1
|
Wang S, Shi J, Liu C, Wang P, Wang M, Li W, Zhou R, Zheng H, Jiang J, Li N, Li J, Zhou Z, Zhu H, Wu Y, Jia Z, Wu T, Hu Y, Beaty TH. Evidence of the folate-mediated one-carbon metabolism pathway genes in controlling the non-syndromic oral clefts risks. Oral Dis 2023; 29:1080-1088. [PMID: 34739175 DOI: 10.1111/odi.14068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 02/05/2023]
Abstract
The folate-mediated one-carbon metabolism pathway is thought to play an important role in the etiology of non-syndromic oral clefts (NSOFC), although none of the genes in this pathway has shown significant signals in genome-wide association studies (GWAS). Recent evidence indicated that enhanced understanding could be gained by aggregating multiple SNPs effect simultaneously into polygenic risk score (PRS) to assess its association with disease risks. This study is aimed to assess the association between the genetic effect of folate-mediated one-carbon metabolism pathway and NSOFC risks using PRS based on a case-parent trio design. A total of 297 SNPs mapped from 18 genes in the folate-mediated one-carbon metabolism pathway were aggregated from a GWAS of 2458 case-parent trios recruited from an international consortium. We found a PRS based on the folate-mediated one-carbon metabolism pathway was significant among all NSOFC trios (OR = 1.95, 95% CI: 1.66-2.28, p = 2.39 × 10-16 ), as well as two major subtypes, non-syndromic cleft lip with or without cleft palate (NSCL/P) trios (OR = 1.71, 95% CI: 1.50-1.96, p = 7.66 × 10-15 ) and non-syndromic cleft palate only (NSCPO) trios (OR = 1.51, 95% CI: 1.36-1.68, p = 2.1 × 10-14 ). Similar results were also observed in further subgroup analyses stratified into Asian and European trios. The averaged PRS of the folate-mediated one-carbon metabolism pathway varied between the NSOFC case group and its comparison group (p < 0.05) with higher average PRS in the cases. Moreover, the top 5% pathway PRS group had 2.25 (95% CI: 1.85-2.73) times increased NSOFC risk, also 3.09 (95% CI: 2.50-3.81) and 2.06 (95% CI: 1.39-3.02) times increased risk of NSCL/P and NSCPO compared to the remainder of the distribution. The results of our study confirmed the folate-mediated one-carbon metabolism pathway was important in controlling risk to NSOFC and this study enhanced evidence towards understanding the genetic risks of NSOFC.
Collapse
Affiliation(s)
- Siyue Wang
- Peking University Health Science Center, Beijing, China
| | - Jiayu Shi
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, USA
| | | | - Ping Wang
- Peking University Health Science Center, Beijing, China
| | - Mengying Wang
- Peking University Health Science Center, Beijing, China
| | - Wenyong Li
- Peking University Health Science Center, Beijing, China
| | - Ren Zhou
- Peking University Health Science Center, Beijing, China
| | | | - Jin Jiang
- Peking University Health Science Center, Beijing, China
| | - Nan Li
- Peking University School of Stomatology, Beijing, China
| | - Jing Li
- Peking University School of Stomatology, Beijing, China
| | - Zhibo Zhou
- Peking University School of Stomatology, Beijing, China
| | - Hongping Zhu
- Peking University School of Stomatology, Beijing, China
| | - Yiqun Wu
- Peking University Health Science Center, Beijing, China
| | - Zhonglin Jia
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of cleft lip and palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Wu
- Peking University Health Science Center, Beijing, China
- Institute of Reproductive and Child Health/Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China, Beijing, China
| | - Yonghua Hu
- Peking University Health Science Center, Beijing, China
| | - Terri H Beaty
- School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Kumari A, Rahaman A, Zeng XA, Farooq MA, Huang Y, Yao R, Ali M, Ishrat R, Ali R. Temporal Cortex Microarray Analysis Revealed Impaired Ribosomal Biogenesis and Hyperactivity of the Glutamatergic System: An Early Signature of Asymptomatic Alzheimer's Disease. Front Neurosci 2022; 16:966877. [PMID: 35958988 PMCID: PMC9359077 DOI: 10.3389/fnins.2022.966877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 06/23/2022] [Indexed: 11/21/2022] Open
Abstract
Pathogenic aging is regarded as asymptomatic AD when there is no cognitive deficit except for neuropathology consistent with Alzheimer's disease. These individuals are highly susceptible to developing AD. Braak and Braak's theory specific to tau pathology illustrates that the brain's temporal cortex region is an initiation site for early AD progression. So, the hub gene analysis of this region may reveal early altered biological cascades that may be helpful to alleviate AD in an early stage. Meanwhile, cognitive processing also drags its attention because cognitive impairment is the ultimate result of AD. Therefore, this study aimed to explore changes in gene expression of aged control, asymptomatic AD (AsymAD), and symptomatic AD (symAD) in the temporal cortex region. We used microarray data sets to identify differentially expressed genes (DEGs) with the help of the R programming interface. Further, we constructed the protein-protein interaction (PPI) network by performing the STRING plugin in Cytoscape and determined the hub genes via the CytoHubba plugin. Furthermore, we conducted Gene Ontology (GO) enrichment analysis via Bioconductor's cluster profile package. Resultant, the AsymAD transcriptome revealed the early-stage changes of glutamatergic hyperexcitability. Whereas the connectivity of major hub genes in this network indicates a shift from initially reduced rRNA biosynthesis in the AsymAD group to impaired protein synthesis in the symAD group. Both share the phenomenon of breaking tight junctions and others. In conclusion, this study offers new understandings of the early biological vicissitudes that occur in the brain before the manifestation of symAD and gives new promising therapeutic targets for early AD intervention.
Collapse
Affiliation(s)
- Ankita Kumari
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Abdul Rahaman
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
- Abdul Rahaman
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
- *Correspondence: Xin-An Zeng
| | - Muhammad Adil Farooq
- Institute of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Yanyan Huang
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
| | - Runyu Yao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Murtaza Ali
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Romana Ishrat
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Romana Ishrat
| | - Rafat Ali
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
3
|
Castano-Duque L, Gilbert MK, Mack BM, Lebar MD, Carter-Wientjes CH, Sickler CM, Cary JW, Rajasekaran K. Flavonoids Modulate the Accumulation of Toxins From Aspergillus flavus in Maize Kernels. FRONTIERS IN PLANT SCIENCE 2021; 12:761446. [PMID: 34899785 PMCID: PMC8662736 DOI: 10.3389/fpls.2021.761446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/15/2021] [Indexed: 06/14/2023]
Abstract
Aspergillus flavus is an opportunistic fungal pathogen capable of producing aflatoxins, potent carcinogenic toxins that accumulate in maize kernels after infection. To better understand the molecular mechanisms of maize resistance to A. flavus growth and aflatoxin accumulation, we performed a high-throughput transcriptomic study in situ using maize kernels infected with A. flavus strain 3357. Three maize lines were evaluated: aflatoxin-contamination resistant line TZAR102, semi-resistant MI82, and susceptible line Va35. A modified genotype-environment association method (GEA) used to detect loci under selection via redundancy analysis (RDA) was used with the transcriptomic data to detect genes significantly influenced by maize line, fungal treatment, and duration of infection. Gene ontology enrichment analysis of genes highly expressed in infected kernels identified molecular pathways associated with defense responses to fungi and other microbes such as production of pathogenesis-related (PR) proteins and lipid bilayer formation. To further identify novel genes of interest, we incorporated genomic and phenotypic field data from a genome wide association analysis with gene expression data, allowing us to detect significantly expressed quantitative trait loci (eQTL). These results identified significant association between flavonoid biosynthetic pathway genes and infection by A. flavus. In planta fungal infections showed that the resistant line, TZAR102, has a higher fold increase of the metabolites naringenin and luteolin than the susceptible line, Va35, when comparing untreated and fungal infected plants. These results suggest flavonoids contribute to plant resistance mechanisms against aflatoxin contamination through modulation of toxin accumulation in maize kernels.
Collapse
|
4
|
Sodhi K, Pratt R, Wang X, Lakhani HV, Pillai SS, Zehra M, Wang J, Grover L, Henderson B, Denvir J, Liu J, Pierre S, Nelson T, Shapiro JI. Role of adipocyte Na,K-ATPase oxidant amplification loop in cognitive decline and neurodegeneration. iScience 2021; 24:103262. [PMID: 34755095 PMCID: PMC8564125 DOI: 10.1016/j.isci.2021.103262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/10/2021] [Accepted: 10/11/2021] [Indexed: 11/21/2022] Open
Abstract
Recent studies suggest that a western diet may contribute to clinical neurodegeneration and dementia. Adipocyte-specific expression of the Na,K-ATPase signaling antagonist, NaKtide, ameliorates the pathophysiological consequences of murine experimental obesity and renal failure. In this study, we found that a western diet produced systemic oxidant stress along with evidence of activation of Na,K-ATPase signaling within both murine brain and peripheral tissues. We also noted this diet caused increases in circulating inflammatory cytokines as well as behavioral, and brain biochemical changes consistent with neurodegeneration. Adipocyte specific NaKtide affected by a doxycycline on/off expression system ameliorated all of these diet effects. These data suggest that a western diet produces cognitive decline and neurodegeneration through augmented Na,K-ATPase signaling and that antagonism of this pathway in adipocytes ameliorates the pathophysiology. If this observation is confirmed in humans, the adipocyte Na,K-ATPase may serve as a clinical target in the therapy of neurodegenerative disorders.
Collapse
Affiliation(s)
- Komal Sodhi
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Rebecca Pratt
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Xiaoliang Wang
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Hari Vishal Lakhani
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Sneha S. Pillai
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Mishghan Zehra
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Jiayan Wang
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Lawrence Grover
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Brandon Henderson
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - James Denvir
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Jiang Liu
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Sandrine Pierre
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Thomas Nelson
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Joseph I. Shapiro
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
5
|
Cheng J, Liu HP, Lin WY, Tsai FJ. Machine learning compensates fold-change method and highlights oxidative phosphorylation in the brain transcriptome of Alzheimer's disease. Sci Rep 2021; 11:13704. [PMID: 34211065 PMCID: PMC8249453 DOI: 10.1038/s41598-021-93085-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder causing 70% of dementia cases. However, the mechanism of disease development is still elusive. Despite the availability of a wide range of biological data, a comprehensive understanding of AD's mechanism from machine learning (ML) is so far unrealized, majorly due to the lack of needed data density. To harness the AD mechanism's knowledge from the expression profiles of postmortem prefrontal cortex samples of 310 AD and 157 controls, we used seven predictive operators or combinations of RapidMiner Studio operators to establish predictive models from the input matrix and to assign a weight to each attribute. Besides, conventional fold-change methods were also applied as controls. The identified genes were further submitted to enrichment analysis for KEGG pathways. The average accuracy of ML models ranges from 86.30% to 91.22%. The overlap ratio of the identified genes between ML and conventional methods ranges from 19.7% to 21.3%. ML exclusively identified oxidative phosphorylation genes in the AD pathway. Our results highlighted the deficiency of oxidative phosphorylation in AD and suggest that ML should be considered as complementary to the conventional fold-change methods in transcriptome studies.
Collapse
Affiliation(s)
- Jack Cheng
- grid.254145.30000 0001 0083 6092Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402 Taiwan ,grid.411508.90000 0004 0572 9415Department of Medical Research, China Medical University Hospital, Taichung, 40447 Taiwan
| | - Hsin-Ping Liu
- grid.254145.30000 0001 0083 6092Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, 40402 Taiwan
| | - Wei-Yong Lin
- grid.254145.30000 0001 0083 6092Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402 Taiwan ,grid.411508.90000 0004 0572 9415Department of Medical Research, China Medical University Hospital, Taichung, 40447 Taiwan ,grid.254145.30000 0001 0083 6092Brain Diseases Research Center, China Medical University, Taichung, 40402 Taiwan
| | - Fuu-Jen Tsai
- grid.411508.90000 0004 0572 9415Department of Medical Research, China Medical University Hospital, Taichung, 40447 Taiwan ,grid.254145.30000 0001 0083 6092School of Chinese Medicine, China Medical University, Taichung, 40402 Taiwan ,grid.252470.60000 0000 9263 9645Department of Medical Laboratory and Biotechnology, Asia University, Taichung, 41354 Taiwan ,grid.254145.30000 0001 0083 6092Division of Pediatric Genetics, Children’s Hospital of China Medical University, Taichung, 40447 Taiwan
| |
Collapse
|
6
|
Castano-Duque L, Ghosal S, Quilloy FA, Mitchell-Olds T, Dixit S. An epigenetic pathway in rice connects genetic variation to anaerobic germination and seedling establishment. PLANT PHYSIOLOGY 2021; 186:1042-1059. [PMID: 33638990 PMCID: PMC8195528 DOI: 10.1093/plphys/kiab100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Rice production is shifting from transplanting seedlings to direct sowing of seeds. Following heavy rains, directly sown seeds may need to germinate under anaerobic environments, but most rice (Oryza sativa) genotypes cannot survive these conditions. To identify the genetic architecture of complex traits, we quantified percentage anaerobic germination (AG) in 2,700 (wet-season) and 1,500 (dry-season) sequenced rice genotypes and performed genome-wide association studies (GWAS) using 693,502 single nucleotide polymorphisms. This was followed by post-GWAS analysis with a generalized SNP-to-gene set analysis, meta-analysis, and network analysis. We determined that percentage AG is intermediate-to-high among indica subpopulations, and AG is a polygenic trait associated with transcription factors linked to ethylene responses or genes involved in metabolic processes that are known to be associated with AG. Our post-GWAS analysis identified several genes involved in a wide variety of metabolic processes. We subsequently performed functional analysis focused on the small RNA and methylation pathways. We selected CLASSY 1 (CLSY1), a gene involved in the RNA-directed DNA methylation (RdDm) pathway, for further analyses under AG and found several lines of evidence that CLSY1 influences AG. We propose that the RdDm pathway plays a role in rice responses to water status during germination and seedling establishment developmental stages.
