1
|
Lai‐Foenander AS, Kuppusamy G, Manogoran J, Xu T, Chen Y, Tang SY, Ser H, Yow Y, Goh KW, Ming LC, Chuah L, Yap W, Goh B. Black soldier fly ( Hermetia illucens L.): A potential small mighty giant in the field of cosmeceuticals. Health Sci Rep 2024; 7:e2120. [PMID: 38831777 PMCID: PMC11144625 DOI: 10.1002/hsr2.2120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/04/2024] [Accepted: 04/27/2024] [Indexed: 06/05/2024] Open
Abstract
Background and Aims Natural products are widely used in the pharmaceutical and cosmetics industries due to their high-value bioactive compounds, which make for "greener" and more environmentally friendly ingredients. These natural compounds are also considered a safer alternative to antibiotics, which may result in antibiotic resistance as well as unfavorable side effects. The development of cosmeceuticals, which combine the cosmetic and pharmaceutical fields to create skincare products with therapeutic value, has increased the demand for unique natural resources. The objective of this review is to discuss the biological properties of extracts derived from larvae of the black soldier fly (BSF; Hermetia illucens), the appropriate extraction methods, and the potential of this insect as a novel active ingredient in the formulation of new cosmeceutical products. This review also addresses the biological actions of compounds originating from the BSF, and the possible association between the diets of BSF larvae and their subsequent bioactive composition. Methods A literature search was conducted using PubMed and Google Scholar to identify and evaluate the various biological properties of the BSF. Results One such natural resource that may be useful in the cosmeceutical field is the BSF, a versatile insect with numerous potential applications due to its nutrient content and scavenging behavior. Previous research has also shown that the BSF has several biological properties, including antimicrobial, antioxidant, anti-inflammatory, and wound healing effects. Conclusion Given the range of biological activities and metabolites possessed by the BSF, this insect may have the cosmeceutical potential to treat a number of skin pathologies.
Collapse
Affiliation(s)
- Ashley Sean Lai‐Foenander
- Biofunctional Molecule Exploratory Research Group, School of PharmacyMonash University MalaysiaBandar SunwayMalaysia
| | - Giva Kuppusamy
- Laboratory of Molecular Biology, Department of Research and DevelopmentGK Aqua Sdn Bhd, Port DicksonNegeri SembilanMalaysia
| | - Janaranjani Manogoran
- Laboratory of Molecular Biology, Department of Research and DevelopmentGK Aqua Sdn Bhd, Port DicksonNegeri SembilanMalaysia
| | - Tengfei Xu
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Yong Chen
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Siah Ying Tang
- Chemical Engineering Discipline, School of EngineeringMonash University Malaysia, Bandar SunwaySelangor Darul EhsanMalaysia
| | - Hooi‐Leng Ser
- Department of Biological SciencesSchool of Medical and Life Sciences, Sunway UniversityBandar SunwayMalaysia
| | - Yoon‐Yen Yow
- Department of Biological SciencesSchool of Medical and Life Sciences, Sunway UniversityBandar SunwayMalaysia
| | - Khang Wen Goh
- Faculty of Data Science and Information TechnologyINTI International UniversityNilaiMalaysia
| | - Long Chiau Ming
- Department of Medical SciencesSchool of Medical and Life Sciences, Sunway UniversityBandar SunwayMalaysia
| | - Lay‐Hong Chuah
- Biofunctional Molecule Exploratory Research Group, School of PharmacyMonash University MalaysiaBandar SunwayMalaysia
| | - Wei‐Hsum Yap
- School of BiosciencesTaylor's University, Subang JayaSelangorMalaysia
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP)Faculty of Health and Medical Sciences (FHMS), Taylor's University, Subang JayaSelangorMalaysia
| | - Bey‐Hing Goh
- Biofunctional Molecule Exploratory Research Group, School of PharmacyMonash University MalaysiaBandar SunwayMalaysia
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Sunway Biofunctional Molecules Discovery Centre (SBMDC)School of Medical and Life Sciences, Sunway UniversitySunwayMalaysia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNSWAustralia
| |
Collapse
|
2
|
Ayanlowo O, -Adeife OC, Ilomuanya M, Ebie C, Adegbulu A, Ezeanyache O, Odiase O, Ikebudu V, Akanbi B. African oils in dermatology. Dermatol Ther 2021; 35:e14968. [PMID: 33928725 DOI: 10.1111/dth.14968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/15/2021] [Accepted: 04/21/2021] [Indexed: 02/02/2023]
Abstract
Plant and seed oils have been used for centuries and possibly millennia in Nigeria and Africa for the maintenance of healthy skin and the traditional treatment of skin disorders. In recent times, some of these oils have regained popularity due to their availability and affordability coupled with concerns about the side effects of commercially processed skin care products. This is to assess the chemical properties, current knowledge, source of procurement, indications for topical use, benefits, and possible adverse effects of six plant oils and one animal fat commonly used in Nigeria. This is a literature review and interview with traditional healers and alternative health practitioners to document the traditional, medical, cosmetics, and other usage of oils for skin and scalp care in the African context. Literature review was done on the biochemical and pharmacological properties of each of the seven oils. Searches were made from PubMed, African Journal online, Medline, and Google scholar. Medical subject heading terms used in the search include shea butter, coconut oil, palm kernel oil, palm oil, soy oil, Baobab oil, and python oil. Plant and seed oils used locally in Nigeria and other African countries for skin care and treatment have several benefits due to the constituents of the plant oils (free fatty acids, triglycerides, ceramides, phospholipids, vitamins and antioxidants) which have been shown to promote healthy skin barrier function, wound healing and have anti-inflammatory and antimicrobial effects. They are however not without adverse effects, which may be mainly due to processing and storage hygiene. Further studies are required on these oils in view of their potential in the development of novel skincare products and dermatological therapies.
