1
|
Ali SI, Ahmad SN. Microbiologically influenced corrosion in uncoated and coated Mild Steel. Sci Rep 2025; 15:12629. [PMID: 40221427 PMCID: PMC11993770 DOI: 10.1038/s41598-025-90003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/10/2025] [Indexed: 04/14/2025] Open
Abstract
The study aimed to investigate the corrosion performance of Zn-Ni-Cu and Zn-Ni-Cu-TiB2 coatings in the microbial-induced environment (E-Coli, ATCC 25922, and 3.5%NaCl solution). Zn-Ni-Cu and Zn-Ni-Cu-TiB2 were surfaces coated on an ASTM A-36 Steel substrate utilizing a high-velocity oxy-fuel (HVOF) thermal spray process. Immersion tests following ASTM G-31, and ASTM G1-03, standards were performed in Escherichia Coli (E-Coli, American Type Culture CollectionATCC25922) bacteria medium. The effect of Zn, Ni, and Ti was studied in preventing microbial-induced corrosion.SEM, and XRD analysis before and after helped to understand the morphological and structural changes in coated/uncoated ASTM A-36 steel. Various forms of rust were ascertained in XRD analysis. The inclusion of Zn and Cu inhibited bacterial attachment to the coated surface, hence preventing significant corrosion of the underlying substrate. The coatings performed effectively and inhibited bacterial growth. The uncoated ASTM A-36 Steel specimen showed well-developed bacterial colonies on the surface and in the solution medium. All forms of rust were reported in XRD analysis for uncoated ASTM A-36 steel while few forms of rust were reported in coated ASTM A-36 steel.Electrochemical impedance spectroscopy (EIS) and Tafel polarization in Escherichia coli (E-Coli, ATCC 25922) medium demonstrated that the coated samples had greater corrosion resistance than the uncoated ASTM A-36 Steel specimens. The higher corrosion potential (Ecorr) values of the two coated samples indicated improved anodic protection.
Collapse
Affiliation(s)
- Sheikh Idrees Ali
- Department of Mechanical Engineering, National Institute of Technology Srinagar, 190006, JK, India.
| | - Sheikh Nazir Ahmad
- Department of Mechanical Engineering, National Institute of Technology Srinagar, 190006, JK, India
| |
Collapse
|
2
|
Zhang N, Zhuang L, King MF, Qian H, Zhu M. Public surface disinfection every 2 hours can reduce the infection risk of norovirus in airports up to 83. PLoS Comput Biol 2024; 20:e1012561. [PMID: 39636806 PMCID: PMC11620375 DOI: 10.1371/journal.pcbi.1012561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/15/2024] [Indexed: 12/07/2024] Open
Abstract
Norovirus, primarily transmitted via fomite route, poses a significant threat to global public health and the economy. Airports, as critical transportation hubs connecting people from around the world, has high potential risk of norovirus transmission due to large number of public surfaces. A total of 21.3 hours of video episodes were recorded across nine functional areas at the airport, capturing 25,925 touches. A surface transmission model based on a Markov chain was developed. Using the beta-Poisson dose-response model, the infection risk of norovirus and the effectiveness of various interventions in different airports' areas were quantified. Without any preventive measures, restaurants at airports exhibited the highest risk of norovirus transmission, with an infection probability of 8.8×10-3% (95% CI, 1.5×10-3% -2.1×10-2%). This means approximately 4.6 (95% CI, 0.8-10.9) out of 51,494 passengers who entered the restaurants would be infected by an infected passenger. Comparing with no surface disinfection, disinfecting public surfaces every 2 hours can reduce the risk of norovirus infection per visit to the airport by 83.2%. In contrast, comparing with no hand washing, handwashing every 2 hours can reduce the infection risk per visit to the airport by only 2.0%, making public surface disinfection significantly more effective than handwashing. If the mask-wearing rate increases from 0% to 50%, the infection risk of norovirus would be decreased by 48.0% (95% CI, 43.5-52.3%). Furthermore, using antimicrobial copper/copper-nickel alloy coatings for most public surfaces could reduce the infection risk by 15.9%-99.2%.