Collapse
Affiliation(s)
| | - Sharmistha Ghosal
- Rice Breeding Platform, International Rice Research Institute. Pili Drive, Los Baños, Laguna 4031, Philippines
| | - Fergie A Quilloy
- Rice Breeding Platform, International Rice Research Institute. Pili Drive, Los Baños, Laguna 4031, Philippines
| | | | - Shalabh Dixit
- Rice Breeding Platform, International Rice Research Institute. Pili Drive, Los Baños, Laguna 4031, Philippines
| |
Collapse
|
7
|
Handling the Cellular Complex Systems in Alzheimer’s Disease Through a Graph Mining Approach. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1338:135-144. [DOI: 10.1007/978-3-030-78775-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Meng X, Li J, Zhang Q, Chen F, Bian C, Yao X, Yan J, Xu Z, Risacher SL, Saykin AJ, Liang H, Shen L. Multivariate genome wide association and network analysis of subcortical imaging phenotypes in Alzheimer's disease. BMC Genomics 2020; 21:896. [PMID: 33372590 PMCID: PMC7771059 DOI: 10.1186/s12864-020-07282-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/25/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified many individual genes associated with brain imaging quantitative traits (QTs) in Alzheimer's disease (AD). However single marker level association discovery may not be able to address the underlying biological interactions with disease mechanism. RESULTS In this paper, we used the MGAS (Multivariate Gene-based Association test by extended Simes procedure) tool to perform multivariate GWAS on eight AD-relevant subcortical imaging measures. We conducted multiple iPINBPA (integrative Protein-Interaction-Network-Based Pathway Analysis) network analyses on MGAS findings using protein-protein interaction (PPI) data, and identified five Consensus Modules (CMs) from the PPI network. Functional annotation and network analysis were performed on the identified CMs. The MGAS yielded significant hits within APOE, TOMM40 and APOC1 genes, which were known AD risk factors, as well as a few new genes such as LAMA1, XYLB, HSD17B7P2, and NPEPL1. The identified five CMs were enriched by biological processes related to disorders such as Alzheimer's disease, Legionellosis, Pertussis, and Serotonergic synapse. CONCLUSIONS The statistical power of coupling MGAS with iPINBPA was higher than traditional GWAS method, and yielded new findings that were missed by GWAS. This study provides novel insights into the molecular mechanism of Alzheimer's Disease and will be of value to novel gene discovery and functional genomic studies.
Collapse
Affiliation(s)
- Xianglian Meng
- School of Computer Information & Engineering, Changzhou Institute of Technology, Changzhou, 213032, China
| | - Jin Li
- College of Automation, Harbin Engineering University, Harbin, 150001, China
| | - Qiushi Zhang
- School of Computer Science, Northeast Electric Power University, Jilin, 132012, China
| | - Feng Chen
- College of Automation, Harbin Engineering University, Harbin, 150001, China
| | - Chenyuan Bian
- College of Automation, Harbin Engineering University, Harbin, 150001, China
| | - Xiaohui Yao
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jingwen Yan
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indianapolis, IN, 46202, USA
| | - Zhe Xu
- School of Computer Information & Engineering, Changzhou Institute of Technology, Changzhou, 213032, China
| | - Shannon L Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Hong Liang
- College of Automation, Harbin Engineering University, Harbin, 150001, China.
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
9
|
Aliashrafi M, Nasehi M, Zarrindast MR, Joghataei MT, Zali H, Siadat SD. Association of microbiota-derived propionic acid and Alzheimer's disease; bioinformatics analysis. J Diabetes Metab Disord 2020; 19:783-804. [PMID: 33553012 PMCID: PMC7843825 DOI: 10.1007/s40200-020-00564-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/06/2020] [Accepted: 06/02/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE Microbiota-derived metabolites could alter the brain tissue toward the neurodegeneration disease. This study aims to select the genes associated with Propionic acid (PPA) and compromise Alzheimer's disease (AD) to find the possible roles of PPA in AD pathogenesis. METHODS Microbiota-derived metabolites could alter the brain tissue toward the neurodegeneration disease. This study aims to select the genes associated with Propionic acid (PPA) and compromise Alzheimer's disease (AD) to find the possible roles of PPA in AD pathogenesis. RESULTS Amongst all genes associated with PPA and AD, 284 genes to be shared by searching databases and were subjected to further analysis. AD-PPA genes mainly involved in cancer, bacterial and virus infection, and neurological and non-neurological diseases. Gene Ontology and pathway analysis covered the most AD hallmark, such as amyloid formation, apoptosis, proliferation, inflammation, and immune system. Network analysis revealed hub and bottleneck genes. MCODE analysis also indicated the seed genes represented in the significant subnetworks. ICAM1 and CCND1 were the hub, bottleneck, and seed genes. CONCLUSIONS PPA interacted genes implicated in AD act through pathways initiate neuronal cell death. In sum up, AD-PPA shared genes exhibited evidence that supports the idea PPA secreted from bacteria could alter brain physiology toward the emerging AD signs. This idea needs to confirm by more future investigation in animal models.
Collapse
Affiliation(s)
- Morteza Aliashrafi
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran
- Shahid Beheshti University, Tehran, Iran
| | - Mohammad Nasehi
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran
- Cognitive and Neuroscience Research Center, Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neuroendocrinology, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Molecular and Cellular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Li T, Hu J, Wang S, Zhang H. Super-variants identification for brain connectivity. Hum Brain Mapp 2020; 42:1304-1312. [PMID: 33236465 PMCID: PMC7927294 DOI: 10.1002/hbm.25294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/25/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022] Open
Abstract
Identifying genetic biomarkers for brain connectivity helps us understand genetic effects on brain function. The unique and important challenge in detecting associations between brain connectivity and genetic variants is that the phenotype is a matrix rather than a scalar. We study a new concept of super‐variant for genetic association detection. Similar to but different from the classic concept of gene, a super‐variant is a combination of alleles in multiple loci but contributing loci can be anywhere in the genome. We hypothesize that the super‐variants are easier to detect and more reliable to reproduce in their associations with brain connectivity. By applying a novel ranking and aggregation method to the UK Biobank databases, we discovered and verified several replicable super‐variants. Specifically, we investigate a discovery set with 16,421 subjects and a verification set with 2,882 subjects, where they are formed according to release date, and the verification set is used to validate the genetic associations from the discovery phase. We identified 12 replicable super‐variants on Chromosomes 1, 3, 7, 8, 9, 10, 12, 15, 16, 18, and 19. These verified super‐variants contain single nucleotide polymorphisms that locate in 14 genes which have been reported to have association with brain structure and function, and/or neurodevelopmental and neurodegenerative disorders in the literature. We also identified novel loci in genes RSPO2 and TMEM74 which may be upregulated in brain issues. These findings demonstrate the validity of the super‐variants and its capability of unifying existing results as well as discovering novel and replicable results.
Collapse
Affiliation(s)
- Ting Li
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA
| | - Jianchang Hu
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA
| | - Shiying Wang
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA
| | - Heping Zhang
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
11
|
Wu Y, Zhan Z, Quan Y, Yang Y, Chen X, Liu L, Wu K, Yu M. SP1-mediated upregulation of LINGO-1 promotes degeneration of retinal ganglion cells in optic nerve injury. CNS Neurosci Ther 2020; 26:1010-1020. [PMID: 32562344 PMCID: PMC7539844 DOI: 10.1111/cns.13426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/27/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUNDS Insults to the axons in the optic nerve head are the primary cause of loss of retinal ganglion cells (RGCs) in traumatic, ischemic nerve injury or degenerative ocular diseases. The central nervous system-specific leucine-rich repeat protein, LINGO-1, negatively regulates axon regeneration and neuronal survival after injury. However, the upstream molecular mechanisms that regulate LINGO-1 signaling and contribute to LINGO-1-mediated death of RGCs are unclear. METHODS The expression of SP1 was profiled in optic nerve crush (ONC)-injured RGCs. LINGO-1 level was examined after SP1 overexpression by qRT-PCR. Luciferase assay was used to examine the binding of SP1 to the promoter regions of LINGO-1. Primary RGCs from rat retina were isolated by immunopanning and RGCs apoptosis were determined by Tunnel. SP1 and LINGO-1 expression was investigated using immunohistochemistry and Western bolting. Neuroprotection was assessed by RGC counts, RNFL thickness, and VEP tests after inhibition of SP1 shRNA. RESULTS We demonstrate that SP1 was upregulated in ONC-injured RGCs. SP1 was bound to the LINGO-1 promoter, which led to increased expression of LINGO-1. Treatment with recombinant Nogo-66 or LINGO-1 promoted apoptosis of RGCs cultured under serum-deprivation conditions, while silencing of SP1 promoted the survival of RGCs. SP1 and LINGO-1 colocalized and were upregulated in ONC-injured retinas. Silencing of SP1 in vivo reduced LINGO-1 expression and protected the structure of RGCs from ONC-induced injury, but there was no sign of recovery in VEP. CONCLUSIONS Our findings imply that SP1 regulates LINGO-1 expression in RGCs in the injured retina and provide insight into mechanisms underlying LINGO-1-mediated RGC death in optic nerve injury.
Collapse
Affiliation(s)
- Yali Wu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Zongyi Zhan
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Yadan Quan
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Yangfan Yang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Xiaotao Chen
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Liling Liu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Kaili Wu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Minbin Yu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
12
|
Shen L, Thompson PM. Brain Imaging Genomics: Integrated Analysis and Machine Learning. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2020; 108:125-162. [PMID: 31902950 PMCID: PMC6941751 DOI: 10.1109/jproc.2019.2947272] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Brain imaging genomics is an emerging data science field, where integrated analysis of brain imaging and genomics data, often combined with other biomarker, clinical and environmental data, is performed to gain new insights into the phenotypic, genetic and molecular characteristics of the brain as well as their impact on normal and disordered brain function and behavior. It has enormous potential to contribute significantly to biomedical discoveries in brain science. Given the increasingly important role of statistical and machine learning in biomedicine and rapidly growing literature in brain imaging genomics, we provide an up-to-date and comprehensive review of statistical and machine learning methods for brain imaging genomics, as well as a practical discussion on method selection for various biomedical applications.
Collapse
Affiliation(s)
- Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90232, USA
| |
Collapse
|
13
|
Horgusluoglu-Moloch E, Risacher SL, Crane PK, Hibar D, Thompson PM, Saykin AJ, Nho K. Genome-wide association analysis of hippocampal volume identifies enrichment of neurogenesis-related pathways. Sci Rep 2019; 9:14498. [PMID: 31601890 PMCID: PMC6787090 DOI: 10.1038/s41598-019-50507-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 09/09/2019] [Indexed: 01/04/2023] Open
Abstract
Adult neurogenesis occurs in the dentate gyrus of the hippocampus during adulthood and contributes to sustaining the hippocampal formation. To investigate whether neurogenesis-related pathways are associated with hippocampal volume, we performed gene-set enrichment analysis using summary statistics from a large-scale genome-wide association study (N = 13,163) of hippocampal volume from the Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Consortium and two year hippocampal volume changes from baseline in cognitively normal individuals from Alzheimer's Disease Neuroimaging Initiative Cohort (ADNI). Gene-set enrichment analysis of hippocampal volume identified 44 significantly enriched biological pathways (FDR corrected p-value < 0.05), of which 38 pathways were related to neurogenesis-related processes including neurogenesis, generation of new neurons, neuronal development, and neuronal migration and differentiation. For genes highly represented in the significantly enriched neurogenesis-related pathways, gene-based association analysis identified TESC, ACVR1, MSRB3, and DPP4 as significantly associated with hippocampal volume. Furthermore, co-expression network-based functional analysis of gene expression data in the hippocampal subfields, CA1 and CA3, from 32 normal controls showed that distinct co-expression modules were mostly enriched in neurogenesis related pathways. Our results suggest that neurogenesis-related pathways may be enriched for hippocampal volume and that hippocampal volume may serve as a potential phenotype for the investigation of human adult neurogenesis.
Collapse
Grants
- UL1 TR001108 NCATS NIH HHS
- R01 CA129769 NCI NIH HHS
- R35 CA197289 NCI NIH HHS
- P50 GM115318 NIGMS NIH HHS
- R01 AG019771 NIA NIH HHS
- P30 AG010133 NIA NIH HHS
- R03 AG054936 NIA NIH HHS
- U01 AG024904 NIA NIH HHS
- UL1 TR002369 NCATS NIH HHS
- R01 LM011360 NLM NIH HHS
- U54 EB020403 NIBIB NIH HHS
- K01 AG049050 NIA NIH HHS
- R01 LM012535 NLM NIH HHS
- CIHR
- NLM R01 LM012535, NIA R03 AG054936, NIA R01 AG19771, NIA P30 AG10133, NLM R01 LM011360, NSF IIS-1117335, DOD W81XWH-14-2-0151, NCAA 14132004, NIGMS P50GM115318, NCATS UL1 TR001108, NIA K01 AG049050, the Alzheimer’s Association, the Indiana Clinical and Translational Science Institute, and the IU Health-IU School of Medicine Strategic Neuroscience Research Initiative.
- ENIGMA was supported in part by a Consortium grant (U54EB020403 to PMT) from the NIH Institutes contributing to the Big Data to Knowledge (BD2K) Initiative, including the NIBIB and NCI.
- Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. Additional support for data analysis was provided by NLM R01 LM012535, NIA R03 AG054936, NIA R01 AG19771, NIA P30 AG10133, NLM R01 LM011360, NSF IIS-1117335, DOD W81XWH-14-2-0151, NCAA 14132004, NIGMS P50GM115318, NCATS UL1 TR001108, NIA K01 AG049050, the Alzheimer’s Association, the Indiana Clinical and Translational Science Institute, and the IU Health-IU School of Medicine Strategic Neuroscience Research Initiative.
Collapse
Affiliation(s)
- Emrin Horgusluoglu-Moloch
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paul K Crane
- Department of Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Derrek Hibar
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, USC Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Biomarkers, Janssen Research and Development, LLC, San Diego, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, USC Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andrew J Saykin
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Kwangsik Nho
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
14
|
Nudelman KNH, McDonald BC, Lahiri DK, Saykin AJ. Biological Hallmarks of Cancer in Alzheimer's Disease. Mol Neurobiol 2019; 56:7173-7187. [PMID: 30993533 PMCID: PMC6728183 DOI: 10.1007/s12035-019-1591-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/01/2019] [Indexed: 11/26/2022]
Abstract
Although Alzheimer's disease (AD) is an international health research priority for our aging population, little therapeutic progress has been made. This lack of progress may be partially attributable to disease heterogeneity. Previous studies have identified an inverse association of cancer and AD, suggesting that cancer history may be one source of AD heterogeneity. These findings are particularly interesting in light of the number of common risk factors and two-hit models hypothesized to commonly drive both diseases. We reviewed the ten hallmark biological alterations of cancer cells to investigate overlap with the AD literature and identified overlap of all ten hallmarks in AD, including (1) potentially common underlying risk factors, such as increased inflammation, deregulated cellular energetics, and genome instability; (2) inversely regulated mechanisms, including cell death and evading growth suppressors; and (3) functions with more complex, pleiotropic mechanisms, some of which may be stage-dependent in AD, such as cell adhesion/contact inhibition and angiogenesis. Additionally, we discuss the recent observation of a biological link between cancer and AD neuropathology. Finally, we address the therapeutic implications of this topic. The significant overlap of functional pathways and molecules between these diseases, some similarly and some oppositely regulated or functioning in each disease, supports the need for more research to elucidate cancer-related AD genetic and functional heterogeneity, with the aims of better understanding AD risk mediators, as well as further exploring the potential for some types of drug repurposing towards AD therapeutic development.
