1
|
Zhao X, Ye X, Gu Y, Lou Y, Zhou Z, Ji Y, Xu D. Oxymatrine for inflammatory bowel disease in preclinical studies: a systematic review and meta-analysis. Front Med (Lausanne) 2025; 12:1542953. [PMID: 40370726 PMCID: PMC12075229 DOI: 10.3389/fmed.2025.1542953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/15/2025] [Indexed: 05/16/2025] Open
Abstract
Background Inflammatory Bowel Disease (IBD) is a chronic, idiopathic inflammatory disorder of the intestines. Oxymatrine (OMT) is a naturally active substance found in the desiccated roots of Sophora flavescens. It possesses anti-tumor, antiviral, and anti-inflammatory properties. In recent years, its therapeutic role in IBD has gradually been discovered. This review aims to explore the impact of OMT on inflammatory bowel disease by animal models. Methods Conduct a systematic search in the PubMed, Embase, Web of Science, Cochrane, and Medline databases. Using SYRCLE's risk of bias tool to assess the bias risk and quality of the included studies. For some data presented as figures, Web Plot Digitizer 4.2 software was used to extract it. STATA 16.0 was selected for the final meta-analysis. Results After rigorous literature screening, 12 studies were included. The data analysis results indicated that the disease activity index (DAI), histopathological score (HS), interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), nuclear factor-κB (NF-κB), and myeloperoxidase (MPO) activity in the IBD animal models significantly decreased following intervention with oxymatrine. Furthermore, OMT also extended the colon length in the animal models and improved the expression level of zonula occludens-1(ZO-1) and occludin. These results suggested that OMT may improve the condition of IBD through anti-inflammatory, antioxidative stress and protecting the intestinal barrier. Conclusion Meta-analysis suggests oxymatrine positively affects IBD animal models. This provides new insights for the clinical treatment of inflammatory bowel disease. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/view/CRD42024570580, identifier [CRD42024570580].
Collapse
Affiliation(s)
- Xuan Zhao
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaolu Ye
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuting Gu
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yijie Lou
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhanyi Zhou
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yunxi Ji
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Daogun Xu
- Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Taizhou, Zhejiang, China
| |
Collapse
|
2
|
Huang L, Wang P, Liu S, Deng G, Qi X, Sun G, Gao X, Zhang L, Zhang Y, Xiao Y, Gao T, Maitiabula G, Wang X. Gut microbiota-derived tryptophan metabolites improve total parenteral nutrition-associated infections by regulating Group 3 innate lymphoid cells. IMETA 2025; 4:e70007. [PMID: 40236767 PMCID: PMC11995168 DOI: 10.1002/imt2.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 04/17/2025]
Abstract
Clinical nutritional support is recognized by Klinefner's Surgery as one of the four pivotal advancements in surgical practice during the 20th century. Surgeons regard clinical nutrition as a "life-saving" discipline, pivotal in preserving the lives of numerous critically ill patients and facilitating the success of many surgical procedures. Parenteral nutrition (PN) support serves as a crucial component of clinical nutritional therapy, while a range of complications associated with total parenteral nutrition (TPN) can significantly undermine the efficacy of patient treatment. Impaired intestinal homeostasis is strongly associated with the occurrence and progression of TPN-related infections, yet the underlying mechanisms remain poorly understood. In this study, RNA sequencing and single-cell RNA sequencing (scRNA-Seq) revealed that reduced secretion of interleukin-22 (IL-22) by intestinal Group 3 innate lymphoid cells (ILC3s) is a significant factor contributing to the onset of TPN-related infections. Additionally, through 16S ribosomal RNA (16S rRNA) gene sequencing of the gut microbiota from patients with chronic intestinal failure and metagenomic sequencing analysis of the gut microbiota from mice, we observed that TPN reduced the abundance of Lactobacillus murinus (L. murinus), while supplementation with L. murinus could promote IL-22 secretion by ILC3s. Mechanistically, L. murinus upregulates indole-3-carboxylic acid, which activates the nuclear receptor Rorγt to stimulate IL-22 secretion by ILC3s. This pathway strengthens gut barrier integrity and reduces infection susceptibility. Our findings enhance our understanding of the mechanisms driving the onset of TPN-related infections, highlighting the critical role of gut microbiota in maintaining immune homeostasis and improving clinical outcomes.