Collapse
Affiliation(s)
- Nan Zhang
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Linan Zhuang
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Marco-Felipe King
- School of Civil Engineering, University of Leeds, Woodhouse Lane, Leeds, United Kingdom
| | - Hua Qian
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Min Zhu
- 6th Medical Center of General Hospital of PLA, Beijing, China
| |
Collapse
|
3
|
Saha DC, Boegel SJ, Tanvir S, Nogueira CL, Aucoin MG, Anderson WA, Jahed H. Antiviral and Antibacterial Cold Spray Coating Application on Rubber Substrate, Disruption in Disease Transmission Chain. JOURNAL OF THERMAL SPRAY TECHNOLOGY 2023; 32:818-830. [PMID: 37521526 PMCID: PMC9911180 DOI: 10.1007/s11666-023-01553-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/22/2022] [Accepted: 01/24/2023] [Indexed: 08/01/2023]
Abstract
The objective of this study was to prepare a copper-coated rubber surface using cold spray technology with improved virucidal and antimicrobial properties to fight against highly transmissible viruses and bacteria. A successful cold spray coating was produced using irregular-shaped pure Cu powder on an escalator handrail rubber. The powder particles and the deposited coatings (single and double pass) were characterized in terms of particle morphology and size distribution, coating surface and coat/substrate cross-section properties. The bonding between powder and rubber surfaces was purely mechanical interlocking. The Cu powder penetration depth within the rubber surface increases with a number of depositions pass. The virucidal properties of the coated surface were tested utilizing surrogates for SARS-CoV-2: HCoV-229E, a seasonal human coronavirus, and baculovirus, a high-titer enveloped insect cell virus. A double-pass coated surface showed significant baculovirus inactivation relative to a bare rubber control surface after 2-h (approximately 1.7-log) and 4-h (approximately 6.2-log), while a 4-h exposure reduced HCoV-229E titer to below the limit of detection. A similar microbial test was performed using E. coli, showing a 4-log microbial reduction after 2-h exposure relative to the bare rubber. These promising results open a new application for cold spray in the health sector. Supplementary Information The online version contains supplementary material available at 10.1007/s11666-023-01553-x.
Collapse
Affiliation(s)
- D. C. Saha
- Fatigue and Stress Analysis Laboratory, Department of Mechanical & Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - S. J. Boegel
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - S. Tanvir
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - C. L. Nogueira
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - M. G. Aucoin
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - W. A. Anderson
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - H. Jahed
- Fatigue and Stress Analysis Laboratory, Department of Mechanical & Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| |
Collapse
|
4
|
Bassam SN, Salimijazi H, Labbaf S, Amya M, Ehsani P, Mehrbod P. Antibacterial and Virucidal Evaluation of Ultrafine Wire Arc Sprayed German Silver Coatings. JOURNAL OF THERMAL SPRAY TECHNOLOGY 2023; 32:959-969. [PMID: 37521527 PMCID: PMC9810382 DOI: 10.1007/s11666-022-01528-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 08/01/2023]
Abstract
Copper and its alloys are known as antimicrobial agents that can be used in public places; however, pure copper has a low wear resistance and tends to lose its gloss relatively fast and stainless steel is still more desirable because of its mechanical properties and stable appearance. In this research, German silver coatings, a copper-nickel alloy, are studied as a superior alternative for pure copper coatings. German silver coating on mild steel substrates and stainless steel with two different surface roughnesses was prepared and placed into water bath up to 6 months to investigate the corrosion and exposure effects on the antibacterial behavior. A range of techniques was used to study the microstructure, surface morphology and mechanical properties such as microhardness, coating bonding adhesion, surface roughness and wettability of the coating. Colony count method was used to measure the antibacterial properties, and samples were tested against influenza A virus to evaluate the virucidal activity. The coating thickness was around 130 µm and contained 15% pores and oxides with splats forming inside the coating structure. Inside each splat, columnar grains could be seen with an average of 700 nm width and 4 µm length. The bonding strength of the coating was about 15 MPa, the hardness of coatings was about 180 HV, and the average surface roughness of the as-sprayed samples was about 10 µm. German silver coatings can destroy both Staphylococcus aureus and Escherichia coli by more than 90% after 6 h of exposure time, and it also has a high-level of virucidal activity against influenza A virus after 2 h exposure time. Antibacterial behavior did not show any significant changes after 6 months of immersing samples in water bath. Thus, thermally sprayed German silver coatings exhibited silvery color for a long period of time, while its antimicrobial efficiency was comparable to pure copper coatings. Supplementary Information The online version contains supplementary material available at 10.1007/s11666-022-01528-4.