Collapse
Affiliation(s)
- Kelly N. H. Nudelman
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, IN, USA
| | - Brenna C. McDonald
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, IN, USA
- Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, IN, USA
| | - Debomoy K. Lahiri
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, IN, USA
- Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| |
Collapse
|
15
|
Patel H, Hodges AK, Curtis C, Lee SH, Troakes C, Dobson RJB, Newhouse SJ. Transcriptomic analysis of probable asymptomatic and symptomatic alzheimer brains. Brain Behav Immun 2019; 80:644-656. [PMID: 31063847 DOI: 10.1016/j.bbi.2019.05.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022] Open
Abstract
Individuals with intact cognition and neuropathology consistent with Alzheimer's disease (AD) are referred to as asymptomatic AD (AsymAD). These individuals are highly likely to develop AD, yet transcriptomic changes in the brain which might reveal mechanisms for their AD vulnerability are currently unknown. Entorhinal cortex, frontal cortex, temporal cortex and cerebellum tissue from 27 control, 33 AsymAD and 52 AD human brains were microarray expression profiled. Differential expression analysis identified a significant increase of transcriptomic activity in the frontal cortex of AsymAD subjects, suggesting fundamental changes in AD may initially begin within the frontal cortex region prior to AD diagnosis. Co-expression analysis identified an overactivation of the brain "glutamate-glutamine cycle", and disturbances in the brain energy pathways in both AsymAD and AD subjects, while the connectivity of key hub genes in this network indicates a shift from an already increased cell proliferation in AsymAD subjects to stress response and removal of amyloidogenic proteins in AD subjects. This study provides new insight into the earliest biological changes occurring in the brain prior to the manifestation of clinical AD symptoms and provides new potential therapeutic targets for early disease intervention.
Collapse
Affiliation(s)
- Hamel Patel
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) & Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, UK
| | - Angela K Hodges
- Department of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK
| | - Charles Curtis
- NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) & Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, UK; Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, UK
| | - Sang Hyuck Lee
- NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) & Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, UK; Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, UK
| | - Claire Troakes
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK; London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Richard J B Dobson
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) & Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, UK; Health Data Research UK London, University College London, 222 Euston Road, London, UK; Institute of Health Informatics, University College London, 222 Euston Road, London, UK; The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, 222 Euston Road, London, UK.
| | - Stephen J Newhouse
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) & Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, UK; Health Data Research UK London, University College London, 222 Euston Road, London, UK; Institute of Health Informatics, University College London, 222 Euston Road, London, UK; The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, 222 Euston Road, London, UK.
| |
Collapse
|
16
|
Chen HH, Petty LE, Bush W, Naj AC, Below JE. GWAS and Beyond: Using Omics Approaches to Interpret SNP Associations. CURRENT GENETIC MEDICINE REPORTS 2019; 7:30-40. [PMID: 33312764 PMCID: PMC7731888 DOI: 10.1007/s40142-019-0159-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE OF REVIEW Neurodegenerative diseases, neuropsychiatric disorders, and related traits have highly complex etiologies but are also highly heritable and identifying the causal genes and biological pathways underlying these traits may advance the development of treatments and preventive strategies. While many genome-wide association studies (GWAS) have successfully identified variants contributing to polygenic neurodegenerative and neuropsychiatric phenotypes including Alzheimer's disease (AD), schizophrenia (SCZ), and bipolar disorder (BPD) amongst others, interpreting the biological roles of significantly-associated variants in the genetic architecture of these traits remains a significant challenge. Here we review several 'omics' approaches which attempt to bridge the gap from associated genetic variants to phenotype by helping define the functional roles of GWAS loci in the development of neuropsychiatric disorders and traits. RECENT FINDINGS Several common 'omics' approaches have been applied to examine neuropsychiatric traits, such as nearest-gene mapping, trans-ethnic fine mapping, annotation enrichment analysis, transcriptomic analysis, and pathway analysis, and each of these approaches has strengths and limitations in providing insight into biological mechanisms. One popular emerging method is the examination of tissue-specific genetically-regulated gene expression (GReX), which aggregates the genetic variants' effects at the gene-level. Furthermore, proteomic, metabolomic, and microbiomic studies and phenome-wide association studies will further enhance our understanding of neuropsychiatric traits. SUMMARY GWAS has been applied to neuropsychiatric traits for a decade, but our understanding about the biological function of identified variants remains limited. Today, technological advancements have created analytical approaches for integrating transcriptomics, metabolomics, proteomics, pharmacology and toxicology as tools for understanding the functional roles of genetics variants. These data, as well as the broader clinical information provided by electronic health records, can provide additional insight and complement genomic analyses.
Collapse
Affiliation(s)
- Hung-Hsin Chen
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lauren E. Petty
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William Bush
- Institute for Computational Biology, Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Adam C. Naj
- Department of Biostatistics, Epidemiology, and Informatics; Department of Pathology and Laboratory Medicine; Center for Clinical Epidemiology and Biostatistics; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer E. Below
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
17
|
Patel H, Dobson RJ, Newhouse SJ. A Meta-Analysis of Alzheimer's Disease Brain Transcriptomic Data. J Alzheimers Dis 2019; 68:1635-1656. [PMID: 30909231 PMCID: PMC6484273 DOI: 10.3233/jad-181085] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Microarray technologies have identified imbalances in the expression of specific genes and biological pathways in Alzheimer's disease (AD) brains. However, there is a lack of reproducibility across individual AD studies, and many related neurodegenerative and mental health disorders exhibit similar perturbations. OBJECTIVE Meta-analyze publicly available transcriptomic data from multiple brain-related disorders to identify robust transcriptomic changes specific to AD brains. METHODS Twenty-two AD, eight schizophrenia, five bipolar disorder, four Huntington's disease, two major depressive disorder, and one Parkinson's disease dataset totaling 2,667 samples and mapping to four different brain regions (temporal lobe, frontal lobe, parietal lobe, and cerebellum) were analyzed. Differential expression analysis was performed independently in each dataset, followed by meta-analysis using a combining p-value method known as Adaptively Weighted with One-sided Correction. RESULTS Meta-analysis identified 323, 435, 1,023, and 828 differentially expressed genes specific to the AD temporal lobe, frontal lobe, parietal lobe, and cerebellum brain regions, respectively. Seven of these genes were consistently perturbed across all AD brain regions with SPCS1 gene expression pattern replicating in RNA-Seq data. A further nineteen genes were perturbed specifically in AD brain regions affected by both plaques and tangles, suggesting possible involvement in AD neuropathology. In addition, biological pathways involved in the "metabolism of proteins" and viral components were significantly enriched across AD brains. CONCLUSION This study identified transcriptomic changes specific to AD brains, which could make a significant contribution toward the understanding of AD disease mechanisms and may also provide new therapeutic targets.
Collapse
Affiliation(s)
- Hamel Patel
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) and Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
| | - Richard J.B. Dobson
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) and Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
- Health Data Research UK London, University College London, London, UK
- Institute of Health Informatics, University College London, London, UK
- The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, UK
| | - Stephen J. Newhouse
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- NIHR BioResource Centre Maudsley, NIHR Maudsley Biomedical Research Centre (BRC) at South London and Maudsley NHS Foundation Trust (SLaM) and Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
- Health Data Research UK London, University College London, London, UK
- Institute of Health Informatics, University College London, London, UK
- The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, UK
| |
Collapse
|
18
|
Gao S, Casey AE, Sargeant TJ, Mäkinen VP. Genetic variation within endolysosomal system is associated with late-onset Alzheimer’s disease. Brain 2018; 141:2711-2720. [DOI: 10.1093/brain/awy197] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022] Open
Abstract
AbstractLate-onset Alzheimer’s disease is the most common dementia type, yet no treatment exists to stop the neurodegeneration. Evidence from monogenic lysosomal diseases, neuronal pathology and experimental models suggest that autophagic and endolysosomal dysfunction may contribute to neurodegeneration by disrupting the degradation of potentially neurotoxic molecules such as amyloid-β and tau. However, it is uncertain how well the evidence from rare disorders and experimental models capture causal processes in common forms of dementia, including late-onset Alzheimer’s disease. For this reason, we set out to investigate if autophagic and endolysosomal genes were enriched for genetic variants that convey increased risk of Alzheimer’s disease; such a finding would provide population-based support for the endolysosomal hypothesis of neurodegeneration. We quantified the collective genetic associations between the endolysosomal system and Alzheimer’s disease in three genome-wide associations studies (combined n = 62 415). We used the Mergeomics pathway enrichment algorithm that incorporates permutations of the full hierarchical cascade of SNP-gene-pathway to estimate enrichment. We used a previously published collection of 891 autophagic and endolysosomal genes (denoted as AphagEndoLyso, and derived from the Lysoplex sequencing platform) as a proxy for cellular processes related to autophagy, endocytosis and lysosomal function. We also investigated a subset of 142 genes of the 891 that have been implicated in Mendelian diseases (MenDisLyso). We found that both gene sets were enriched for genetic Alzheimer’s associations: an enrichment score 3.67 standard deviations from the null model (P = 0.00012) was detected for AphagEndoLyso, and a score 3.36 standard deviations from the null model (P = 0.00039) was detected for MenDisLyso. The high enrichment score was specific to the AphagEndoLyso gene set (stronger than 99.7% of other tested pathways) and to Alzheimer’s disease (stronger than all other tested diseases). The APOE locus explained most of the MenDisLyso signal (1.16 standard deviations after APOE removal, P = 0.12), but the AphagEndoLyso signal was less affected (3.35 standard deviations after APOE removal, P = 0.00040). Additional sensitivity analyses further indicated that the AphagEndoLyso Gene Set contained an aggregate genetic association that comprised a combination of subtle genetic signals in multiple genes. We also observed an enrichment of Parkinson’s disease signals for MenDisLyso (3.25 standard deviations) and for AphagEndoLyso (3.95 standard deviations from the null model), and a brain-specific pattern of gene expression for AphagEndoLyso in the Gene Tissue Expression Project dataset. These results provide evidence that a diffuse aggregation of genetic perturbations to the autophagy and endolysosomal system may mediate late-onset Alzheimer’s risk in human populations.
Collapse
Affiliation(s)
- Song Gao
- Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia
| | - Aaron E Casey
- Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia
| | - Tim J Sargeant
- Hopwood Centre for Neurobiology, Nutrition and Metabolism Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia
| | - Ville-Petteri Mäkinen
- Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
| |
Collapse
|
19
|
Verheijen J, Sleegers K. Understanding Alzheimer Disease at the Interface between Genetics and Transcriptomics. Trends Genet 2018; 34:434-447. [PMID: 29573818 DOI: 10.1016/j.tig.2018.02.007] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/20/2018] [Accepted: 02/26/2018] [Indexed: 12/21/2022]
Abstract
Over 25 genes are known to affect the risk of developing Alzheimer disease (AD), the most common neurodegenerative dementia. However, mechanistic insights and improved disease management remains limited, due to difficulties in determining the functional consequences of genetic associations. Transcriptomics is increasingly being used to corroborate or enhance interpretation of genetic discoveries. These approaches, which include second and third generation sequencing, single-cell sequencing, and bioinformatics, reveal allele-specific events connecting AD risk genes to expression profiles, and provide converging evidence of pathophysiological pathways underlying AD. Simultaneously, they highlight brain region- and cell-type-specific expression patterns, and alternative splicing events that affect the straightforward relation between a genetic variant and AD, re-emphasizing the need for an integrated approach of genetics and transcriptomics in understanding AD.
Collapse
Affiliation(s)
- Jan Verheijen
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, B-2610, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, B-2610, Belgium
| | - Kristel Sleegers
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, B-2610, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, B-2610, Belgium.
| |
Collapse
|
20
|
Horgusluoglu-Moloch E, Nho K, Risacher SL, Kim S, Foroud T, Shaw LM, Trojanowski JQ, Aisen PS, Petersen RC, Jack CR, Lovestone S, Simmons A, Weiner MW, Saykin AJ. Targeted neurogenesis pathway-based gene analysis identifies ADORA2A associated with hippocampal volume in mild cognitive impairment and Alzheimer's disease. Neurobiol Aging 2017; 60:92-103. [PMID: 28941407 PMCID: PMC5774672 DOI: 10.1016/j.neurobiolaging.2017.08.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) patients display hippocampal atrophy, memory impairment, and cognitive decline. New neurons are generated throughout adulthood in 2 regions of the brain implicated in AD, the dentate gyrus of the hippocampus and the subventricular zone of the olfactory bulb. Disruption of this process contributes to neurodegenerative diseases including AD, and many of the molecular players in AD are also modulators of adult neurogenesis. However, the genetic mechanisms underlying adult neurogenesis in AD have been underexplored. To address this gap, we performed a gene-based association analysis in cognitively normal and impaired participants using neurogenesis pathway-related candidate genes curated from existing databases, literature mining, and large-scale genome-wide association study findings. A gene-based association analysis identified adenosine A2a receptor (ADORA2A) as significantly associated with hippocampal volume and the association between rs9608282 within ADORA2A and hippocampal volume was replicated in the meta-analysis after multiple comparison adjustments (p = 7.88 × 10-6). The minor allele of rs9608282 in ADORA2A is associated with larger hippocampal volumes and better memory.
Collapse
Affiliation(s)
- Emrin Horgusluoglu-Moloch
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kwangsik Nho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sungeun Kim
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Electrical and Computer Engineering, State University of New York Oswego, Oswego, NY, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Paul S Aisen
- Department of Neurology, University of Southern California, San Diego, CA, USA
| | | | - Clifford R Jack
- Department of Radiology, Mayo Clinic Minnesota, Rochester, MN, USA
| | | | - Andrew Simmons
- Institute of Psychiatry, King's College London, London, UK
| | - Michael W Weiner
- Departments of Radiology, Medicine, and Psychiatry, University of California-San Francisco, San Francisco, CA, USA; Department of Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Andrew J Saykin
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
21
|
Medina M, Khachaturian ZS, Rossor M, Avila J, Cedazo-Minguez A. Toward common mechanisms for risk factors in Alzheimer's syndrome. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2017; 3:571-578. [PMID: 29124116 PMCID: PMC5671628 DOI: 10.1016/j.trci.2017.08.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The global strategic goal of reducing health care cost, especially the prospects for massive increases due to expanding markets for health care services demanded by aging populations and/or people with a wide range of chronic disorders-disabilities, is a complex and formidable challenge with many facets. Current projections predict marked increases in the demand for health driven by both the exponential climb in the prevalence of chronic disabilities and the increases in the absolute numbers of people in need of some form of health care. Thus, the looming predicament for the economics of health care systems worldwide mandates the formulation of a strategic goal to foster significant expansion of global R&D efforts to discover and develop wide-ranging interventions to delay and/or prevent the onset of chronic disabling conditions. The rationale for adopting such a tactical objective is based on the premise that the costs and prevalence of chronic disabling conditions will be reduced by half even if a modest delay of 5 years in the onset of disability is obtained by a highly focused multinational research initiative. Because of the recent history of many failures in drug trials, the central thesis of this paper is to argue for the exploration-adoption of novel mechanistic ideas, theories, and paradigms for developing wide range and/or types of interventions. Although the primary focus of our discussion has been on biological approaches to therapy, we recognize the importance of emerging knowledge on nonpharmacological interventions and their potential impact in reducing health care costs. Although we may not find a drug to cure or prevent dementia for a long time, research is starting to demonstrate the potential contributes of nonpharmacological interventions toward the economics of health care in terms of rehabilitation, promoting autonomy, and potential to delay institutionalization, thus promoting healthy aging and reductions in the cost of care.
