1
|
Wu M, Chen X, Lu Q, Yao X. Fecal microbiota transplantation for the treatment of chronic inflammatory skin diseases. Heliyon 2024; 10:e37432. [PMID: 39309854 PMCID: PMC11416527 DOI: 10.1016/j.heliyon.2024.e37432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024] Open
Abstract
The regulation of immune functions and the maintenance of homeostasis in the internal environment are both integral to human gut microbiota (GM). If GM is disturbed, it can result in a range of autoimmune diseases, including chronic inflammatory skin conditions. Chronic inflammatory skin diseases driven by T or B-cell-mediated immune reactions are complex, including the most prevalent diseases and some rare diseases. Expanding knowledge of GM dysbiosis in chronic inflammatory skin diseases has emerged. The GM has some causal roles in the pathogenesis of these skin conditions. Targeting microbiota treatment, particularly fecal microbiota transplantation (FMT), is considered to be a promising strategy. FMT was commonly used in intestinal diseases by reshaping and balancing GM, serving as a reasonable administration in these skin inflammatory diseases. This paper summarizes the existing knowledge of GM dysbiosis in chronic inflammatory skin diseases and the research data on FMT treatment for such conditions.
Collapse
Affiliation(s)
- Mingyang Wu
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Xingyu Chen
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Xu Yao
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| |
Collapse
|
2
|
Ishaq HM, Yasin R, Mohammad IS, Fan Y, Li H, Shahzad M, Xu J. The gut-brain-axis: A positive relationship between gut microbial dysbiosis and glioblastoma brain tumour. Heliyon 2024; 10:e30494. [PMID: 38756585 PMCID: PMC11096965 DOI: 10.1016/j.heliyon.2024.e30494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/28/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
The glioblastoma brain tumour (GBM) stands out as the most aggressive and resistant-to-treatment malignancy. Nevertheless, the gut-brain connection plays a pivotal role in influencing the growth and activation of the central nervous system. In this particular investigation, we aimed to assess and characterize the gut microbial ecosystem in GBM patients, both quantitatively and qualitatively. We collected faecal samples from 15 healthy volunteers and 25 GBM patients. To delve into the microbial content, we employed PCR-DGGE, targeting the V3 region of the 16S rRNA gene, and conducted qPCR to measure the levels of crucial intestinal bacteria. For a more in-depth analysis, high-throughput sequencing was performed on a selection of 20 random faecal samples (10 from healthy individuals and 10 from GBM patients), targeting the V3+V4 region of the 16S rRNA gene. Our findings from examining the richness and diversity of the gut microbiota unveiled that GBM patients exhibited significantly higher microbial diversity compared to healthy individuals. At the phylum level, Proteobacteria saw a significant increase, while Firmicutes experienced a noteworthy decrease in the GBM group. Moving down to the family level, we observed significantly elevated levels of Enterobacteriaceae, Bacteroidaceae, and Lachnospiraceae in GBM patients, while levels of Veillonellaceae, Rikenellaceae, and Prevotellaceae were notably lower. Delving into genera statistics, we noted a substantial increase in the abundance of Parasutterella, Escherichia-Shigella, and Bacteroides, alongside significantly lower levels of Ruminococcus 2, Faecalibacterium, and Prevotella_9 in the GBM group compared to the control group. Furthermore, when examining specific species, we found a significant increase in Bacteroides vulgatus and Escherichia coli in the GBM group. These observations collectively indicate a marked dysbiosis in the gut microbial composition of GBM patients. Additionally, the GBM group exhibited notably higher levels of alpha diversity when compared to the control group. This increase in diversity suggests a significant bacterial overgrowth in the gut of GBM patients in contrast to the controls. As a result, this research opens up potential avenues to gain a better understanding of the underlying mechanisms, pathways, and potential treatments for GBM, stemming from the significant implications of gut microbial dysbiosis in these patients.