Collapse
Affiliation(s)
- Olusola Ayanlowo
- Dermatology Unit, Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Akoka, Nigeria.,Dermatology Unit, Department of Medicine, Lagos University Teaching Hospital, Surulere, Lagos, Nigeria
| | - Olufolakemi Cole -Adeife
- Dermatology Unit, Department of Medicine, Lagos State University Teaching Hospital, Lagos, Nigeria
| | - Margaret Ilomuanya
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Lagos, Akoka, Nigeria
| | - Cynthia Ebie
- Dermatology Unit, Department of Medicine, Lagos University Teaching Hospital, Surulere, Lagos, Nigeria
| | - Abigail Adegbulu
- Dermatology Unit, Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Akoka, Nigeria
| | - Obumneke Ezeanyache
- Dermatology Unit, Department of Medicine, Lagos University Teaching Hospital, Surulere, Lagos, Nigeria
| | - Oghogho Odiase
- Dermatology Unit, Department of Medicine, Lagos University Teaching Hospital, Surulere, Lagos, Nigeria
| | - Viola Ikebudu
- Dermatology Unit, Department of Medicine, Lagos University Teaching Hospital, Surulere, Lagos, Nigeria
| | - Basirat Akanbi
- Dermatology Unit, Department of Medicine, Lagos University Teaching Hospital, Surulere, Lagos, Nigeria
| |
Collapse
|
3
|
Moore EM, Wagner C, Komarnytsky S. The Enigma of Bioactivity and Toxicity of Botanical Oils for Skin Care. Front Pharmacol 2020; 11:785. [PMID: 32547393 PMCID: PMC7272663 DOI: 10.3389/fphar.2020.00785] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 05/12/2020] [Indexed: 12/26/2022] Open
Abstract
Botanical oils have a long history of traditional use and are routinely applied to skin care. The focus of this review is to contrast the functionality of skin oils versus the differential biological and toxicological effects of major plant oils, and to correlate them to their compositional changes. In total, over 70 vegetable oils were clustered according to their lipid composition to promote awareness of health practitioners and botanical product manufacturers for the safety and efficacy of oil-based interventions based on their fatty acid profiles. Since multiple skin disorders result in depletion or disturbance of skin lipids, a tailored mixture of multiple botanical oils to simultaneously maintain natural skin-barrier function, promote repair and regeneration of wounded tissues, and achieve corrective modulation of immune disorders may be required. As bioactive constituents of botanical oils enter the human body by oral or topical application and often accumulate in measurable blood concentrations, there is also a critical need for monitoring their hazardous effects to reduce the possible over-added toxicity and promote maximal normal tissue sparing. The review also provides a useful tool to improve efficacy and functionality of fatty acid profiles in cosmetic applications.
Collapse
Affiliation(s)
- Erin M Moore
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States.,Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States.,Department of Biology, Catawba College, Salisbury, NC, United States
| | - Charles Wagner
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States.,Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Slavko Komarnytsky
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States.,Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States.,Department of Biology, Catawba College, Salisbury, NC, United States.,Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
4
|
Abstract
The skin of a term newborn differs both from preterm skin and that of an adult, and there is currently little consensus on the proper use of emollients in this population. The focus of most published literature is on preterm skin and the use of bathing products, with limited information regarding emollient use. Intact skin is the first line of defense against infection, allergens, and dehydration, and dry and compromised skin puts the infant at greater risk of harm from the aforementioned complications. Emollients are part of the front-line treatment for atopic dermatitis (AD), and, with the incidence of AD on the rise, it is imperative that further research be conducted to provide a guide for clinical practice.
Collapse
|