Collapse
Affiliation(s)
- Miguel Medina
- CIBERNED (Network Center for Biomedical Research in Neurodegenerative Diseases), ISCIII, Madrid, Spain
- CIEN Foundation, Reina Sofia Foundation Alzheimer Center, Madrid, Spain
| | | | - Martin Rossor
- Institute of Neurology, University College London, London, UK
| | - Jesús Avila
- CIBERNED (Network Center for Biomedical Research in Neurodegenerative Diseases), ISCIII, Madrid, Spain
- Neurobiology Laboratory, Center for Molecular Biology “Severo Ochoa” CSIC-UAM, Madrid, Spain
| | - Angel Cedazo-Minguez
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
Deters KD, Nho K, Risacher SL, Kim S, Ramanan VK, Crane PK, Apostolova LG, Saykin AJ. Genome-wide association study of language performance in Alzheimer's disease. BRAIN AND LANGUAGE 2017; 172:22-29. [PMID: 28577822 PMCID: PMC5583024 DOI: 10.1016/j.bandl.2017.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 04/25/2017] [Accepted: 04/27/2017] [Indexed: 05/04/2023]
Abstract
Language impairment is common in prodromal stages of Alzheimer's disease (AD) and progresses over time. However, the genetic architecture underlying language performance is poorly understood. To identify novel genetic variants associated with language performance, we analyzed brain MRI and performed a genome-wide association study (GWAS) using a composite measure of language performance from the Alzheimer's Disease Neuroimaging Initiative (ADNI; n=1560). The language composite score was associated with brain atrophy on MRI in language and semantic areas. GWAS identified GLI3 (GLI family zinc finger 3) as significantly associated with language performance (p<5×10-8). Enrichment of GWAS association was identified in pathways related to nervous system development and glutamate receptor function and trafficking. Our results, which warrant further investigation in independent and larger cohorts, implicate GLI3, a developmental transcription factor involved in patterning brain structures, as a putative gene associated with language dysfunction in AD.
Collapse
Affiliation(s)
- Kacie D Deters
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA; Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kwangsik Nho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sungeun Kim
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Vijay K Ramanan
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Liana G Apostolova
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medicine, University of Washington, Seattle, WA, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medicine, University of Washington, Seattle, WA, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
23
|
Characterizing Gene and Protein Crosstalks in Subjects at Risk of Developing Alzheimer’s Disease: A New Computational Approach. Processes (Basel) 2017. [DOI: 10.3390/pr5030047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
24
|
Naj AC, Schellenberg GD. Genomic variants, genes, and pathways of Alzheimer's disease: An overview. Am J Med Genet B Neuropsychiatr Genet 2017; 174:5-26. [PMID: 27943641 PMCID: PMC6179157 DOI: 10.1002/ajmg.b.32499] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/19/2016] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) (MIM: 104300) is a highly heritable disease with great complexity in its genetic contributors, and represents the most common form of dementia. With the gradual aging of the world's population, leading to increased prevalence of AD, and the substantial cost of care for those afflicted, identifying the genetic causes of disease represents a critical effort in identifying therapeutic targets. Here we provide a comprehensive review of genomic studies of AD, from the earliest linkage studies identifying monogenic contributors to early-onset forms of AD to the genome-wide and rare variant association studies of recent years that are being used to characterize the mosaic of genetic contributors to late-onset AD (LOAD), and which have identified approximately ∼20 genes with common variants contributing to LOAD risk. In addition, we explore studies employing alternative approaches to identify genetic contributors to AD, including studies of AD-related phenotypes and multi-variant association studies such as pathway analyses. Finally, we introduce studies of next-generation sequencing, which have recently helped identify multiple low-frequency and rare variant contributors to AD, and discuss on-going efforts with next-generation sequencing studies to develop statistically well- powered and comprehensive genomic studies of AD. Through this review, we help uncover the many insights the genetics of AD have provided into the pathways and pathophysiology of AD. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Adam C Naj
- Department of Biostatistics and Epidemiology/Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
25
|
Horgusluoglu E, Nudelman K, Nho K, Saykin AJ. Adult neurogenesis and neurodegenerative diseases: A systems biology perspective. Am J Med Genet B Neuropsychiatr Genet 2017; 174:93-112. [PMID: 26879907 PMCID: PMC4987273 DOI: 10.1002/ajmg.b.32429] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/29/2016] [Indexed: 12/21/2022]
Abstract
New neurons are generated throughout adulthood in two regions of the brain, the olfactory bulb and dentate gyrus of the hippocampus, and are incorporated into the hippocampal network circuitry; disruption of this process has been postulated to contribute to neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. Known modulators of adult neurogenesis include signal transduction pathways, the vascular and immune systems, metabolic factors, and epigenetic regulation. Multiple intrinsic and extrinsic factors such as neurotrophic factors, transcription factors, and cell cycle regulators control neural stem cell proliferation, maintenance in the adult neurogenic niche, and differentiation into mature neurons; these factors act in networks of signaling molecules that influence each other during construction and maintenance of neural circuits, and in turn contribute to learning and memory. The immune system and vascular system are necessary for neuronal formation and neural stem cell fate determination. Inflammatory cytokines regulate adult neurogenesis in response to immune system activation, whereas the vasculature regulates the neural stem cell niche. Vasculature, immune/support cell populations (microglia/astrocytes), adhesion molecules, growth factors, and the extracellular matrix also provide a homing environment for neural stem cells. Epigenetic changes during hippocampal neurogenesis also impact memory and learning. Some genetic variations in neurogenesis related genes may play important roles in the alteration of neural stem cells differentiation into new born neurons during adult neurogenesis, with important therapeutic implications. In this review, we discuss mechanisms of and interactions between these modulators of adult neurogenesis, as well as implications for neurodegenerative disease and current therapeutic research. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Emrin Horgusluoglu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kelly Nudelman
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, Indiana
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Andrew J. Saykin
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, Indiana
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
26
|
Two-dimensional enrichment analysis for mining high-level imaging genetic associations. Brain Inform 2016; 4:27-37. [PMID: 27747820 PMCID: PMC5118198 DOI: 10.1007/s40708-016-0052-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/29/2016] [Indexed: 11/05/2022] Open
Abstract
Enrichment analysis has been widely applied in the genome-wide association studies, where gene sets corresponding to biological pathways are examined for significant associations with a phenotype to help increase statistical power and improve biological interpretation. In this work, we expand the scope of enrichment analysis into brain imaging genetics, an emerging field that studies how genetic variation influences brain structure and function measured by neuroimaging quantitative traits (QT). Given the high dimensionality of both imaging and genetic data, we propose to study Imaging Genetic Enrichment Analysis (IGEA), a new enrichment analysis paradigm that jointly considers meaningful gene sets (GS) and brain circuits (BC) and examines whether any given GS–BC pair is enriched in a list of gene–QT findings. Using gene expression data from Allen Human Brain Atlas and imaging genetics data from Alzheimer’s Disease Neuroimaging Initiative as test beds, we present an IGEA framework and conduct a proof-of-concept study. This empirical study identifies 25 significant high-level two-dimensional imaging genetics modules. Many of these modules are relevant to a variety of neurobiological pathways or neurodegenerative diseases, showing the promise of the proposal framework for providing insight into the mechanism of complex diseases.
Collapse
|
27
|
Nho K, Ramanan VK, Horgusluoglu E, Kim S, Inlow MH, Risacher SL, McDonald BC, Farlow MR, Foroud TM, Gao S, Callahan CM, Hendrie HC, Niculescu AB, Saykin AJ. Comprehensive gene- and pathway-based analysis of depressive symptoms in older adults. J Alzheimers Dis 2016; 45:1197-206. [PMID: 25690665 DOI: 10.3233/jad-148009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Depressive symptoms are common in older adults and are particularly prevalent in those with or at elevated risk for dementia. Although the heritability of depression is estimated to be substantial, single nucleotide polymorphism-based genome-wide association studies of depressive symptoms have had limited success. In this study, we performed genome-wide gene- and pathway-based analyses of depressive symptom burden. Study participants included non-Hispanic Caucasian subjects (n = 6,884) from three independent cohorts, the Alzheimer's Disease Neuroimaging Initiative (ADNI), the Health and Retirement Study (HRS), and the Indiana Memory and Aging Study (IMAS). Gene-based meta-analysis identified genome-wide significant associations (ANGPT4 and FAM110A, q-value = 0.026; GRM7-AS3 and LRFN5, q-value = 0.042). Pathway analysis revealed enrichment of association in 105 pathways, including multiple pathways related to ERK/MAPK signaling, GSK3 signaling in bipolar disorder, cell development, and immune activation and inflammation. GRM7, ANGPT4, and LRFN5 have been previously implicated in psychiatric disorders, including the GRM7 region displaying association with major depressive disorder. The ERK/MAPK signaling pathway is a known target of antidepressant drugs and has important roles in neuronal plasticity, and GSK3 signaling has been previously implicated in Alzheimer's disease and as a promising therapeutic target for depression. Our results warrant further investigation in independent and larger cohorts and add to the growing understanding of the genetics and pathobiology of depressive symptoms in aging and neurodegenerative disorders. In particular, the genes and pathways demonstrating association with depressive symptoms may be potential therapeutic targets for these symptoms in older adults.
Collapse
Affiliation(s)
- Kwangsik Nho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Vijay K Ramanan
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Emrin Horgusluoglu
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sungeun Kim
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mark H Inlow
- Department of Mathematics, Rose-Hulman Institute of Technology, Terre Haute, IN, USA
| | - Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brenna C McDonald
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Martin R Farlow
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tatiana M Foroud
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sujuan Gao
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Hugh C Hendrie
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexander B Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | |
Collapse
|
28
|
Novel loci and pathways significantly associated with longevity. Sci Rep 2016; 6:21243. [PMID: 26912274 PMCID: PMC4766491 DOI: 10.1038/srep21243] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/20/2016] [Indexed: 12/19/2022] Open
Abstract
Only two genome-wide significant loci associated with longevity have been identified so far, probably because of insufficient sample sizes of centenarians, whose genomes may harbor genetic variants associated with health and longevity. Here we report a genome-wide association study (GWAS) of Han Chinese with a sample size 2.7 times the largest previously published GWAS on centenarians. We identified 11 independent loci associated with longevity replicated in Southern-Northern regions of China, including two novel loci (rs2069837-IL6; rs2440012-ANKRD20A9P) with genome-wide significance and the rest with suggestive significance (P < 3.65 × 10(-5)). Eight independent SNPs overlapped across Han Chinese, European and U.S. populations, and APOE and 5q33.3 were replicated as longevity loci. Integrated analysis indicates four pathways (starch, sucrose and xenobiotic metabolism; immune response and inflammation; MAPK; calcium signaling) highly associated with longevity (P ≤ 0.006) in Han Chinese. The association with longevity of three of these four pathways (MAPK; immunity; calcium signaling) is supported by findings in other human cohorts. Our novel finding on the association of starch, sucrose and xenobiotic metabolism pathway with longevity is consistent with the previous results from Drosophilia. This study suggests protective mechanisms including immunity and nutrient metabolism and their interactions with environmental stress play key roles in human longevity.
Collapse
|
29
|
Watson CT, Roussos P, Garg P, Ho DJ, Azam N, Katsel PL, Haroutunian V, Sharp AJ. Genome-wide DNA methylation profiling in the superior temporal gyrus reveals epigenetic signatures associated with Alzheimer's disease. Genome Med 2016; 8:5. [PMID: 26803900 PMCID: PMC4719699 DOI: 10.1186/s13073-015-0258-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 12/29/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Alzheimer's disease affects ~13% of people in the United States 65 years and older, making it the most common neurodegenerative disorder. Recent work has identified roles for environmental, genetic, and epigenetic factors in Alzheimer's disease risk. METHODS We performed a genome-wide screen of DNA methylation using the Illumina Infinium HumanMethylation450 platform on bulk tissue samples from the superior temporal gyrus of patients with Alzheimer's disease and non-demented controls. We paired a sliding window approach with multivariate linear regression to characterize Alzheimer's disease-associated differentially methylated regions (DMRs). RESULTS We identified 479 DMRs exhibiting a strong bias for hypermethylated changes, a subset of which were independently associated with aging. DMR intervals overlapped 475 RefSeq genes enriched for gene ontology categories with relevant roles in neuron function and development, as well as cellular metabolism, and included genes reported in Alzheimer's disease genome-wide and epigenome-wide association studies. DMRs were enriched for brain-specific histone signatures and for binding motifs of transcription factors with roles in the brain and Alzheimer's disease pathology. Notably, hypermethylated DMRs preferentially overlapped poised promoter regions, marked by H3K27me3 and H3K4me3, previously shown to co-localize with aging-associated hypermethylation. Finally, the integration of DMR-associated single nucleotide polymorphisms with Alzheimer's disease genome-wide association study risk loci and brain expression quantitative trait loci highlights multiple potential DMRs of interest for further functional analysis. CONCLUSION We have characterized changes in DNA methylation in the superior temporal gyrus of patients with Alzheimer's disease, highlighting novel loci that facilitate better characterization of pathways and mechanisms underlying Alzheimer's disease pathogenesis, and improve our understanding of epigenetic signatures that may contribute to the development of disease.
Collapse
Affiliation(s)
- Corey T Watson
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panos Roussos
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education, and Clinical Center (VISN 3), James J. Peters VA Medical Center, Bronx, NY, USA
| | - Paras Garg
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel J Ho
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nidha Azam
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pavel L Katsel
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vahram Haroutunian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education, and Clinical Center (VISN 3), James J. Peters VA Medical Center, Bronx, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew J Sharp
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
30
|
Ramanan VK, Risacher SL, Nho K, Kim S, Shen L, McDonald BC, Yoder KK, Hutchins GD, West JD, Tallman EF, Gao S, Foroud TM, Farlow MR, De Jager PL, Bennett DA, Aisen PS, Petersen RC, Jack CR, Toga AW, Green RC, Jagust WJ, Weiner MW, Saykin AJ, for the Alzheimer’s Disease Neuroimaging Initiative (ADNI). GWAS of longitudinal amyloid accumulation on 18F-florbetapir PET in Alzheimer's disease implicates microglial activation gene IL1RAP. Brain 2015; 138:3076-88. [PMID: 26268530 PMCID: PMC4671479 DOI: 10.1093/brain/awv231] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/24/2015] [Indexed: 12/30/2022] Open
Abstract
Brain amyloid deposition is thought to be a seminal event in Alzheimer's disease. To identify genes influencing Alzheimer's disease pathogenesis, we performed a genome-wide association study of longitudinal change in brain amyloid burden measured by (18)F-florbetapir PET. A novel association with higher rates of amyloid accumulation independent from APOE (apolipoprotein E) ε4 status was identified in IL1RAP (interleukin-1 receptor accessory protein; rs12053868-G; P = 1.38 × 10(-9)) and was validated by deep sequencing. IL1RAP rs12053868-G carriers were more likely to progress from mild cognitive impairment to Alzheimer's disease and exhibited greater longitudinal temporal cortex atrophy on MRI. In independent cohorts rs12053868-G was associated with accelerated cognitive decline and lower cortical (11)C-PBR28 PET signal, a marker of microglial activation. These results suggest a crucial role of activated microglia in limiting amyloid accumulation and nominate the IL-1/IL1RAP pathway as a potential target for modulating this process.
