley rats were treated with different dosage of ginsenoside Rg1 at 8, 40, or 100 mg/L respectively, both before and during the conditions of hypoxia and hypercapnia. Contractile force changes of the rings were detected. Furthermore, SB203580, the selective inhibitor for p38 activation was applied to the rings. Pulmonary arterial smooth muscle cells (PASMCs) were cultured under hypoxic and hypercapnic conditions, and ginsenoside Rg1 was administered to detect the changes induced by p38. RESULTS Under the hypoxic and hypercapnic conditions, we observed a biphasic pulmonary artery contractile response to the second pulmonary artery rings. It is hypothesized that the observed attenuation of vasoconstriction and the production of vasodilation could have been induced by ginsenoside Rg1. This effect was significantly reinforced by SB203580 (P<0.05 or P<0.01). The expression of p38 in the PASMCs under hypoxic and hypercapnic conditions was significantly activated (P<0.05 or P<0.01) and the observed activation was attenuated by ginsenoside Rg1 (P<0.05 or P<0.01). CONCLUSIONS Our findings strongly support the significant role of ginsenoside Rg1 in the inhibition of hypoxia and hypercapnia-induced vasoconstriction by the p38 pathway.
Collapse
Affiliation(s)
- Mengxiao Zheng
- Department of Pathophysiology, Wenzhou Medical University, Wenzhou 325035, China
| | - Meiping Zhao
- Department of Pathophysiology, Wenzhou Medical University, Wenzhou 325035, China
| | - Lanlan Tang
- Department of Pathophysiology, Wenzhou Medical University, Wenzhou 325035, China
| | - Congcong Zhang
- Department of Pathophysiology, Wenzhou Medical University, Wenzhou 325035, China
| | - Longsheng Song
- Division of Cardiovascular Medicine University of Iowa Carver College of Medicine, Iowa City 52242, USA
| | - Wantie Wang
- Department of Pathophysiology, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
11
|
Liu Y, Lin Z, Guo J, Xu G, Li Y, Xu T, Lv H, Chen J, Wu G. Notoginsenoside R1 significantly promotes in vitro osteoblastogenesis. Int J Mol Med 2016; 38:537-44. [DOI: 10.3892/ijmm.2016.2652] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 06/09/2016] [Indexed: 11/06/2022] Open
|
12
|
Exploring mechanisms of Panax notoginseng saponins in treating coronary heart disease by integrating gene interaction network and functional enrichment analysis. Chin J Integr Med 2016; 22:589-96. [DOI: 10.1007/s11655-016-2472-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Indexed: 10/21/2022]
|
13
|
Qiang H, Liu H, Ling M, Wang K, Zhang C. Early Steroid-Induced Osteonecrosis of Rabbit Femoral Head and Panax notoginseng Saponins: Mechanism and Protective Effects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:719370. [PMID: 25866538 PMCID: PMC4378605 DOI: 10.1155/2015/719370] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/26/2015] [Accepted: 03/03/2015] [Indexed: 12/31/2022]
Abstract
Background. This study was aimed at investigating the pathogenesis of oxidative stress in steroid-induced avascular necrosis of the femoral head (SANFH) and at exploring the mechanism and protective effects of Panax notoginseng saponins (PNS) on early SANFH. Methods. 80 adult New Zealand rabbits were randomly divided into control group, model group, and PNS group. In model group, equine serum was injected into auricular vein; then methylprednisolone was injected into gluteus. In PNS group, PNS was applied for 14 consecutive days before methylprednisolone management. At different time points, serum and femoral heads were prepared for T-AOC, SOD, GSH-PX, ·OH, and MDA determination. Two weeks after steroid management, all femoral heads were assessed with MRI and HE staining. Results. Typical early osteonecrosis symptoms were observed in model group. Our results showed that PNS could significantly ameliorate the decrease of T-AOC level, improve SOD and GSH-PX activity, suppress ·OH ability, and augment MDA level. Besides, PNS improved MRI and pathological changes of the femoral head, markedly reducing the incidence of osteonecrosis. Conclusion. Based on our research, we found oxidative stress played a positive role in the occurrence of SANFH where reactive oxygen species was the direct cause. PNS could protect rabbits against early steroid-induced osteonecrosis of femoral head by its antioxidative effect.