Collapse
Affiliation(s)
- Hafiz Muhammad Ishaq
- Department of Microbiology and Immunology, Key Laboratory of Environment and Genes Related to Diseases of Chinese Ministry of Education, School of Medicine, Xi'an Jiaotong University, Xi'an, China
- Department of Pathobiology and Biomedical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture Multan, Pakistan
| | - Riffat Yasin
- Department of Zoology University of Education Lahore, D.G. Khan Campus, Pakistan
| | - Imran Shair Mohammad
- Department of Radiology, City of Hope National Medical Center, 1500 East Duarte Rd., Duarte, CA, 91010, USA
| | - Yang Fan
- Department of Microbiology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Huan Li
- Xi'an Mental Health Centre, Xi'an, China
| | - Muhammad Shahzad
- Department of Pharmacology, University of Health Sciences, Khyaban-e-Jamia Punjab, Lahore, Pakistan
| | - Jiru Xu
- Department of Microbiology and Immunology, Key Laboratory of Environment and Genes Related to Diseases of Chinese Ministry of Education, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
3
|
Shen Y, Yu X, Wang Q, Yao X, Lu D, Zhou D, Wang X. Association between primary Sjögren's syndrome and gut microbiota disruption: a systematic review and meta-analysis. Clin Rheumatol 2024; 43:603-619. [PMID: 37682372 DOI: 10.1007/s10067-023-06754-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/02/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Evidence of gut microbiota disruption for numerous autoimmune diseases has accumulated. Recently, the relationship between the microbiota and primary Sjögren's disease has been increasingly investigated but has yet to be systematically elucidated. Therefore, a meta-analysis of publications dealing on topic was conducted. Case-control studies comparing primary Sjögren's syndrome patients and healthy controls (HCs) were systematically searched in nine databases from inception to March 1, 2023. The primary result quantitatively evaluated in this meta-analysis was the α-diversity. The secondary results qualitatively extracted and analyzed were the β-diversity and relative abundance. In total, 22 case-control studies covering 915 pSS patients and 2103 HCs were examined. The quantitative analysis revealed a slight reduction in α-diversity in pSS patients compared to HCs, with a lower Shannon-Wiener index (SMD = - 0.46, (- 0.68, - 0.25), p < 0.0001, I2 = 71%), Chao1 richness estimator (SMD = - 0.59, (- 0.86, - 0.32), p < 0.0001, I2 = 81%), and ACE index (SMD = - 0.92, (- 1.64, - 0.19), p = 0.01, I2 = 86%). However, the Simpson index (SMD = 0.01, (- 0.43, 0.46) p = 0.95, I2 = 86%) was similar in the two groups. The β-diversity significantly differed between pSS patients and HCs. Variations in the abundance of specific microbes and their metabolites and potential functions contribute to the pSS pathogenesis. Notably, the abundance of the phylum Firmicutes decreased, while that of Proteobacteria increased. SCFA-producing microbes including Ruminococcaceae, Lachnospiraceae, Faecalibacterium, Butyricicoccus, and Eubacterium hallii were depleted. In addition to diversity, the abundances of some specific microbes were related to clinical parameters. According to this systematic review and meta-analysis, gut microbiota dysbiosis, including reduced diversity, was associated with proinflammatory bacterium enrichment and anti-inflammatory bacterium depletion in pSS patients. Further research on the relationship between the gut microbiota and pSS is warranted.
Collapse
Affiliation(s)
- Yue Shen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xue Yu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiao Wang
- School of Basic Medical Sciences, Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyi Yao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dingqi Lu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Donghai Zhou
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xinchang Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
4
|
Cao Y, Lu H, Xu W, Zhong M. Gut microbiota and Sjögren's syndrome: a two-sample Mendelian randomization study. Front Immunol 2023; 14:1187906. [PMID: 37383227 PMCID: PMC10299808 DOI: 10.3389/fimmu.2023.1187906] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023] Open
Abstract
Background The link between the gut microbiota (GM) and Sjögren's Syndrome (SS) is well-established and apparent. Whether GM is causally associated with SS is uncertain. Methods The MiBioGen consortium's biggest available genome-wide association study (GWAS) meta-analysis (n=13,266) was used as the basis for a two-sample Mendelian randomization study (TSMR). The causal relationship between GM and SS was investigated using the inverse variance weighted, MR-Egger, weighted median, weighted model, MR-PRESSO, and simple model methods. In order to measure the heterogeneity of instrumental variables (IVs), Cochran's Q statistics were utilized. Results The results showed that genus Fusicatenibacter (odds ratio (OR) = 1.418, 95% confidence interval (CI), 1.072-1.874, P = 0.0143) and genus Ruminiclostridium9 (OR = 1.677, 95% CI, 1.050-2.678, P = 0.0306) were positively correlated with the risk of SS and family Porphyromonadaceae (OR = 0.651, 95% CI, 0.427-0.994, P = 0.0466), genus Subdoligranulum (OR = 0.685, 95% CI, 0.497-0.945, P = 0.0211), genus Butyricicoccus (OR = 0.674, 95% CI, 0.470-0.967, P = 0.0319) and genus Lachnospiraceae (OR = 0.750, 95% CI, 0.585-0.961, P = 0.0229) were negatively correlated with SS risk using the inverse variance weighted (IVW) technique. Furthermore, four GM related genes: ARAP3, NMUR1, TEC and SIRPD were significant causally with SS after FDR correction (FDR<0.05). Conclusions This study provides evidence for either positive or negative causal effects of GM composition and its related genes on SS risk. We want to provide novel approaches for continued GM and SS-related research and therapy by elucidating the genetic relationship between GM and SS.