Collapse
Affiliation(s)
- Vijay K Ramanan
- 1 Centre for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA,4 Indiana Alzheimer Disease Centre, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Shannon L. Risacher
- 1 Centre for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA,4 Indiana Alzheimer Disease Centre, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kwangsik Nho
- 1 Centre for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA,4 Indiana Alzheimer Disease Centre, Indiana University School of Medicine, Indianapolis, IN 46202, USA,5 Centre for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sungeun Kim
- 1 Centre for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA,4 Indiana Alzheimer Disease Centre, Indiana University School of Medicine, Indianapolis, IN 46202, USA,5 Centre for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Li Shen
- 1 Centre for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA,4 Indiana Alzheimer Disease Centre, Indiana University School of Medicine, Indianapolis, IN 46202, USA,5 Centre for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brenna C. McDonald
- 1 Centre for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA,4 Indiana Alzheimer Disease Centre, Indiana University School of Medicine, Indianapolis, IN 46202, USA,6 Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Karmen K. Yoder
- 1 Centre for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gary D. Hutchins
- 1 Centre for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - John D. West
- 1 Centre for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Eileen F. Tallman
- 1 Centre for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sujuan Gao
- 4 Indiana Alzheimer Disease Centre, Indiana University School of Medicine, Indianapolis, IN 46202, USA,7 Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Tatiana M. Foroud
- 1 Centre for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA,4 Indiana Alzheimer Disease Centre, Indiana University School of Medicine, Indianapolis, IN 46202, USA,5 Centre for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Martin R. Farlow
- 4 Indiana Alzheimer Disease Centre, Indiana University School of Medicine, Indianapolis, IN 46202, USA,6 Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Philip L. De Jager
- 8 Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Brigham and Women’s Hospital, Boston, MA 02115, USA,9 Departments of Neurology and Psychiatry, Harvard Medical School, Boston, MA 02115, USA,10 Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
| | - David A. Bennett
- 11 Rush Alzheimer’s Disease Centre, Rush University Medical Centre, Chicago, IL 60612, USA
| | - Paul S. Aisen
- 12 University of Southern California Alzheimer's Therapeutic Research Institute, San Diego, CA 92121, USA
| | - Ronald C. Petersen
- 13 Department of Neurology, Mayo Clinic Minnesota, Rochester, MN 55905, USA
| | - Clifford R. Jack
- 14 Department of Radiology, Mayo Clinic Minnesota, Rochester, MN 55905, USA
| | - Arthur W. Toga
- 15 Laboratory of NeuroImaging, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Robert C. Green
- 16 Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - William J. Jagust
- 17 Department of Neurology, University of California, Berkeley, CA 94720, USA
| | - Michael W. Weiner
- 18 Departments of Radiology, Medicine, and Psychiatry, University of California-San Francisco, San Francisco, CA 94143, USA,19 Department of Veterans Affairs Medical Centre, San Francisco, CA 94121, USA
| | - Andrew J. Saykin
- 1 Centre for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA,4 Indiana Alzheimer Disease Centre, Indiana University School of Medicine, Indianapolis, IN 46202, USA,5 Centre for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | |
Collapse
|
31
|
Heck A, Fastenrath M, Coynel D, Auschra B, Bickel H, Freytag V, Gschwind L, Hartmann F, Jessen F, Kaduszkiewicz H, Maier W, Milnik A, Pentzek M, Riedel-Heller SG, Spalek K, Vogler C, Wagner M, Weyerer S, Wolfsgruber S, de Quervain DF, Papassotiropoulos A. Genetic Analysis of Association Between Calcium Signaling and Hippocampal Activation, Memory Performance in the Young and Old, and Risk for Sporadic Alzheimer Disease. JAMA Psychiatry 2015; 72:1029-36. [PMID: 26332608 PMCID: PMC5291164 DOI: 10.1001/jamapsychiatry.2015.1309] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
IMPORTANCE Human episodic memory performance is linked to the function of specific brain regions, including the hippocampus; declines as a result of increasing age; and is markedly disturbed in Alzheimer disease (AD), an age-associated neurodegenerative disorder that primarily affects the hippocampus. Exploring the molecular underpinnings of human episodic memory is key to the understanding of hippocampus-dependent cognitive physiology and pathophysiology. OBJECTIVE To determine whether biologically defined groups of genes are enriched in episodic memory performance across age, memory encoding-related brain activity, and AD. DESIGN, SETTING, AND PARTICIPANTS In this multicenter collaborative study, which began in August 2008 and is ongoing, gene set enrichment analysis was done by using primary and meta-analysis data from 57 968 participants. The Swiss cohorts consisted of 3043 healthy young adults assessed for episodic memory performance. In a subgroup (n = 1119) of one of these cohorts, functional magnetic resonance imaging was used to identify gene set-dependent differences in brain activity related to episodic memory. The German Study on Aging, Cognition, and Dementia in Primary Care Patients cohort consisted of 763 elderly participants without dementia who were assessed for episodic memory performance. The International Genomics of Alzheimer's Project case-control sample consisted of 54 162 participants (17 008 patients with sporadic AD and 37 154 control participants). Analyses were conducted between January 2014 and June 2015. Gene set enrichment analysis in all samples was done using genome-wide single-nucleotide polymorphism data. MAIN OUTCOMES AND MEASURES Episodic memory performance in the Swiss cohort and German Study on Aging, Cognition, and Dementia in Primary Care Patients cohort was quantified by picture and verbal delayed free recall tasks. In the functional magnetic resonance imaging experiment, activation of the hippocampus during encoding of pictures served as the phenotype of interest. In the International Genomics of Alzheimer's Project sample, diagnosis of sporadic AD served as the phenotype of interest. RESULTS In the discovery sample, we detected significant enrichment for genes constituting the calcium signaling pathway, especially those related to the elevation of cytosolic calcium (P = 2 × 10-4). This enrichment was replicated in 2 additional samples of healthy young individuals (P = .02 and .04, respectively) and a sample of healthy elderly participants (P = .004). Hippocampal activation (P = 4 × 10-4) and the risk for sporadic AD (P = .01) were also significantly enriched for genes related to the elevation of cytosolic calcium. CONCLUSIONS AND RELEVANCE By detecting consistent significant enrichment in independent cohorts of young and elderly participants, this study identified that calcium signaling plays a central role in hippocampus-dependent human memory processes in cognitive health and disease, contributing to the understanding and potential treatment of hippocampus-dependent cognitive pathology.
Collapse
Affiliation(s)
- Angela Heck
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, CH-4055 Basel, Switzerland (Dr Heck, Dr Fastenrath, Dr Coynel, Mrs Auschra, Mrs Freytag, Mr Gschwind, Dr Hartmann, Dr Milnik, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Psychiatric University Clinics, University of Basel, Basel, Switzerland (Dr Heck, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Division of Cognitive Neuroscience, Department of Psychology, University of Basel, Basel, Switzerland (Dr Fastenrath, Dr Coynel, Dr Spalek, Dr de Quervain), Department of Psychiatry, Technical University of Munich, Munich, Germany (Dr Bickel), Clinic for Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, Germany (Dr Jessen), Department of Psychiatry, University of Bonn, Bonn, Germany (Dr Maier, Dr Wagner, Mr Wolfsgruber), German Center for Neurodegenerative Diseases, Bonn, Germany (Dr Jessen, Dr Maier, Dr Wagner, Mr Wolfsgruber), Department of Primary Medical Care, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg (Dr Hanna Kaduszkiewicz), Germany Institute of General Practice, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany (Dr Pentzek), Institute of Social Medicine, Occupational Health and Public Health, Medical Faculty, University of Leipzig, Leipzig, Germany (Dr Riedel-Heller), Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany (Dr Weyerer), Department Biozentrum, Life Sciences Training Facility, University of Basel, Basel, Switzerland (Dr Papassotiropoulos)
| | - Matthias Fastenrath
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, CH-4055 Basel, Switzerland (Dr Heck, Dr Fastenrath, Dr Coynel, Mrs Auschra, Mrs Freytag, Mr Gschwind, Dr Hartmann, Dr Milnik, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Psychiatric University Clinics, University of Basel, Basel, Switzerland (Dr Heck, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Division of Cognitive Neuroscience, Department of Psychology, University of Basel, Basel, Switzerland (Dr Fastenrath, Dr Coynel, Dr Spalek, Dr de Quervain), Department of Psychiatry, Technical University of Munich, Munich, Germany (Dr Bickel), Clinic for Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, Germany (Dr Jessen), Department of Psychiatry, University of Bonn, Bonn, Germany (Dr Maier, Dr Wagner, Mr Wolfsgruber), German Center for Neurodegenerative Diseases, Bonn, Germany (Dr Jessen, Dr Maier, Dr Wagner, Mr Wolfsgruber), Department of Primary Medical Care, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg (Dr Hanna Kaduszkiewicz), Germany Institute of General Practice, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany (Dr Pentzek), Institute of Social Medicine, Occupational Health and Public Health, Medical Faculty, University of Leipzig, Leipzig, Germany (Dr Riedel-Heller), Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany (Dr Weyerer), Department Biozentrum, Life Sciences Training Facility, University of Basel, Basel, Switzerland (Dr Papassotiropoulos)
| | - David Coynel
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, CH-4055 Basel, Switzerland (Dr Heck, Dr Fastenrath, Dr Coynel, Mrs Auschra, Mrs Freytag, Mr Gschwind, Dr Hartmann, Dr Milnik, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Psychiatric University Clinics, University of Basel, Basel, Switzerland (Dr Heck, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Division of Cognitive Neuroscience, Department of Psychology, University of Basel, Basel, Switzerland (Dr Fastenrath, Dr Coynel, Dr Spalek, Dr de Quervain), Department of Psychiatry, Technical University of Munich, Munich, Germany (Dr Bickel), Clinic for Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, Germany (Dr Jessen), Department of Psychiatry, University of Bonn, Bonn, Germany (Dr Maier, Dr Wagner, Mr Wolfsgruber), German Center for Neurodegenerative Diseases, Bonn, Germany (Dr Jessen, Dr Maier, Dr Wagner, Mr Wolfsgruber), Department of Primary Medical Care, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg (Dr Hanna Kaduszkiewicz), Germany Institute of General Practice, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany (Dr Pentzek), Institute of Social Medicine, Occupational Health and Public Health, Medical Faculty, University of Leipzig, Leipzig, Germany (Dr Riedel-Heller), Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany (Dr Weyerer), Department Biozentrum, Life Sciences Training Facility, University of Basel, Basel, Switzerland (Dr Papassotiropoulos)
| | - Bianca Auschra
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, CH-4055 Basel, Switzerland (Dr Heck, Dr Fastenrath, Dr Coynel, Mrs Auschra, Mrs Freytag, Mr Gschwind, Dr Hartmann, Dr Milnik, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Psychiatric University Clinics, University of Basel, Basel, Switzerland (Dr Heck, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Division of Cognitive Neuroscience, Department of Psychology, University of Basel, Basel, Switzerland (Dr Fastenrath, Dr Coynel, Dr Spalek, Dr de Quervain), Department of Psychiatry, Technical University of Munich, Munich, Germany (Dr Bickel), Clinic for Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, Germany (Dr Jessen), Department of Psychiatry, University of Bonn, Bonn, Germany (Dr Maier, Dr Wagner, Mr Wolfsgruber), German Center for Neurodegenerative Diseases, Bonn, Germany (Dr Jessen, Dr Maier, Dr Wagner, Mr Wolfsgruber), Department of Primary Medical Care, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg (Dr Hanna Kaduszkiewicz), Germany Institute of General Practice, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany (Dr Pentzek), Institute of Social Medicine, Occupational Health and Public Health, Medical Faculty, University of Leipzig, Leipzig, Germany (Dr Riedel-Heller), Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany (Dr Weyerer), Department Biozentrum, Life Sciences Training Facility, University of Basel, Basel, Switzerland (Dr Papassotiropoulos)
| | - Horst Bickel
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, CH-4055 Basel, Switzerland (Dr Heck, Dr Fastenrath, Dr Coynel, Mrs Auschra, Mrs Freytag, Mr Gschwind, Dr Hartmann, Dr Milnik, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Psychiatric University Clinics, University of Basel, Basel, Switzerland (Dr Heck, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Division of Cognitive Neuroscience, Department of Psychology, University of Basel, Basel, Switzerland (Dr Fastenrath, Dr Coynel, Dr Spalek, Dr de Quervain), Department of Psychiatry, Technical University of Munich, Munich, Germany (Dr Bickel), Clinic for Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, Germany (Dr Jessen), Department of Psychiatry, University of Bonn, Bonn, Germany (Dr Maier, Dr Wagner, Mr Wolfsgruber), German Center for Neurodegenerative Diseases, Bonn, Germany (Dr Jessen, Dr Maier, Dr Wagner, Mr Wolfsgruber), Department of Primary Medical Care, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg (Dr Hanna Kaduszkiewicz), Germany Institute of General Practice, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany (Dr Pentzek), Institute of Social Medicine, Occupational Health and Public Health, Medical Faculty, University of Leipzig, Leipzig, Germany (Dr Riedel-Heller), Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany (Dr Weyerer), Department Biozentrum, Life Sciences Training Facility, University of Basel, Basel, Switzerland (Dr Papassotiropoulos)
| | - Virginie Freytag
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, CH-4055 Basel, Switzerland (Dr Heck, Dr Fastenrath, Dr Coynel, Mrs Auschra, Mrs Freytag, Mr Gschwind, Dr Hartmann, Dr Milnik, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Psychiatric University Clinics, University of Basel, Basel, Switzerland (Dr Heck, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Division of Cognitive Neuroscience, Department of Psychology, University of Basel, Basel, Switzerland (Dr Fastenrath, Dr Coynel, Dr Spalek, Dr de Quervain), Department of Psychiatry, Technical University of Munich, Munich, Germany (Dr Bickel), Clinic for Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, Germany (Dr Jessen), Department of Psychiatry, University of Bonn, Bonn, Germany (Dr Maier, Dr Wagner, Mr Wolfsgruber), German Center for Neurodegenerative Diseases, Bonn, Germany (Dr Jessen, Dr Maier, Dr Wagner, Mr Wolfsgruber), Department of Primary Medical Care, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg (Dr Hanna Kaduszkiewicz), Germany Institute of General Practice, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany (Dr Pentzek), Institute of Social Medicine, Occupational Health and Public Health, Medical Faculty, University of Leipzig, Leipzig, Germany (Dr Riedel-Heller), Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany (Dr Weyerer), Department Biozentrum, Life Sciences Training Facility, University of Basel, Basel, Switzerland (Dr Papassotiropoulos)