Collapse
Affiliation(s)
- Hui Qiang
- The Second Department of Orthopaedics, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, China
| | - Huitong Liu
- The Second Department of Orthopaedics, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, China
- The First Department of Orthopaedics, Fuzhou Second Hospital of Xiamen University, Fuzhou, Fujian 350007, China
| | - Ming Ling
- The Second Department of Orthopaedics, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710068, China
| | - Kunzheng Wang
- The First Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Chen Zhang
- The First Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| |
Collapse
|
14
|
Yuan HF, Pan JF, Li S, Guo CA, Liu SH, Yan ZQ. Protective effects of total saponins of panax notoginseng on steroid-induced avascular necrosis of the femoral head in vivo and in vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:165679. [PMID: 25694788 PMCID: PMC4324945 DOI: 10.1155/2015/165679] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 01/08/2023]
Abstract
This research was designed to investigate the protective effects of TSPN on steroid-induced avascular necrosis of the femoral head (ANFH) and the likely mechanisms of those effects. As an in vivo study, TSPN was shown to be protective against steroid-induced ANFH due to the upregulation of VEGF-A. Furthermore, TSPN attenuated the apoptosis of osteocytes and reduced the expression of Caspase-3 relative to the model group. As an in vitro study, TSPN exerted a concentration-dependent protective effect against apoptosis in MC3T3-E1 cells. Moreover, TSPN (at a dose of 100 μg/mL) significantly reversed the dexamethasone-induced augmentation of Caspase-3 expression and activity. Therefore, our study demonstrated that TSPN had a protective effect against steroid-induced ANFH that was related to the upregulation of VEGF-A and the inhibition of apoptosis and Caspase-3 activation.
Collapse
Affiliation(s)
- Heng-feng Yuan
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian-feng Pan
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shuo Li
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chang-an Guo
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shu-hao Liu
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zuo-qin Yan
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
15
|
Xu Y, Lin L, Tang L, Zheng M, Ma Y, Huang L, Meng W, Wang W. Notoginsenoside R1 attenuates hypoxia and hypercapnia-induced vasoconstriction in isolated rat pulmonary arterial rings by reducing the expression of ERK. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 42:799-816. [PMID: 25004876 DOI: 10.1142/s0192415x14500517] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a disease of the small pulmonary arteries characterized by increased vascular resistance. Pulmonary vasoconstriction has been proven to play a pivotal role in PAH. We have previously hypothesized that Panax notoginseng saponins (PNS) might attenuate hypoxia-hypercapnia-induced pulmonary vasoconstriction. The specific objective of the present study was to investigate the role of notoginsenoside R1, a main ingredient of PNS, in this process and the possible underlying mechanism. The third order pulmonary rings from the Sprague-Dawley rats were treated with different concentrations of notoginsenoside R1 (8, 40, and 100 mg/L, respectively) both before and during the conditions of hypercapnia and hypoxia. Contractile force changes in the rings were detected and the optimal concentration (8 mg/L) was selected. Furthermore, an ERK inhibitor, U0126, was applied to the rings. In addition, pulmonary arterial smooth muscle cells (PASMCs) were cultured under hypoxic and hypercapnic conditions, and notoginsenoside R1 was administered to detect the changes induced by ERK1/2. The results revealed biphasic vasoconstriction in rings under hypoxic and hypercapnic conditions. It is hypothesized that the observed attenuation of vasoconstriction and the production of vasodilation could have been induced by notoginsenoside R1. This effect was found to be significantly reinforced by U0126 (p < 0.05 or p < 0.01). ERK expression in the PASMCs under hypoxic and hypercapnic conditions was significantly activated (p < 0.05 or p < 0.01) and the observed activation was attenuated by notoginsenoside R1 (p < 0.05 or p < 0.01). Our findings strongly support the significant role of notoginsenoside R1 in the inhibition of hypoxia-hypercapnia-induced vasoconstriction by the ERK pathway.