Collapse
Affiliation(s)
- Yu Cao
- School of Medicine, Xiamen University, Xiamen, China
| | - Hao Lu
- School of Medicine, Xiamen University, Xiamen, China
| | - Wangzi Xu
- School of Medicine, Xiamen University, Xiamen, China
| | - Ming Zhong
- Department of Oral Histopathology, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Belvoncikova P, Maronek M, Gardlik R. Gut Dysbiosis and Fecal Microbiota Transplantation in Autoimmune Diseases. Int J Mol Sci 2022; 23:10729. [PMID: 36142642 PMCID: PMC9503867 DOI: 10.3390/ijms231810729] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Gut microbiota dysbiosis has recently been reported in a number of clinical states, including neurological, psychiatric, cardiovascular, metabolic and autoimmune disorders. Yet, it is not completely understood how colonizing microorganisms are implicated in their pathophysiology and molecular pathways. There are a number of suggested mechanisms of how gut microbiota dysbiosis triggers or sustains extraintestinal diseases; however, none of these have been widely accepted as part of the disease pathogenesis. Recent studies have proposed that gut microbiota and its metabolites could play a pivotal role in the modulation of immune system responses and the development of autoimmunity in diseases such as rheumatoid arthritis, multiple sclerosis or type 1 diabetes. Fecal microbiota transplantation (FMT) is a valuable tool for uncovering the role of gut microbiota in the pathological processes. This review aims to summarize the current knowledge about gut microbiota dysbiosis and the potential of FMT in studying the pathogeneses and therapies of autoimmune diseases. Herein, we discuss the extraintestinal autoimmune pathologies with at least one published or ongoing FMT study in human or animal models.
Collapse
Affiliation(s)
| | | | - Roman Gardlik
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| |
Collapse
|
6
|
Zhang M, Liang Y, Liu Y, Li Y, Shen L, Shi G. High-fat diet-induced intestinal dysbiosis is associated with the exacerbation of Sjogren’s syndrome. Front Microbiol 2022; 13:916089. [PMID: 35935193 PMCID: PMC9354669 DOI: 10.3389/fmicb.2022.916089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Environmental factors are believed to influence the evolution of primary Sjögren’s syndrome (pSS). The aims of this study were to investigate the association of pSS with a high-fat diet (HFD) and to relate HFD-induced gut dysbiosis to pSS exacerbation. Male Wild Type (WT) and IL-14α transgenic mice (IL-14α TG) were fed a standard diet (SD) and HFD for 11 months. We found an increase in the autoantibody level, more severe dry eye, severe dry mouth symptoms, and an earlier presence of systemic features in the IL-14α TG mice treated with HFD. These data suggest that HFD can promote the process of pSS in the IL-14α TG mice. In addition, an HFD leads to a decrease in the richness of gut microbiota of IL-14α TG mice treated with HFD. The abundance of Deferribacterota was significantly enriched in the IL-14α TG mice treated with HFD compared with other groups. Through the mental test between gut microbiota and clinical parameters, we found that HFD-induced dysbiosis gut microbiota were associated with pSS clinical parameters. In conclusion, HFD results in the aggravation of pSS progression, likely due to the increase of potentially pathogenic microorganisms.