| | - Leo Gschwind
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, CH-4055 Basel, Switzerland (Dr Heck, Dr Fastenrath, Dr Coynel, Mrs Auschra, Mrs Freytag, Mr Gschwind, Dr Hartmann, Dr Milnik, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Psychiatric University Clinics, University of Basel, Basel, Switzerland (Dr Heck, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Division of Cognitive Neuroscience, Department of Psychology, University of Basel, Basel, Switzerland (Dr Fastenrath, Dr Coynel, Dr Spalek, Dr de Quervain), Department of Psychiatry, Technical University of Munich, Munich, Germany (Dr Bickel), Clinic for Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, Germany (Dr Jessen), Department of Psychiatry, University of Bonn, Bonn, Germany (Dr Maier, Dr Wagner, Mr Wolfsgruber), German Center for Neurodegenerative Diseases, Bonn, Germany (Dr Jessen, Dr Maier, Dr Wagner, Mr Wolfsgruber), Department of Primary Medical Care, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg (Dr Hanna Kaduszkiewicz), Germany Institute of General Practice, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany (Dr Pentzek), Institute of Social Medicine, Occupational Health and Public Health, Medical Faculty, University of Leipzig, Leipzig, Germany (Dr Riedel-Heller), Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany (Dr Weyerer), Department Biozentrum, Life Sciences Training Facility, University of Basel, Basel, Switzerland (Dr Papassotiropoulos)
| | - Francina Hartmann
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, CH-4055 Basel, Switzerland (Dr Heck, Dr Fastenrath, Dr Coynel, Mrs Auschra, Mrs Freytag, Mr Gschwind, Dr Hartmann, Dr Milnik, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Psychiatric University Clinics, University of Basel, Basel, Switzerland (Dr Heck, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Division of Cognitive Neuroscience, Department of Psychology, University of Basel, Basel, Switzerland (Dr Fastenrath, Dr Coynel, Dr Spalek, Dr de Quervain), Department of Psychiatry, Technical University of Munich, Munich, Germany (Dr Bickel), Clinic for Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, Germany (Dr Jessen), Department of Psychiatry, University of Bonn, Bonn, Germany (Dr Maier, Dr Wagner, Mr Wolfsgruber), German Center for Neurodegenerative Diseases, Bonn, Germany (Dr Jessen, Dr Maier, Dr Wagner, Mr Wolfsgruber), Department of Primary Medical Care, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg (Dr Hanna Kaduszkiewicz), Germany Institute of General Practice, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany (Dr Pentzek), Institute of Social Medicine, Occupational Health and Public Health, Medical Faculty, University of Leipzig, Leipzig, Germany (Dr Riedel-Heller), Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany (Dr Weyerer), Department Biozentrum, Life Sciences Training Facility, University of Basel, Basel, Switzerland (Dr Papassotiropoulos)
| | - Frank Jessen
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, CH-4055 Basel, Switzerland (Dr Heck, Dr Fastenrath, Dr Coynel, Mrs Auschra, Mrs Freytag, Mr Gschwind, Dr Hartmann, Dr Milnik, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Psychiatric University Clinics, University of Basel, Basel, Switzerland (Dr Heck, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Division of Cognitive Neuroscience, Department of Psychology, University of Basel, Basel, Switzerland (Dr Fastenrath, Dr Coynel, Dr Spalek, Dr de Quervain), Department of Psychiatry, Technical University of Munich, Munich, Germany (Dr Bickel), Clinic for Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, Germany (Dr Jessen), Department of Psychiatry, University of Bonn, Bonn, Germany (Dr Maier, Dr Wagner, Mr Wolfsgruber), German Center for Neurodegenerative Diseases, Bonn, Germany (Dr Jessen, Dr Maier, Dr Wagner, Mr Wolfsgruber), Department of Primary Medical Care, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg (Dr Hanna Kaduszkiewicz), Germany Institute of General Practice, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany (Dr Pentzek), Institute of Social Medicine, Occupational Health and Public Health, Medical Faculty, University of Leipzig, Leipzig, Germany (Dr Riedel-Heller), Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany (Dr Weyerer), Department Biozentrum, Life Sciences Training Facility, University of Basel, Basel, Switzerland (Dr Papassotiropoulos)
| | - Hanna Kaduszkiewicz
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, CH-4055 Basel, Switzerland (Dr Heck, Dr Fastenrath, Dr Coynel, Mrs Auschra, Mrs Freytag, Mr Gschwind, Dr Hartmann, Dr Milnik, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Psychiatric University Clinics, University of Basel, Basel, Switzerland (Dr Heck, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Division of Cognitive Neuroscience, Department of Psychology, University of Basel, Basel, Switzerland (Dr Fastenrath, Dr Coynel, Dr Spalek, Dr de Quervain), Department of Psychiatry, Technical University of Munich, Munich, Germany (Dr Bickel), Clinic for Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, Germany (Dr Jessen), Department of Psychiatry, University of Bonn, Bonn, Germany (Dr Maier, Dr Wagner, Mr Wolfsgruber), German Center for Neurodegenerative Diseases, Bonn, Germany (Dr Jessen, Dr Maier, Dr Wagner, Mr Wolfsgruber), Department of Primary Medical Care, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg (Dr Hanna Kaduszkiewicz), Germany Institute of General Practice, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany (Dr Pentzek), Institute of Social Medicine, Occupational Health and Public Health, Medical Faculty, University of Leipzig, Leipzig, Germany (Dr Riedel-Heller), Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany (Dr Weyerer), Department Biozentrum, Life Sciences Training Facility, University of Basel, Basel, Switzerland (Dr Papassotiropoulos)
| | - Wolfgang Maier
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, CH-4055 Basel, Switzerland (Dr Heck, Dr Fastenrath, Dr Coynel, Mrs Auschra, Mrs Freytag, Mr Gschwind, Dr Hartmann, Dr Milnik, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Psychiatric University Clinics, University of Basel, Basel, Switzerland (Dr Heck, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Division of Cognitive Neuroscience, Department of Psychology, University of Basel, Basel, Switzerland (Dr Fastenrath, Dr Coynel, Dr Spalek, Dr de Quervain), Department of Psychiatry, Technical University of Munich, Munich, Germany (Dr Bickel), Clinic for Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, Germany (Dr Jessen), Department of Psychiatry, University of Bonn, Bonn, Germany (Dr Maier, Dr Wagner, Mr Wolfsgruber), German Center for Neurodegenerative Diseases, Bonn, Germany (Dr Jessen, Dr Maier, Dr Wagner, Mr Wolfsgruber), Department of Primary Medical Care, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg (Dr Hanna Kaduszkiewicz), Germany Institute of General Practice, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany (Dr Pentzek), Institute of Social Medicine, Occupational Health and Public Health, Medical Faculty, University of Leipzig, Leipzig, Germany (Dr Riedel-Heller), Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany (Dr Weyerer), Department Biozentrum, Life Sciences Training Facility, University of Basel, Basel, Switzerland (Dr Papassotiropoulos)
| | - Annette Milnik
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, CH-4055 Basel, Switzerland (Dr Heck, Dr Fastenrath, Dr Coynel, Mrs Auschra, Mrs Freytag, Mr Gschwind, Dr Hartmann, Dr Milnik, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Psychiatric University Clinics, University of Basel, Basel, Switzerland (Dr Heck, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Division of Cognitive Neuroscience, Department of Psychology, University of Basel, Basel, Switzerland (Dr Fastenrath, Dr Coynel, Dr Spalek, Dr de Quervain), Department of Psychiatry, Technical University of Munich, Munich, Germany (Dr Bickel), Clinic for Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, Germany (Dr Jessen), Department of Psychiatry, University of Bonn, Bonn, Germany (Dr Maier, Dr Wagner, Mr Wolfsgruber), German Center for Neurodegenerative Diseases, Bonn, Germany (Dr Jessen, Dr Maier, Dr Wagner, Mr Wolfsgruber), Department of Primary Medical Care, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg (Dr Hanna Kaduszkiewicz), Germany Institute of General Practice, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany (Dr Pentzek), Institute of Social Medicine, Occupational Health and Public Health, Medical Faculty, University of Leipzig, Leipzig, Germany (Dr Riedel-Heller), Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany (Dr Weyerer), Department Biozentrum, Life Sciences Training Facility, University of Basel, Basel, Switzerland (Dr Papassotiropoulos)
| | - Michael Pentzek
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, CH-4055 Basel, Switzerland (Dr Heck, Dr Fastenrath, Dr Coynel, Mrs Auschra, Mrs Freytag, Mr Gschwind, Dr Hartmann, Dr Milnik, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Psychiatric University Clinics, University of Basel, Basel, Switzerland (Dr Heck, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Division of Cognitive Neuroscience, Department of Psychology, University of Basel, Basel, Switzerland (Dr Fastenrath, Dr Coynel, Dr Spalek, Dr de Quervain), Department of Psychiatry, Technical University of Munich, Munich, Germany (Dr Bickel), Clinic for Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, Germany (Dr Jessen), Department of Psychiatry, University of Bonn, Bonn, Germany (Dr Maier, Dr Wagner, Mr Wolfsgruber), German Center for Neurodegenerative Diseases, Bonn, Germany (Dr Jessen, Dr Maier, Dr Wagner, Mr Wolfsgruber), Department of Primary Medical Care, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg (Dr Hanna Kaduszkiewicz), Germany Institute of General Practice, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany (Dr Pentzek), Institute of Social Medicine, Occupational Health and Public Health, Medical Faculty, University of Leipzig, Leipzig, Germany (Dr Riedel-Heller), Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany (Dr Weyerer), Department Biozentrum, Life Sciences Training Facility, University of Basel, Basel, Switzerland (Dr Papassotiropoulos)
| | - Steffi G. Riedel-Heller
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, CH-4055 Basel, Switzerland (Dr Heck, Dr Fastenrath, Dr Coynel, Mrs Auschra, Mrs Freytag, Mr Gschwind, Dr Hartmann, Dr Milnik, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Psychiatric University Clinics, University of Basel, Basel, Switzerland (Dr Heck, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Division of Cognitive Neuroscience, Department of Psychology, University of Basel, Basel, Switzerland (Dr Fastenrath, Dr Coynel, Dr Spalek, Dr de Quervain), Department of Psychiatry, Technical University of Munich, Munich, Germany (Dr Bickel), Clinic for Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, Germany (Dr Jessen), Department of Psychiatry, University of Bonn, Bonn, Germany (Dr Maier, Dr Wagner, Mr Wolfsgruber), German Center for Neurodegenerative Diseases, Bonn, Germany (Dr Jessen, Dr Maier, Dr Wagner, Mr Wolfsgruber), Department of Primary Medical Care, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg (Dr Hanna Kaduszkiewicz), Germany Institute of General Practice, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany (Dr Pentzek), Institute of Social Medicine, Occupational Health and Public Health, Medical Faculty, University of Leipzig, Leipzig, Germany (Dr Riedel-Heller), Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany (Dr Weyerer), Department Biozentrum, Life Sciences Training Facility, University of Basel, Basel, Switzerland (Dr Papassotiropoulos)
| | - Klara Spalek
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, CH-4055 Basel, Switzerland (Dr Heck, Dr Fastenrath, Dr Coynel, Mrs Auschra, Mrs Freytag, Mr Gschwind, Dr Hartmann, Dr Milnik, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Psychiatric University Clinics, University of Basel, Basel, Switzerland (Dr Heck, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Division of Cognitive Neuroscience, Department of Psychology, University of Basel, Basel, Switzerland (Dr Fastenrath, Dr Coynel, Dr Spalek, Dr de Quervain), Department of Psychiatry, Technical University of Munich, Munich, Germany (Dr Bickel), Clinic for Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, Germany (Dr Jessen), Department of Psychiatry, University of Bonn, Bonn, Germany (Dr Maier, Dr Wagner, Mr Wolfsgruber), German Center for Neurodegenerative Diseases, Bonn, Germany (Dr Jessen, Dr Maier, Dr Wagner, Mr Wolfsgruber), Department of Primary Medical Care, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg (Dr Hanna Kaduszkiewicz), Germany Institute of General Practice, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany (Dr Pentzek), Institute of Social Medicine, Occupational Health and Public Health, Medical Faculty, University of Leipzig, Leipzig, Germany (Dr Riedel-Heller), Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany (Dr Weyerer), Department Biozentrum, Life Sciences Training Facility, University of Basel, Basel, Switzerland (Dr Papassotiropoulos)
| | - Christian Vogler
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, CH-4055 Basel, Switzerland (Dr Heck, Dr Fastenrath, Dr Coynel, Mrs Auschra, Mrs Freytag, Mr Gschwind, Dr Hartmann, Dr Milnik, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Psychiatric University Clinics, University of Basel, Basel, Switzerland (Dr Heck, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Division of Cognitive Neuroscience, Department of Psychology, University of Basel, Basel, Switzerland (Dr Fastenrath, Dr Coynel, Dr Spalek, Dr de Quervain), Department of Psychiatry, Technical University of Munich, Munich, Germany (Dr Bickel), Clinic for Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, Germany (Dr Jessen), Department of Psychiatry, University of Bonn, Bonn, Germany (Dr Maier, Dr Wagner, Mr Wolfsgruber), German Center for Neurodegenerative Diseases, Bonn, Germany (Dr Jessen, Dr Maier, Dr Wagner, Mr Wolfsgruber), Department of Primary Medical Care, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg (Dr Hanna Kaduszkiewicz), Germany Institute of General Practice, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany (Dr Pentzek), Institute of Social Medicine, Occupational Health and Public Health, Medical Faculty, University of Leipzig, Leipzig, Germany (Dr Riedel-Heller), Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany (Dr Weyerer), Department Biozentrum, Life Sciences Training Facility, University of Basel, Basel, Switzerland (Dr Papassotiropoulos)
| | - Michael Wagner