Collapse
Affiliation(s)
- Seyed Navid Bassam
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 Iran
| | - Hamidreza Salimijazi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 Iran
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 Iran
| | - Melika Amya
- Bacteriology Department, Molecular Biology Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Parastoo Ehsani
- Bacteriology Department, Molecular Biology Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
5
|
Yakoubi A, Dhafer CEB. Advanced Plasmonic Nanoparticle-Based Techniques for the Prevention, Detection, and Treatment of Current COVID-19. PLASMONICS (NORWELL, MASS.) 2022; 18:311-347. [PMID: 36588744 PMCID: PMC9786532 DOI: 10.1007/s11468-022-01754-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Coronavirus is an ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2. Coronavirus disease 2019 known as COVID-19 is the worst pandemic since World War II. The outbreak of COVID-19 had a significant repercussion on the health, economy, politics, and environment, making coronavirus-related issues more complicated and becoming one of the most challenging pandemics of the last century with deadly outcomes and a high rate of the reproduction number. There are thousands of different types - or variants - of COVID circulating across the world. Viruses mutate all the time; it emphasizes the critical need for the designing of efficient vaccines to prevent virus infection, early and fast diagnosis, and effective antiviral and protective therapeutics. In this regard, the use of nanotechnology offers new opportunities for the development of novel strategies in terms of prevention, diagnosis, and treatment of COVID-19. This review presents an outline of the platforms developed using plasmonic nanoparticles in the detection, treatment, and prevention of SARS-CoV-2. We select the best strategies in each of these approaches. The properties of metallic plasmon NPs and their relevance in the development of novel point-of-care diagnosis approaches for COVID-19 are highlighted. Also, we discuss the current challenges and the future perspectives looking towards the clinical translation and the commercial aspects of nanotechnology and plasmonic NP-based diagnostic tools and therapy to fight COVID-19 pandemic. The article could be of significance for researchers dedicated to developing suitable plasmonic detection tools and therapy approaches for COVID-19 viruses and future pandemics.
Collapse
Affiliation(s)
- Afef Yakoubi
- Laboratory of Hetero-organic Compounds and Nanostructured Materials, Chemistry Department, Faculty of Sciences Bizerte, University of Carthage, LR 18 ES11, 7021 Bizerte, Tunisia
| | - Cyrine El Baher Dhafer
- Chemistry Department College of Science, Jouf University, P.O Box: 2014, Sakaka, Saudi Arabia
| |
Collapse
|
6
|
Hardison RL, Ryan SP, Limmer RA, Crouse M, Nelson SW, Barriga D, Ghere JM, Stewart MJ, Lee SD, Taylor BM, James RR, Calfee MW, Howard MW. Residual antimicrobial coating efficacy against SARS-CoV-2. J Appl Microbiol 2022; 132:3375-3386. [PMID: 34981882 PMCID: PMC9547327 DOI: 10.1111/jam.15437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 11/28/2022]
Abstract
AIMS This study evaluated the residual efficacy of commercially available antimicrobial coatings or films against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on non-porous surfaces. METHODS AND RESULTS Products were applied to stainless steel or ABS plastic coupons and dried overnight. Coupons were inoculated with SARS-CoV-2 in the presence of 5% soil load. Recovered infectious SARS-CoV-2 was quantified by TCID50 assay. Tested product efficacies ranged from <1.0 to >3.0 log10 reduction at a 2-h contact time. The log10 reduction in recovered infectious SARS-CoV-2 ranged from 0.44 to 3 log10 reduction on stainless steel and 0.25 to >1.67 log10 on ABS plastic. The most effective products tested contained varying concentrations (0.5%-1.3%) of the same active ingredient: 3-(trihydroxysilyl) propyldimethyloctadecyl ammonium chloride. Products formulated with other quaternary ammonium compounds were less effective against SARS-CoV-2 in this test. CONCLUSIONS The residual antimicrobial products tested showed varied effectiveness against SARS-CoV-2 as a function of product tested. Several products were identified