Collapse
Affiliation(s)
- Longchang Huang
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Peng Wang
- Department of Digestive Disease Research CenterGastrointestinal Surgery, The First People's Hospital of FoshanFoshanChina
| | - Shuai Liu
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Guifang Deng
- Department of Clinical NutritionUnion Shenzhen Hospital of Huazhong University of Science and TechnologyShenzhenChina
| | - Xin Qi
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Guangming Sun
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Xuejin Gao
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Li Zhang
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Yupeng Zhang
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Yaqin Xiao
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Tingting Gao
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Gulisudumu Maitiabula
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Xinying Wang
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| |
Collapse
|
3
|
Qu Q, Ma YM, Zhang WB, Chen R, Wang ZH, Jin WX, Huang YW, Xuan ZY, Liu MJ, Chen XL, Lv WJ, Guo SN. Period circadian clock 3 is crucial for regulation of IL-22-producing type 3 innate lymphoid cells by flavonoids from Shen Ling Bai Zhu San to alleviate colitis. Int J Biol Macromol 2025; 288:138730. [PMID: 39672410 DOI: 10.1016/j.ijbiomac.2024.138730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/15/2024]
Abstract
Type 3 Innate lymphoid cells (ILC3s) functions bear complex response during Inflammatory bowel diseases (IBD). Here, our study first analyzed the main pharmacological components in Shen Ling Bai Zhu San n-butanol extracts (S-Nb), and then explored whether S-Nb administrated immune response of ILC3s, and how it regulates ILC3s. Shen Ling Bai Zhu San (SLBZS) or S-Nb were administrated for 7 days to analyze the frequency of ILC3s and their produced cytokine. Using siRNA technology to knock down the expression of period circadian clock 2 (Per2) and period circadian clock 3 (Per3) and Anti-IL-22 antibody was supplied to mice, then detecting the moderator effect of S-Nb on colitis. The most class of S-Nb is flavonoids, with a content of approximately 48%. Oral administration of S-Nb enhanced the production of NCR+ILC3s and IL-22 produced by ILC3s, but did not alter IL-17A. Surprisingly, knocking down the expression of Per3 instead of Per2 inhibited the modulation effect of S-Nb on colitis and reduced IL-22 production, whether originating from NCR+ILC3s or NCR-ILC3s. After neutralizing the expression of IL-22 in mice, S-Nb was deprived of ability to alleviate colitis. The reason why S-Nb alleviates colitis is by enhancing the expression of Per3 via flavonoids, which in turn promotes the secretion of IL-22+ILC3s in intestine.
Collapse
Affiliation(s)
- Qian Qu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yi-Mu Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wen-Bo Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Rong Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhi-Hua Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wen-Xin Jin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yi-Wen Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhao-Ying Xuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Meng-Jie Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiao-Li Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wei-Jie Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Shi-Ning Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Research Center for Veterinary Traditional Chinese Medicine and Natural Medicine Engineering Technology, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
4
|
Wang X, Peng J, Cai P, Xia Y, Yi C, Shang A, Akanyibah FA, Mao F. The emerging role of the gut microbiota and its application in inflammatory bowel disease. Biomed Pharmacother 2024; 179:117302. [PMID: 39163678 DOI: 10.1016/j.biopha.2024.117302] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a complex disorder with an unknown cause. However, the dysbiosis of the gut microbiome has been found to play a role in IBD etiology, including exacerbated immune responses and defective intestinal barrier integrity. The gut microbiome can also be a potential biomarker for several diseases, including IBD. Currently, conventional treatments targeting pro-inflammatory cytokines and pathways in IBD-associated dysbiosis do not yield effective results. Other therapies that directly target the dysbiotic microbiome for effective outcomes are emerging. We review the role of the gut microbiome in health and IBD and its potential as a diagnostic, prognostic, and therapeutic target for IBD. This review also explores emerging therapeutic advancements that target gut microbiome-associated alterations in IBD, such as nanoparticle or encapsulation delivery, fecal microbiota transplantation, nutritional therapies, microbiome/probiotic engineering, phage therapy, mesenchymal stem cells (MSCs), gut proteins, and herbal formulas.