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, CH-4055 Basel, Switzerland (Dr Heck, Dr Fastenrath, Dr Coynel, Mrs Auschra, Mrs Freytag, Mr Gschwind, Dr Hartmann, Dr Milnik, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Psychiatric University Clinics, University of Basel, Basel, Switzerland (Dr Heck, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Division of Cognitive Neuroscience, Department of Psychology, University of Basel, Basel, Switzerland (Dr Fastenrath, Dr Coynel, Dr Spalek, Dr de Quervain), Department of Psychiatry, Technical University of Munich, Munich, Germany (Dr Bickel), Clinic for Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, Germany (Dr Jessen), Department of Psychiatry, University of Bonn, Bonn, Germany (Dr Maier, Dr Wagner, Mr Wolfsgruber), German Center for Neurodegenerative Diseases, Bonn, Germany (Dr Jessen, Dr Maier, Dr Wagner, Mr Wolfsgruber), Department of Primary Medical Care, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg (Dr Hanna Kaduszkiewicz), Germany Institute of General Practice, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany (Dr Pentzek), Institute of Social Medicine, Occupational Health and Public Health, Medical Faculty, University of Leipzig, Leipzig, Germany (Dr Riedel-Heller), Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany (Dr Weyerer), Department Biozentrum, Life Sciences Training Facility, University of Basel, Basel, Switzerland (Dr Papassotiropoulos)
| | - Siegfried Weyerer
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, CH-4055 Basel, Switzerland (Dr Heck, Dr Fastenrath, Dr Coynel, Mrs Auschra, Mrs Freytag, Mr Gschwind, Dr Hartmann, Dr Milnik, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Psychiatric University Clinics, University of Basel, Basel, Switzerland (Dr Heck, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Division of Cognitive Neuroscience, Department of Psychology, University of Basel, Basel, Switzerland (Dr Fastenrath, Dr Coynel, Dr Spalek, Dr de Quervain), Department of Psychiatry, Technical University of Munich, Munich, Germany (Dr Bickel), Clinic for Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, Germany (Dr Jessen), Department of Psychiatry, University of Bonn, Bonn, Germany (Dr Maier, Dr Wagner, Mr Wolfsgruber), German Center for Neurodegenerative Diseases, Bonn, Germany (Dr Jessen, Dr Maier, Dr Wagner, Mr Wolfsgruber), Department of Primary Medical Care, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg (Dr Hanna Kaduszkiewicz), Germany Institute of General Practice, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany (Dr Pentzek), Institute of Social Medicine, Occupational Health and Public Health, Medical Faculty, University of Leipzig, Leipzig, Germany (Dr Riedel-Heller), Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany (Dr Weyerer), Department Biozentrum, Life Sciences Training Facility, University of Basel, Basel, Switzerland (Dr Papassotiropoulos)
| | - Steffen Wolfsgruber
- Division of Molecular Neuroscience, Department of Psychology, University of Basel, CH-4055 Basel, Switzerland (Dr Heck, Dr Fastenrath, Dr Coynel, Mrs Auschra, Mrs Freytag, Mr Gschwind, Dr Hartmann, Dr Milnik, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Psychiatric University Clinics, University of Basel, Basel, Switzerland (Dr Heck, Dr Vogler, Dr de Quervain, Dr Papassotiropoulos), Division of Cognitive Neuroscience, Department of Psychology, University of Basel, Basel, Switzerland (Dr Fastenrath, Dr Coynel, Dr Spalek, Dr de Quervain), Department of Psychiatry, Technical University of Munich, Munich, Germany (Dr Bickel), Clinic for Psychiatry and Psychotherapy, University Hospital Cologne, Cologne, Germany (Dr Jessen), Department of Psychiatry, University of Bonn, Bonn, Germany (Dr Maier, Dr Wagner, Mr Wolfsgruber), German Center for Neurodegenerative Diseases, Bonn, Germany (Dr Jessen, Dr Maier, Dr Wagner, Mr Wolfsgruber), Department of Primary Medical Care, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg (Dr Hanna Kaduszkiewicz), Germany Institute of General Practice, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany (Dr Pentzek), Institute of Social Medicine, Occupational Health and Public Health, Medical Faculty, University of Leipzig, Leipzig, Germany (Dr Riedel-Heller), Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany (Dr Weyerer), Department Biozentrum, Life Sciences Training Facility, University of Basel, Basel, Switzerland (Dr Papassotiropoulos)
| | | | | |
Collapse
|
32
|
Ramanan VK, Nho K, Shen L, Risacher SL, Kim S, McDonald BC, Farlow MR, Foroud TM, Gao S, Soininen H, Kłoszewska I, Mecocci P, Tsolaki M, Vellas B, Lovestone S, Aisen PS, Petersen RC, Jack CR, Shaw LM, Trojanowski JQ, Weiner MW, Green RC, Toga AW, De Jager PL, Yu L, Bennett DA, Saykin AJ, the Alzheimer's Disease Neuroimaging Initiative (ADNI). FASTKD2 is associated with memory and hippocampal structure in older adults. Mol Psychiatry 2015; 20:1197-204. [PMID: 25385369 PMCID: PMC4427556 DOI: 10.1038/mp.2014.142] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 09/05/2014] [Accepted: 09/10/2014] [Indexed: 12/15/2022]
Abstract
Memory impairment is the cardinal early feature of Alzheimer's disease, a highly prevalent disorder whose causes remain only partially understood. To identify novel genetic predictors, we used an integrative genomics approach to perform the largest study to date of human memory (n=14 781). Using a genome-wide screen, we discovered a novel association of a polymorphism in the pro-apoptotic gene FASTKD2 (fas-activated serine/threonine kinase domains 2; rs7594645-G) with better memory performance and replicated this finding in independent samples. Consistent with a neuroprotective effect, rs7594645-G carriers exhibited increased hippocampal volume and gray matter density and decreased cerebrospinal fluid levels of apoptotic mediators. The MTOR (mechanistic target of rapamycin) gene and pathways related to endocytosis, cholinergic neurotransmission, epidermal growth factor receptor signaling and immune regulation, among others, also displayed association with memory. These findings nominate FASTKD2 as a target for modulating neurodegeneration and suggest potential mechanisms for therapies to combat memory loss in normal cognitive aging and dementia.
Collapse
Affiliation(s)
- Vijay K Ramanan
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA,Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kwangsik Nho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Li Shen
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon L. Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sungeun Kim
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brenna C. McDonald
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA,Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA,Indiana Alzheimer's Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Martin R. Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA,Indiana Alzheimer's Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tatiana M. Foroud
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA,Indiana Alzheimer's Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sujuan Gao
- Indiana Alzheimer's Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA,Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hilkka Soininen
- On behalf of the AddNeuroMed Consortium,Department of Neurology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Iwona Kłoszewska
- On behalf of the AddNeuroMed Consortium,Medical University of Lodz, Lodz, Poland
| | - Patrizia Mecocci
- On behalf of the AddNeuroMed Consortium,Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Magda Tsolaki
- On behalf of the AddNeuroMed Consortium,3rd Department of Neurology, Aristotle University, Thessaloniki, Greece
| | - Bruno Vellas
- On behalf of the AddNeuroMed Consortium,INSERM U 558, University of Toulouse, Toulouse, France
| | - Simon Lovestone
- On behalf of the AddNeuroMed Consortium,University of Oxford, Department of Psychiatry, Oxford, UK
| | - Paul S. Aisen
- Department of Neuroscience, University of California-San Diego, San Diego, CA, USA
| | | | - Clifford R. Jack
- Department of Radiology, Mayo Clinic Minnesota, Rochester, MN, USA
| | - Leslie M. Shaw
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA,Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - John Q. Trojanowski
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA,Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Michael W. Weiner
- Departments of Radiology, Medicine, and Psychiatry, University of California-San Francisco, San Francisco, CA, USA,Department of Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Robert C. Green
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Arthur W. Toga
- Laboratory of Neuro Imaging, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Philip L. De Jager
- Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, Boston, MA, USA,Harvard Medical School, Boston, MA, USA,Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - David A. Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Andrew J. Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA,Indiana Alzheimer's Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA,Correspondence to: Dr. Andrew J. Saykin, IU Health Neuroscience Center, Suite 4100 Indiana University School of Medicine 355 West 16th Street, Indianapolis, IN 46202, USA , Phone (317)963-7501, Fax (317)963-7547
| | | |
Collapse
|
33
|
Bao X, Liu G, Jiang Y, Jiang Q, Liao M, Feng R, Zhang L, Ma G, Zhang S, Chen Z, Zhao B, Wang R, Li K, Liu G. Cell adhesion molecule pathway genes are regulated by cis-regulatory SNPs and show significantly altered expression in Alzheimer's disease brains. Neurobiol Aging 2015; 36:2904.e1-7. [PMID: 26149918 DOI: 10.1016/j.neurobiolaging.2015.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 04/27/2015] [Accepted: 06/04/2015] [Indexed: 01/21/2023]
|
34
|
Yao X, Yan J, Kim S, Nho K, Risacher SL, Inlow M, Moore JH, Saykin AJ, Shen L, for the Alzheimer’s Disease Neuroimaging Initiative **. Two-dimensional Enrichment Analysis for Mining High-level Imaging Genetic Associations. BRAIN INFORMATICS AND HEALTH : 8TH INTERNATIONAL CONFERENCE, BIH 2015, LONDON, UK, AUGUST 30-SEPTEMBER 2, 2015 : PROCEEDINGS. BIH (CONFERENCE) (8TH : 2015 : LONDON, ENGLAND) 2015; 9250:115-124. [PMID: 26568986 PMCID: PMC4640356 DOI: 10.1007/978-3-319-23344-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Enrichment analysis has been widely applied in the genome-wide association studies (GWAS), where gene sets corresponding to biological pathways are examined for significant associations with a phenotype to help increase statistical power and improve biological interpretation. In this work, we expand the scope of enrichment analysis into brain imaging genetics, an emerging field that studies how genetic variation influences brain structure and function measured by neuroimaging quantitative traits (QT). Given the high dimensionality of both imaging and genetic data, we propose to study Imaging Genetic Enrichment Analysis (IGEA), a new enrichment analysis paradigm that jointly considers meaningful gene sets (GS) and brain circuits (BC) and examines whether any given GS-BC pair is enriched in a list of gene-QT findings. Using gene expression data from Allen Human Brain Atlas and imaging genetics data from Alzheimer's Disease Neuroimaging Initiative as test beds, we present an IGEA framework and conduct a proof-of-concept study. This empirical study identifies 12 significant high level two dimensional imaging genetics modules. Many of these modules are relevant to a variety of neurobiological pathways or neurodegenerative diseases, showing the promise of the proposal framework for providing insight into the mechanism of complex diseases.
Collapse
Affiliation(s)
- Xiaohui Yao
- Radiology and Imaging Sciences, Indiana University School of Medicine, IN, USA
- School of Informatics and Computing, Indiana University Indianapolis, IN, USA
| | - Jingwen Yan
- Radiology and Imaging Sciences, Indiana University School of Medicine, IN, USA
- School of Informatics and Computing, Indiana University Indianapolis, IN, USA
| | - Sungeun Kim
- Radiology and Imaging Sciences, Indiana University School of Medicine, IN, USA
| | - Kwangsik Nho
- Radiology and Imaging Sciences, Indiana University School of Medicine, IN, USA
| | - Shannon L Risacher
- Radiology and Imaging Sciences, Indiana University School of Medicine, IN, USA
| | - Mark Inlow
- Mathematics, Rose-Hulman Institute of Technology, IN, USA
| | - Jason H. Moore
- Biomedical Informatics, School of Medicine, University of Pennsylvania, PA, USA
| | - Andrew J. Saykin
- Radiology and Imaging Sciences, Indiana University School of Medicine, IN, USA
| | - Li Shen
- Radiology and Imaging Sciences, Indiana University School of Medicine, IN, USA
- School of Informatics and Computing, Indiana University Indianapolis, IN, USA
| | | |
Collapse
|
35
|
Hendrix JA, Finger B, Weiner MW, Frisoni GB, Iwatsubo T, Rowe CC, Kim SY, Guinjoan SM, Sevlever G, Carrillo MC. The Worldwide Alzheimer's Disease Neuroimaging Initiative: An update. Alzheimers Dement 2015; 11:850-9. [DOI: 10.1016/j.jalz.2015.05.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 01/06/2023]
Affiliation(s)
- James A. Hendrix
- Medical & Scientific Relations; Alzheimer's Association; Chicago IL USA
| | | | - Michael W. Weiner
- Center for Imaging of Neurodegenerative Diseases (CIND), Northern, California Institute of Research; San Francisco VA Medical Center; San Francisco CA USA
- Department of Radiology; University of California; San Francisco CA USA
| | - Giovanni B. Frisoni
- Laboratory of Neuroimaging of Aging; University Hospitals and University of Geneva; Geneva Switzerland
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine; The University Hospital of Tokyo; Japan
| | | | - Seong Yoon Kim
- Department of Psychiatry; Asian Medical Center; Seoul Republic of Korea
| | - Salvador M. Guinjoan
- Aging and Memory Center; Instituto de Investigaciones Neurologicas Raul Carrea (FLENI); Buenos Aires Argentina
| | - Gustavo Sevlever
- Aging and Memory Center; Instituto de Investigaciones Neurologicas Raul Carrea (FLENI); Buenos Aires Argentina
| | - Maria C. Carrillo
- Medical & Scientific Relations; Alzheimer's Association; Chicago IL USA
| |
Collapse
|
36
|
Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Cedarbaum J, Donohue MC, Green RC, Harvey D, Jack CR, Jagust W, Morris JC, Petersen RC, Saykin AJ, Shaw L, Thompson PM, Toga AW, Trojanowski JQ. Impact of the Alzheimer's Disease Neuroimaging Initiative, 2004 to 2014. Alzheimers Dement 2015; 11:865-84. [PMID: 26194320 PMCID: PMC4659407 DOI: 10.1016/j.jalz.2015.04.005] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/04/2015] [Accepted: 04/23/2015] [Indexed: 01/18/2023]
Abstract
INTRODUCTION The Alzheimer's Disease Neuroimaging Initiative (ADNI) was established in 2004 to facilitate the development of effective treatments for Alzheimer's disease (AD) by validating biomarkers for AD clinical trials. METHODS We searched for ADNI publications using established methods. RESULTS ADNI has (1) developed standardized biomarkers for use in clinical trial subject selection and as surrogate outcome measures; (2) standardized protocols for use across multiple centers; (3) initiated worldwide ADNI; (4) inspired initiatives investigating traumatic brain injury and post-traumatic stress disorder in military populations, and depression, respectively, as an AD risk factor; (5) acted as a data-sharing model; (6) generated data used in over 600 publications, leading to the identification of novel AD risk alleles, and an understanding of the relationship between biomarkers and AD progression; and (7) inspired other public-private partnerships developing biomarkers for Parkinson's disease and multiple sclerosis. DISCUSSION ADNI has made myriad impacts in its first decade. A competitive renewal of the project in 2015 would see the use of newly developed tau imaging ligands, and the continued development of recruitment strategies and outcome measures for clinical trials.