as efficacious against SARS-CoV-2 on both stainless steel and ABS plastic surfaces under the conditions evaluated. Differences in observed efficacy may be due to variation in active ingredient formulation; efficacy is, therefore, difficult to predict based upon listed active ingredient and its concentration. SIGNIFICANCE AND IMPACT This study highlights the formulation-specific efficacy of several products against SARS-CoV-2 and may inform future development of residual antiviral products for use on non-porous surfaces. The identification of antimicrobial coatings or films showing promise to inactivate SARS-CoV-2 suggests that these products may be worth future testing and consideration.
Collapse
Affiliation(s)
| | | | - Rebecca A. Limmer
- Battelle Eastern Science & Technology Center, Aberdeen, Maryland, USA
| | - Margaret Crouse
- Battelle Eastern Science & Technology Center, Aberdeen, Maryland, USA
| | | | | | | | | | - Sang Don Lee
- US EPA, Research Triangle Park, North Carolina, USA
| | - Brian M. Taylor
- Battelle Eastern Science & Technology Center, Aberdeen, Maryland, USA
| | | | | | | |
Collapse
|
7
|
Tharayil A, Rajakumari R, Mozetic M, Primc G, Thomas S. Contact transmission of SARS-CoV-2 on fomite surfaces: surface survival and risk reduction. Interface Focus 2022; 12:20210042. [PMID: 34956610 PMCID: PMC8662391 DOI: 10.1098/rsfs.2021.0042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
There is an unprecedented concern regarding the viral strain SARS-CoV-2 and especially its respiratory disease more commonly known as COVID-19. SARS-CoV-2 virus has the ability to survive on different surfaces for extended periods, ranging from days up to months. The new infectious properties of SARS-CoV-2 vary depending on the properties of fomite surfaces. In this review, we summarize the risk factors involved in the indirect transmission pathways of SARS-CoV-2 strains on fomite surfaces. The main mode of indirect transmission is the contamination of porous and non-porous inanimate surfaces such as textile surfaces that include clothes and most importantly personal protective equipment like personal protective equipment kits, masks, etc. In the second part of the review, we highlight materials and processes that can actively reduce the SARS-CoV-2 surface contamination pattern and the associated transmission routes. The review also focuses on some general methodologies for designing advanced and effective antiviral surfaces by physical and chemical modifications, viral inhibitors, etc.
Collapse
Affiliation(s)
- Abhimanyu Tharayil
- School of Energy Materials, Mahatma Gandhi University, Kerala 686560, India
| | - R. Rajakumari
- International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kerala 686560, India
| | - Miran Mozetic
- Department of Surface Engineering, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Gregor Primc
- Department of Surface Engineering, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Sabu Thomas
- School of Energy Materials, Mahatma Gandhi University, Kerala 686560, India
- International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kerala 686560, India
| |
Collapse
|
8
|
Singh JK, Mandal S, Adnin RJ, Lee HS, Yang HM. Role of Coating Processes on the Corrosion Kinetics and Mechanism of Zinc in Artificial Seawater. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7464. [PMID: 34885619 PMCID: PMC8659072 DOI: 10.3390/ma14237464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 11/21/2022]
Abstract
Zinc (Zn) coating is being used to protect steel structures from corrosion. There are different processes to deposit the coating onto a steel substrate. Therefore, in the present study, a 100 µm thick Zn coating was deposited by arc and plasma arc thermal spray coating processes, and the corrosion resistance performance was evaluated in artificial seawater. Scanning electron microscopy (SEM) results showed that the arc thermal spray coating exhibited splats and inflight particles, whereas plasma arc spraying showed a uniform and dense morphology. When the exposure periods were extended up to 23 d, the corrosion resistance of the arc as well as the plasma arc thermal spray coating increased considerably. This is attributed to the blocking characteristics of the defects by the stable hydrozincite (Zn5(OH)6(CO3)2).