Collapse
Affiliation(s)
- Xiu Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu 222006, China
| | - Jianhua Peng
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, Jiangsu 212300, China
| | - Peipei Cai
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuxuan Xia
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chengxue Yi
- School of Medical Technology, Zhenjiang College, Zhenjiang 212028, China
| | - Anquan Shang
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu 222006, China
| | - Francis Atim Akanyibah
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu 222006, China.
| |
Collapse
|
5
|
Yao Y, Liu Y, Xu Q, Mao L. Short Chain Fatty Acids: Essential Weapons of Traditional Medicine in Treating Inflammatory Bowel Disease. Molecules 2024; 29:379. [PMID: 38257292 PMCID: PMC10818876 DOI: 10.3390/molecules29020379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurrent intestinal inflammatory disease, mainly including Crohn's disease (CD) and ulcerative colitis (UC). In recent years, the incidence and prevalence of IBD have been on the rise worldwide and have become a significant concern of health and a huge economic burden on patients. The occurrence and development of IBD involve a variety of pathogenic factors. The changes in short-chain fatty acids (SCFAs) are considered to be an important pathogenic mechanism of this disease. SCFAs are important metabolites in the intestinal microbial environment, which are closely involved in regulating immune, anti-tumor, and anti-inflammatory activities. Changes in metabolite levels can reflect the homeostasis of the intestinal microflora. Recent studies have shown that SCFAs provide energy for host cells and intestinal microflora, shape the intestinal environment, and regulate the immune system, thereby regulating intestinal physiology. SCFAs can effectively reduce the incidence of enteritis, cardiovascular disease, colon cancer, obesity, and diabetes, and also play an important role in maintaining the balance of energy metabolism (mainly glucose metabolism) and improving insulin tolerance. In recent years, many studies have shown that numerous decoctions and natural compounds of traditional Chinese medicine have shown promising therapeutic activities in multiple animal models of colitis and thus attracted increasing attention from scientists in the study of IBD treatment. Some of these traditional Chinese medicines or compounds can effectively alleviate colonic inflammation and clinical symptoms by regulating the generation of SCFAs. This study reviews the effects of various traditional Chinese medicines or bioactive substances on the production of SCFAs and their potential impacts on the severity of colonic inflammation. On this basis, we discussed the mechanism of SCFAs in regulating IBD-associated inflammation, as well as the related regulatory factors and signaling pathways. In addition, we provide our understanding of the limitations of current research and the prospects for future studies on the development of new IBD therapies by targeting SCFAs. This review may widen our understanding of the effect of traditional medicine from the view of SCFAs and their role in alleviating IBD animal models, thus contributing to the studies of IBD researchers.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China; (Y.Y.); (Y.L.)
| | - Yongchao Liu
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China; (Y.Y.); (Y.L.)
| | - Qiuyun Xu
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong 226019, China
| | - Liming Mao
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China; (Y.Y.); (Y.L.)
| |
Collapse
|
6
|
Koprivica I, Stanisavljević S, Mićanović D, Jevtić B, Stojanović I, Miljković Đ. ILC3: a case of conflicted identity. Front Immunol 2023; 14:1271699. [PMID: 37915588 PMCID: PMC10616800 DOI: 10.3389/fimmu.2023.1271699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
Innate lymphoid cells type 3 (ILC3s) are the first line sentinels at the mucous tissues, where they contribute to the homeostatic immune response in a major way. Also, they have been increasingly appreciated as important modulators of chronic inflammatory and autoimmune responses, both locally and systemically. The proper identification of ILC3 is of utmost importance for meaningful studies on their role in immunity. Flow cytometry is the method of choice for the detection and characterization of ILC3. However, the analysis of ILC3-related papers shows inconsistency in ILC3 phenotypic definition, as different inclusion and exclusion markers are used for their identification. Here, we present these discrepancies in the phenotypic characterization of human and mouse ILC3s. We discuss the pros and cons of using various markers for ILC3 identification. Furthermore, we consider the possibilities for the efficient isolation and propagation of ILC3 from different organs and tissues for in-vitro and in-vivo studies. This paper calls upon uniformity in ILC3 definition, isolation, and propagation for the increased possibility of confluent interpretation of ILC3's role in immunity.
Collapse
Affiliation(s)
| | | | | | | | | | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|