Collapse
Affiliation(s)
- Minjie Zhang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, China
| | - Yichen Liang
- Oncology Department, Northern Jiangsu People's Hospital, Yangzhou, China
- Cancer Institute Affiliated to Northern Jiangsu People's Hospital, Yangzhou, China
- Medical College, Yangzhou University, Yangzhou, China
| | - Yanbo Liu
- Department of Ophthalmology, Xiang’an Hospital of Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen University, Xiamen, China
- Eye Institute of Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Yixuan Li
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, China
| | - Long Shen
- Oncology Department, Northern Jiangsu People's Hospital, Yangzhou, China
- Cancer Institute Affiliated to Northern Jiangsu People's Hospital, Yangzhou, China
- Medical College, Yangzhou University, Yangzhou, China
- Long Shen,
| | - Guixiu Shi
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, China
- *Correspondence: Guixiu Shi,
| |
Collapse
|
7
|
Doaré E, Héry-Arnaud G, Devauchelle-Pensec V, Alegria GC. Healthy Patients Are Not the Best Controls for Microbiome-Based Clinical Studies: Example of Sjögren's Syndrome in a Systematic Review. Front Immunol 2021; 12:699011. [PMID: 34394092 PMCID: PMC8358393 DOI: 10.3389/fimmu.2021.699011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/13/2021] [Indexed: 01/03/2023] Open
Abstract
Introduction It has been hypothesized that gut and oral dysbiosis may contribute to the development of primary Sjögren's syndrome (pSS). The aim of this systematic review was to assemble available data regarding the oral and gut microbiota in pSS and to compare them to data from healthy individuals and patients with dry symptoms without a diagnosis of Sjögren's syndrome or lupus disease to identify dysbiosis and discuss the results. Methodology Using the PRISMA guidelines, we systematically reviewed studies that compared the oral and gut microbiota of Sjögren's patients and controls. The PubMed database and Google Scholar were searched. Results Two-hundred and eighty-nine studies were found, and 18 studies were included: 13 referred to the oral microbiota, 4 referred to the gut microbiota, and 1 referred to both anatomical sites. The most frequent controls were healthy volunteers and patients with sicca symptoms. The most common analysis method used was 16S-targeted metagenomics. The results were mostly heterogeneous, and the results regarding diversity were not always in accordance. Dysbiosis in pSS was not confirmed, and reduced salivary secretion seems to explain more microbial changes than the underlying disease. Conclusion These heterogeneous results might be explained by the lack of a standardized methodology at each step of the process and highlight the need for guidelines. Our review provides evidence that sicca patients seem to be more relevant than healthy subjects as a control group.
Collapse
Affiliation(s)
- Elise Doaré
- Rheumatology Department, Reference Centre of Rare Autoimmune Diseases, Cavale Blanche Hospital and Brest University, INSERM UMR 1227, Brest, France
| | - Geneviève Héry-Arnaud
- UMR1078, Génétique, Génomique Fonctionnelle Et Biotechnologies, INSERM, Université de Brest, EFS, IBSAM, Brest, France.,Centre Brestois d'Analyse du Microbiote, Hôpital La Cavale Blanche, CHRU de Brest, Brest, France
| | - Valérie Devauchelle-Pensec
- Rheumatology Department, Reference Centre of Rare Autoimmune Diseases, Cavale Blanche Hospital and Brest University, INSERM UMR 1227, Brest, France
| | - Guillermo Carvajal Alegria
- Rheumatology Department, Reference Centre of Rare Autoimmune Diseases, Cavale Blanche Hospital and Brest University, INSERM UMR 1227, Brest, France
| |
Collapse
|
8
|
Yao SY, Lei CQ, Liao X, Liu RX, Chang X, Liu ZM. Integrated Chinese and Western Medicine in Treatment of Critical Coronavirus Disease (COVID-19) Patient with Endotracheal Intubation: A Case Report. Chin J Integr Med 2020; 27:300-303. [PMID: 32915424 PMCID: PMC7484492 DOI: 10.1007/s11655-020-3323-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Shun-Yu Yao
- Cardiovascular Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Chao-Qi Lei
- Department of Integrated Chinese and Western Medicine, Xiangtan Central Hospital, Xiangtan, Hunan Province, 411100, China
| | - Xiang Liao