Collapse
Affiliation(s)
- Jitendra Kumar Singh
- Innovative Durable Building and Infrastructure Research Center, Hanyang University, 55 Hanyangdaehak-ro, Sangrok-gu, Ansan-si 15588, Korea;
| | - Soumen Mandal
- Intelligent Construction Automation Center, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Korea;
| | - Raihana Jannat Adnin
- Department of Architectural Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangrok-gu, Ansan-si 15588, Korea;
| | - Han-Seung Lee
- Department of Architectural Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangrok-gu, Ansan-si 15588, Korea;
| | - Hyun-Min Yang
- Innovative Durable Building and Infrastructure Research Center, Hanyang University, 55 Hanyangdaehak-ro, Sangrok-gu, Ansan-si 15588, Korea;
| |
Collapse
|
9
|
Govind V, Bharadwaj S, Sai Ganesh MR, Vishnu J, Shankar KV, Shankar B, Rajesh R. Antiviral properties of copper and its alloys to inactivate covid-19 virus: a review. Biometals 2021; 34:1217-1235. [PMID: 34398357 PMCID: PMC8366152 DOI: 10.1007/s10534-021-00339-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/06/2021] [Indexed: 12/22/2022]
Abstract
Copper (Cu) and its alloys are prospective materials in fighting covid-19 virus and several microbial pandemics, due to its excellent antiviral as well as antimicrobial properties. Even though many studies have proved that copper and its alloys exhibit antiviral properties, this research arena requires further research attention. Several studies conducted on copper and its alloys have proven that copper-based alloys possess excellent potential in controlling the spread of infectious diseases. Moreover, recent studies indicate that these alloys can effectively inactivate the covid-19 virus. In view of this, the present article reviews the importance of copper and its alloys in reducing the spread and infection of covid-19, which is a global pandemic. The electronic databases such as ScienceDirect, Web of Science and PubMed were searched for identifying relevant studies in the present review article. The review starts with a brief description on the history of copper usage in medicine followed by the effect of copper content in human body and antiviral mechanisms of copper against covid-19. The subsequent sections describe the distinctive copper based material systems such as alloys, nanomaterials and coating technologies in combating the spread of covid-19. Overall, copper based materials can be propitiously used as part of preventive and therapeutic strategies in the fight against covid-19 virus.
Collapse
Affiliation(s)
- V Govind
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| | - S Bharadwaj
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| | - M R Sai Ganesh
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| | - Jithin Vishnu
- Centre for Biomaterials, Cellular and Molecular Theranostics, CBCMT, Vellore Institute of Technology, Vellore, India
| | - Karthik V Shankar
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.