Collapse
Affiliation(s)
- Yixiao Xu
- Department of Pathophysiology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China , Wenzhou Medical University Renji College, Wenzhou, Zhejiang 325035, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Lin F, Gou X. Panax notoginseng saponins improve the erectile dysfunction in diabetic rats by protecting the endothelial function of the penile corpus cavernosum. Int J Impot Res 2013; 25:206-11. [PMID: 23595104 DOI: 10.1038/ijir.2013.19] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 02/07/2013] [Accepted: 03/13/2013] [Indexed: 02/01/2023]
Abstract
Diabetes mellitus (DM)-associated ED is predominantly due to neurovascular dysfunction mediated by nitric oxide (NO) suppression. Panax notoginseng saponins (PNS) are widely used for treating cardiovascular disease in China. The aim of this study was to evaluate the effects of PNS on penile erection and corpus cavernosum tissues in rats with diabetes-associated ED. Four weeks after PNS treatment, erectile function was assessed by intracavernous pressure (ICP) and mean arterial pressure (MAP) measurements. The level of NO, cyclic guanosine monophosphate (cGMP) and advanced glycation end products (AGEs) in cavernous tissue were assessed. Immunohistochemical staining and TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) were performed for detecting endothelial NO synthase (eNOS) and apoptosis, respectively. The results show that ICP/MAP ratio was significantly increased in high-dose (150 mg kg(-1) per day) PNS-treated group compared with the diabetic ED untreated group (DM group). Compared with the untreated group, the expression of eNOS and the levels of NO and cGMP were increased in the PNS-treated groups. Moreover, apoptosis was markedly decreased in the group that received 150 mg kg(-1) per day of PNS. These results suggest that PNS may be used for improving the ED in diabetic rats via the NO/cGMP pathway and restores the function of endothelium in corpus cavernosum.
Collapse
Affiliation(s)
- F Lin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
17
|
Protective effect of Panax ginseng against serum biochemical changes and apoptosis in kidney of rats treated with gentamicin sulphate. J Mol Histol 2012; 43:603-13. [DOI: 10.1007/s10735-012-9412-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 03/27/2012] [Indexed: 12/24/2022]
|
18
|
Cirioni O, Myszka H, Dawgul M, Ghiselli R, Orlando F, Silvestri C, Brescini L, Kamysz W, Guerrieri M, Giacometti A. In vitro activity and in vivo efficacy of the saponin diosgenyl 2-amino-2-deoxy-β-D-glucopyranoside hydrochloride (HSM1) alone and in combination with daptomycin and vancomycin against Gram-positive cocci. J Med Microbiol 2011; 60:1337-1343. [PMID: 21511888 DOI: 10.1099/jmm.0.031708-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Surgical site infections are the second most common hospital- and community-acquired Gram-positive infections, with the US Centers for Disease Control and Prevention estimating that about 500 000 surgical site infections occur annually in the USA. The aim of this work was to determine the in vitro activity of the saponin diosgenyl 2-amino-2-deoxy-β-d-glucopyranoside hydrochloride (HSM1) and its bactericidal effect for a large number of Gram-positive cocci, as well as to investigate its in vitro interaction with seven clinically used antibiotics. In vivo, a wound model was established through the panniculus carnosus of BALB/c mice and then inoculated with 5×10(7) c.f.u. Staphylococcus aureus or Enterococcus faecalis. For each bacterial strain, the study included an infected or non-infected group that did not receive any treatment, a group treated with local HSM1, a group treated with intraperitoneal vancomycin, a group treated with intraperitoneal daptomycin and two groups that received HSM1 local treatment plus intraperitoneal vancomycin or daptomycin. All isolates were inhibited by HSM1 at concentrations of 2-32 mg l(-1). Synergy was demonstrated when HSM1 was combined with vancomycin and daptomycin. In in vivo studies, all groups treated with single drugs showed a statistically significant result compared with the control group. The two groups treated with drug combinations showed the highest antimicrobial efficacy. The good in vitro activities and the in vivo efficacy suggest HSM1 as a promising therapeutic candidate in Gram-positive wound infections.
Collapse
Affiliation(s)
- Oscar Cirioni
- Institute of Infectious Diseases and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Henryk Myszka
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | | | - Roberto Ghiselli
- General Surgery and Surgery Methodology Clinic, Università Politecnica delle Marche - Ospedali Riuniti, Ancona, Italy
| | - Fiorenza Orlando
- Experimental Animal Models for Aging Units, Research Department, INRCA IRRCS, Ancona, Italy
| | - Carmela Silvestri
- Institute of Infectious Diseases and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Lucia Brescini
- Institute of Infectious Diseases and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Wojciech Kamysz
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Mario Guerrieri
- General Surgery and Surgery Methodology Clinic, Università Politecnica delle Marche - Ospedali Riuniti, Ancona, Italy
| | - Andrea Giacometti
- Institute of Infectious Diseases and Public Health, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|