- Department of Integrated Chinese and Western Medicine, Xiangtan Central Hospital, Xiangtan, Hunan Province, 411100, China
| | - Ru-Xiu Liu
- Cardiovascular Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Xing Chang
- Cardiovascular Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Zhi-Ming Liu
- Cardiovascular Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| |
Collapse
|
9
|
Focus on Effects of Chinese Medicine on Improving Anxiety-Depression and Quality of Life of Patients with Primary Sjögren’s Syndrome. Chin J Integr Med 2020; 26:486-489. [DOI: 10.1007/s11655-020-3473-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2020] [Indexed: 11/29/2022]
|
10
|
Lu WW, Fu TX, Wang Q, Chen YL, Li TY, Wu GL. The effect of total glucoside of paeony on gut microbiota in NOD mice with Sjögren's syndrome based on high-throughput sequencing of 16SrRNA gene. Chin Med 2020; 15:61. [PMID: 32536964 PMCID: PMC7291443 DOI: 10.1186/s13020-020-00342-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/30/2020] [Indexed: 12/23/2022] Open
Abstract
Purpose To investigate the effect of total glucoside of paeony (TGP) on gut microbiota in NOD mice with Sjögren’s syndrome (SS), using high-throughput sequencing of 16SrRNA gene. Methods Twenty-four NOD mice were randomly assigned to 4 groups (n = 6 per group): sham group receiving deionized water (0.4 ml), hydroxychloroquin group receiving hydroxychloroquin (0.4 ml), TGP group receiving TGP (0.4 ml), and TGP + hydroxychloroquin group receiving 0.4 ml TGP and 0.4 ml hydroxychloroquin. Balb/c mice (n = 6) receiving 0.4 ml deionized water were used as a control group. After intragastric injection of drugs for 8 weeks, feces were collected for high-throughput sequencing of 16SrRNA gene. Results The sequencing of 16SrRNA gene resulted in 3686 OTUs, and 10 phyla and 69 genera were identified. Compared with the control group, the indices of Chao, Ace and Shannon in the other 4 groups were significantly lower (P < 0.05), and the Simpson index were significantly higher in the TGP, hydroxychloroquine, and sham groups (P < 0.05). Compared with the sham group, the indices of Chao, Ace and Shannon were significantly higher (P < 0.05), whereas the Simpson index was significantly lower (P < 0.05) in the TGP and TGP + hydroxychloroquine groups. At phylum level, Bacteroidetes was least abundant (36.1%), and Firmicutes was most abundant (56.28%) in the TGP + hydroxychloroquine group. Compared with the other 4 groups, Bacteroidetes was significantly less abundant (P < 0.05) and Firmicutes was significantly more abundant (P < 0.05) in the TGP + hydroxychloroquine group. Verrucomicrobia was most abundant (12.26%) in the hydroxychloroquine, and was significantly more abundant compared with the other 3 groups (P < 0.05). At genus level, compared with the control group, the abundance of Lactobacillus and Incertae of Phylum Firmicutes and Desulfovibrio of Phylum Proteobacteria was significantly increased, and the abundance of Bacteroides and Alloprevotella of Phylum Bacteroidetes and Pseudoflavonifractor of Phylum Firmicutes was significantly decreased in the TGP + hydroxychloroquine group (P < 0.05). Compared with the hydroxychloroquine group, the abundance of Akkermansia of Phylum Verrucomicrobia was significantly decreased in the TGP and TGP + hydroxychloroquine groups (P < 0.05). The abundance of Alistipes of Phylum Bacteroidetes and Desulfovibrio of Phylum Proteobacteria was significantly increased in the TGP + hydroxychloroquine group (P < 0.05). Conclusions TGP increases the growth of many key beneficial bacteria, inhibits the growth of dominant pathogenic bacteria, and increases the diversity and abundance of gut microorganisms, especially when combined with hydroxychloroquine. Our findings suggest that TGP may be effective to treat SS by improving the microecological structure of the gut.
Collapse
Affiliation(s)
- Wen-Wen Lu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Tian-Xiao Fu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Qing Wang
- Internal Medicine, Tongde Hospital of Zhejiang Provincial, Hangzhou, 310012 China
| | - Yi-Lian Chen
- Basic Medical College, Zhejiang University of Chinese Medicine, Hangzhou, 310053 China
| | - Tian-Yi Li
- Basic Medical College, Zhejiang University of Chinese Medicine, Hangzhou, 310053 China
| | - Guo-Lin Wu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| |
Collapse
|