| | - Balakrishnan Shankar
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| | - R Rajesh
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| |
Collapse
|
10
|
Delumeau LV, Asgarimoghaddam H, Alkie T, Jones AJB, Lum S, Mistry K, Aucoin MG, DeWitte-Orr S, Musselman KP. Effectiveness of antiviral metal and metal oxide thin-film coatings against human coronavirus 229E. APL MATERIALS 2021; 9:111114. [PMID: 34868741 PMCID: PMC8638753 DOI: 10.1063/5.0056138] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/24/2021] [Indexed: 05/13/2023]
Abstract
Virucidal thin-film coatings have the potential to inactivate pathogens on surfaces, preventing or slowing their spread. Six potential nanoscale antiviral coatings, Cu, Cu2O, Ag, ZnO, zinc tin oxide (ZTO), and TiO2, are deposited on glass, and their ability to inactivate the HCoV-229E human coronavirus is assessed using two methods. In one method, droplets containing HCoV-229E are deposited on thin-film coatings and then collected after various stages of desiccation. In the second method, the thin-film coatings are soaked in the virus supernatant for 24 h. The Cu and Cu2O coatings demonstrate clear virucidal behavior, and it is shown that controlled delamination and dissolution of the coating can enhance the virucidal effect. Cu is found to produce a faster and stronger virucidal effect than Cu2O in the droplet tests (3 log reduction in the viral titer after 1 h of exposure), which is attributed, in part, to the differences in film adhesion that result in delamination of the Cu film from the glass and accelerated dissolution in the droplet. Despite Ag, ZnO, and TiO2 being frequently cited antimicrobial materials, exposure to the Ag, ZnO, ZTO, and TiO2 coatings results in no discernible change to the infectivity of the coronavirus under the conditions tested. Thin-film Cu coatings are also applied to the polypropylene fabrics of N95 respirators, and droplet tests are performed. The Cu fabric coating reduces the infectivity of the virus; it results in a 1 order-of-magnitude reduction in the viral titer within 15 min with a 2 order-of-magnitude reduction after 1 h.
Collapse
Affiliation(s)
| | | | - Tamiru Alkie
- Department of Health Sciences, Wilfrid Laurier
University, 75 University Ave. West, Waterloo, Ontario N2L 3C5,
Canada
| | | | - Samantha Lum
- Department of Health Sciences, Wilfrid Laurier
University, 75 University Ave. West, Waterloo, Ontario N2L 3C5,
Canada
| | | | - Marc G. Aucoin
- Department of Chemical Engineering, University of
Waterloo, 200 University Ave. West, Waterloo, Ontario N2L 3G1,
Canada
| | - Stephanie DeWitte-Orr
- Department of Health Sciences, Wilfrid Laurier
University, 75 University Ave. West, Waterloo, Ontario N2L 3C5,
Canada
| | | |
Collapse
|
11
|
Janczak K, Kosmalska D, Kaczor D, Raszkowska-Kaczor A, Wedderburn L, Malinowski R. Bactericidal and Fungistatic Properties of LDPE Modified with a Biocide Containing Metal Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4228. [PMID: 34361422 PMCID: PMC8347296 DOI: 10.3390/ma14154228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 12/31/2022]
Abstract
The aim of this study was to ascertain whether the combined action of metal nanoparticles (silver, copper, zinc oxide, iron oxide) would ensure the appropriate biocidal properties oflow-density polyethylene (LDPE) against pathogenic microorganisms. According to the research hypothesis, appropriately selected concentrations of the applied metal nanoparticles allow for a high level of biocidal activity of polymeric materials against both model and pathogenic bacterial strains (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Legionella pneumophila, Salmonella enterica subsp. enterica) and fungi (Aspergillus brasiliensis, Saccharomyces cerevisiae, Candida albicans, Penicilium expansum), whilst ensuring the safety of use due to the lack of migration of particles to the surrounding environment. Studies have shown that adding 4% of a biocide containing Ag, Cu, ZnO, and Fe2O3 nanoparticles is the most optimal solution to reduce the number of S. aureus, S. enterica and P. aeruginosa by over 99%. The lowest effectiveness was observed against L. pneumophila bacteria. As for E. coli, a higher biocide content did not significantly increase the antibacterial activity. The results showed a high efficiency of the applied biocide at a concentration of 2% against fungal strains. The high efficiency of the obtained biocidal results was influenced by the uniform dispersion of nanoparticles in the material and their low degree of agglomeration. Furthermore, a slight migration of components to the environment is the basis for further research in the field of the application of the developed materials in industry.
Collapse
Affiliation(s)
| | | | | | | | | | - Rafał Malinowski
- Łukasiewicz Research Network—Institute for Engineering of Polymer Materials and Dyes, 87-100 Toruń, Poland; (K.J.); (D.K.); (D.K.); (A.R.-K.); (L.W.)
| |
Collapse
|