Collapse
Affiliation(s)
- Michael W Weiner
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA; Department of Radiology, University of California, San Francisco, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| | - Dallas P Veitch
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA
| | - Paul S Aisen
- Department of Neurosciences, University of California- San Diego, La Jolla, CA, USA
| | - Laurel A Beckett
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, Davis, CA, USA
| | - Nigel J Cairns
- Department of Neurology, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA; Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jesse Cedarbaum
- Neurology Early Clinical Development, Biogen Idec, Cambridge, MA, USA
| | - Michael C Donohue
- Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California, San Diego, San Diego, CA, USA
| | - Robert C Green
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Danielle Harvey
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, Davis, CA, USA
| | | | - William Jagust
- Helen Wills Neuroscience Institute and the School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | | | - Andrew J Saykin
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Leslie Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, Marina Del Rey, CA, USA
| | - Arthur W Toga
- Laboratory of Neuroimaging, Institute of Neuroimaging and Informatics, Keck School of Medicine of University of Southern California Los Angeles, CA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Alzheimer's Disease Core Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Udall Parkinson's Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
37
|
Saykin AJ, Shen L, Yao X, Kim S, Nho K, Risacher SL, Ramanan VK, Foroud TM, Faber KM, Sarwar N, Munsie LM, Hu X, Soares HD, Potkin SG, Thompson PM, Kauwe JSK, Kaddurah-Daouk R, Green RC, Toga AW, Weiner MW. Genetic studies of quantitative MCI and AD phenotypes in ADNI: Progress, opportunities, and plans. Alzheimers Dement 2015; 11:792-814. [PMID: 26194313 PMCID: PMC4510473 DOI: 10.1016/j.jalz.2015.05.009] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 05/08/2015] [Accepted: 05/08/2015] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Genetic data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) have been crucial in advancing the understanding of Alzheimer's disease (AD) pathophysiology. Here, we provide an update on sample collection, scientific progress and opportunities, conceptual issues, and future plans. METHODS Lymphoblastoid cell lines and DNA and RNA samples from blood have been collected and banked, and data and biosamples have been widely disseminated. To date, APOE genotyping, genome-wide association study (GWAS), and whole exome and whole genome sequencing data have been obtained and disseminated. RESULTS ADNI genetic data have been downloaded thousands of times, and >300 publications have resulted, including reports of large-scale GWAS by consortia to which ADNI contributed. Many of the first applications of quantitative endophenotype association studies used ADNI data, including some of the earliest GWAS and pathway-based studies of biospecimen and imaging biomarkers, as well as memory and other clinical/cognitive variables. Other contributions include some of the first whole exome and whole genome sequencing data sets and reports in healthy controls, mild cognitive impairment, and AD. DISCUSSION Numerous genetic susceptibility and protective markers for AD and disease biomarkers have been identified and replicated using ADNI data and have heavily implicated immune, mitochondrial, cell cycle/fate, and other biological processes. Early sequencing studies suggest that rare and structural variants are likely to account for significant additional phenotypic variation. Longitudinal analyses of transcriptomic, proteomic, metabolomic, and epigenomic changes will also further elucidate dynamic processes underlying preclinical and prodromal stages of disease. Integration of this unique collection of multiomics data within a systems biology framework will help to separate truly informative markers of early disease mechanisms and potential novel therapeutic targets from the vast background of less relevant biological processes. Fortunately, a broad swath of the scientific community has accepted this grand challenge.
Collapse
Affiliation(s)
- Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Li Shen
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiaohui Yao
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; School of Informatics and Computing, Indiana University, Purdue University - Indianapolis, Indianapolis, IN, USA
| | - Sungeun Kim
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kwangsik Nho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Vijay K Ramanan
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tatiana M Foroud
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kelley M Faber
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | - Xiaolan Hu
- Bristol-Myers Squibb, Wallingford, CT, USA
| | | | - Steven G Potkin
- Department of Psychiatry and Human Behavior, University of California - Irvine, Irvine, CA, USA
| | - Paul M Thompson
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Marina del Rey, CA, USA; Imaging Genetics Center, Keck School of Medicine of USC, University of Southern California, Marina del Rey, CA, USA
| | - John S K Kauwe
- Department of Biology, Brigham Young University, Provo, UT, USA; Department of Neuroscience, Brigham Young University, Provo, UT, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA; Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| | - Robert C Green
- Partners Center for Personalized Genetic Medicine, Boston, MA, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Arthur W Toga
- Laboratory of Neuroimaging, Institute for Neuroimaging and Neuroinformatics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Michael W Weiner
- Department of Radiology, University of California-San Francisco, San Francisco, CA, USA; Department of Medicine, University of California-San Francisco, San Francisco, CA, USA; Department of Psychiatry, University of California-San Francisco, San Francisco, CA, USA; Center for Imaging of Neurodegenerative Diseases, San Francisco VA Medical Center, San Francisco, CA, USA
| |
Collapse
|
38
|
Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Cedarbaum J, Green RC, Harvey D, Jack CR, Jagust W, Luthman J, Morris JC, Petersen RC, Saykin AJ, Shaw L, Shen L, Schwarz A, Toga AW, Trojanowski JQ. 2014 Update of the Alzheimer's Disease Neuroimaging Initiative: A review of papers published since its inception. Alzheimers Dement 2015; 11:e1-120. [PMID: 26073027 PMCID: PMC5469297 DOI: 10.1016/j.jalz.2014.11.001] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/18/2013] [Indexed: 01/18/2023]
Abstract
The Alzheimer's Disease Neuroimaging Initiative (ADNI) is an ongoing, longitudinal, multicenter study designed to develop clinical, imaging, genetic, and biochemical biomarkers for the early detection and tracking of Alzheimer's disease (AD). The initial study, ADNI-1, enrolled 400 subjects with early mild cognitive impairment (MCI), 200 with early AD, and 200 cognitively normal elderly controls. ADNI-1 was extended by a 2-year Grand Opportunities grant in 2009 and by a competitive renewal, ADNI-2, which enrolled an additional 550 participants and will run until 2015. This article reviews all papers published since the inception of the initiative and summarizes the results to the end of 2013. The major accomplishments of ADNI have been as follows: (1) the development of standardized methods for clinical tests, magnetic resonance imaging (MRI), positron emission tomography (PET), and cerebrospinal fluid (CSF) biomarkers in a multicenter setting; (2) elucidation of the patterns and rates of change of imaging and CSF biomarker measurements in control subjects, MCI patients, and AD patients. CSF biomarkers are largely consistent with disease trajectories predicted by β-amyloid cascade (Hardy, J Alzheimer's Dis 2006;9(Suppl 3):151-3) and tau-mediated neurodegeneration hypotheses for AD, whereas brain atrophy and hypometabolism levels show predicted patterns but exhibit differing rates of change depending on region and disease severity; (3) the assessment of alternative methods of diagnostic categorization. Currently, the best classifiers select and combine optimum features from multiple modalities, including MRI, [(18)F]-fluorodeoxyglucose-PET, amyloid PET, CSF biomarkers, and clinical tests; (4) the development of blood biomarkers for AD as potentially noninvasive and low-cost alternatives to CSF biomarkers for AD diagnosis and the assessment of α-syn as an additional biomarker; (5) the development of methods for the early detection of AD. CSF biomarkers, β-amyloid 42 and tau, as well as amyloid PET may reflect the earliest steps in AD pathology in mildly symptomatic or even nonsymptomatic subjects and are leading candidates for the detection of AD in its preclinical stages; (6) the improvement of clinical trial efficiency through the identification of subjects most likely to undergo imminent future clinical decline and the use of more sensitive outcome measures to reduce sample sizes. Multimodal methods incorporating APOE status and longitudinal MRI proved most highly predictive of future decline. Refinements of clinical tests used as outcome measures such as clinical dementia rating-sum of boxes further reduced sample sizes; (7) the pioneering of genome-wide association studies that leverage quantitative imaging and biomarker phenotypes, including longitudinal data, to confirm recently identified loci, CR1, CLU, and PICALM and to identify novel AD risk loci; (8) worldwide impact through the establishment of ADNI-like programs in Japan, Australia, Argentina, Taiwan, China, Korea, Europe, and Italy; (9) understanding the biology and pathobiology of normal aging, MCI, and AD through integration of ADNI biomarker and clinical data to stimulate research that will resolve controversies about competing hypotheses on the etiopathogenesis of AD, thereby advancing efforts to find disease-modifying drugs for AD; and (10) the establishment of infrastructure to allow sharing of all raw and processed data without embargo to interested scientific investigators throughout the world.
Collapse
Affiliation(s)
- Michael W Weiner
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA; Department of Radiology, University of California, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, CA, USA.
| | - Dallas P Veitch
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA
| | - Paul S Aisen
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Laurel A Beckett
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Nigel J Cairns
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA; Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jesse Cedarbaum
- Neurology Early Clinical Development, Biogen Idec, Cambridge, MA, USA
| | - Robert C Green
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Danielle Harvey
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA, USA
| | | | - William Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Johan Luthman
- Neuroscience Clinical Development, Neuroscience & General Medicine Product Creation Unit, Eisai Inc., Philadelphia, PA, USA
| | - John C Morris
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | | | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Leslie Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Li Shen
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Adam Schwarz
- Tailored Therapeutics, Eli Lilly and Company, Indianapolis, IN, USA
| | - Arthur W Toga
- Laboratory of Neuroimaging, Institute of Neuroimaging and Informatics, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - John Q Trojanowski
- Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Alzheimer's Disease Core Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Udall Parkinson's Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
39
|
Xiang Z, Xu M, Liao M, Jiang Y, Jiang Q, Feng R, Zhang L, Ma G, Wang G, Chen Z, Zhao B, Sun T, Li K, Liu G. Integrating Genome-Wide Association Study and Brain Expression Data Highlights Cell Adhesion Molecules and Purine Metabolism in Alzheimer's Disease. Mol Neurobiol 2014; 52:514-21. [PMID: 25204495 DOI: 10.1007/s12035-014-8884-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 08/27/2014] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in the elderly. Recently, genome-wide association studies (GWAS) have been used to investigate AD pathogenesis. However, a large proportion of AD heritability has yet to be explained. We previously identified the cell adhesion molecule (CAM) pathway as a consistent signal in two AD GWAS. However, it is unclear whether CAM is present in the Genetic and Environmental Risk for Alzheimer's Disease Consortium (GERAD) GWAS and brain expression GWAS. Meanwhile, we think integrating AD GWAS and AD brain expression datasets may provide complementary information to identify important pathways involved in AD. Here, we conducted a systems analysis using (1) KEGG pathways, (2) large-scale AD GWAS from GERAD (n = 11,789), (3) two brain expression GWAS datasets (n = 399) from the AD cerebellum and temporal cortex, and (4) previous results from pathway analysis of AD GWAS. Our results indicate that (1) CAM is a consistent signal in five AD GWAS; (2) CAM is the most significant signal in AD; (3) we confirmed previous AD risk pathways related to immune system and diseases, and cardiovascular disease, etc.; and (4) we highlighted the purine metabolism pathway in AD for the first time. We believe that our results may advance our understanding of AD mechanisms and will be very informative for future genetic studies in AD.
Collapse
Affiliation(s)
- Zimin Xiang
- Department of Orthopedic Surgery, Beijing Army General Hospital, Clinical Medicine College of Third Military Medical University, No. 5 Nanmencang, Dongcheng District, Beijing, 100700, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Since the launch in 2003 of the Alzheimer's Disease Neuroimaging Initiative (ADNI) in the USA, ever growing, similarly oriented consortia have been organized and assembled around the world. The various accomplishments of ADNI have contributed substantially to a better understanding of the underlying physiopathology of aging and Alzheimer's disease (AD). These accomplishments are basically predicated in the trinity of multimodality, standardization and sharing. This multimodality approach can now better identify those subjects with AD-specific traits that are more likely to present cognitive decline in the near future and that might represent the best candidates for smaller but more efficient therapeutic trials - trials that, through gained and shared knowledge, can be more focused on a specific target or a specific stage of the disease process. In summary, data generated from ADNI have helped elucidate some of the pathophysiological mechanisms underpinning aging and AD pathology, while contributing to the international effort in setting the groundwork for biomarker discovery and establishing standards for early diagnosis of AD.
Collapse
Affiliation(s)
- Victor L Villemagne
- Department of Nuclear Medicine and Centre for PET, Austin Health, 145 Studley Road, Heidelberg 3084, VIC, Australia
- The Florey Institute for Neurosciences and Mental Health, The University of Melbourne, 30 Royal Parade, Melbourne 3010, VIC, Australia
- Department of Medicine, The University of Melbourne, Grattan Street, Melbourne 3010, VIC, Australia
| | - Seong Yoon Kim
- Asan Medical Center, University of Ulsan Medical College, 88 Olympic-Ro 43-Gil, Songpa-Gu, Seoul, Korea
| | - Christopher C Rowe
- Department of Nuclear Medicine and Centre for PET, Austin Health, 145 Studley Road, Heidelberg 3084, VIC, Australia
- Department of Medicine, The University of Melbourne, Grattan Street, Melbourne 3010, VIC, Australia
| | - Takeshi Iwatsubo
- Department of Neuropathology, School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku 113-0033, Tokyo, Japan
| |
Collapse
|
41
|
Saba R, Medina SJ, Booth SA. A functional SNP catalog of overlapping miRNA-binding sites in genes implicated in prion disease and other neurodegenerative disorders. Hum Mutat 2014; 35:1233-48. [PMID: 25074322 DOI: 10.1002/humu.22627] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 07/09/2014] [Indexed: 12/31/2022]
Abstract
The involvement of SNPs in miRNA target sites remains poorly investigated in neurodegenerative disease. In addition to associations with disease risk, such genetic variations can also provide novel insight into mechanistic pathways that may be responsible for disease etiology and/or pathobiology. To identify SNPs associated specifically with degenerating neurons, we restricted our analysis to genes that are dysregulated in CA1 hippocampal neurons of mice during early, preclinical phase of Prion disease. The 125 genes chosen are also implicated in other numerous degenerative and neurological diseases and disorders and are therefore likely to be of fundamental importance. We predicted those SNPs that could increase, decrease, or have neutral effects on miRNA binding. This group of genes was more likely to possess DNA variants than were genes chosen at random. Furthermore, many of the SNPs are common within the human population, and could contribute to the growing awareness that miRNAs and associated SNPs could account for detrimental neurological states. Interestingly, SNPs that overlapped miRNA-binding sites in the 3'-UTR of GABA-receptor subunit coding genes were particularly enriched. Moreover, we demonstrated that SNP rs9291296 would strengthen miR-26a-5p binding to a highly conserved site in the 3'-UTR of gamma-aminobutyric acid receptor subunit alpha-4.
Collapse
Affiliation(s)
- Reuben Saba
- Molecular PathoBiology, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, Manitoba, R3E 3R2, Canada
| | | | | |
Collapse
|
42
|
Langley GR. Considering a new paradigm for Alzheimer's disease research. Drug Discov Today 2014; 19:1114-24. [DOI: 10.1016/j.drudis.2014.03.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/27/2014] [Accepted: 03/14/2014] [Indexed: 10/25/2022]
|
43
|
Exact tests for singular network data. ANN I STAT MATH 2014. [DOI: 10.1007/s10463-014-0472-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Shen L, Thompson PM, Potkin SG, Bertram L, Farrer LA, Foroud TM, Green RC, Hu X, Huentelman MJ, Kim S, Kauwe JSK, Li Q, Liu E, Macciardi F, Moore JH, Munsie L, Nho K, Ramanan VK, Risacher SL, Stone DJ, Swaminathan S, Toga AW, Weiner MW, Saykin AJ, for the Alzheimer’s Disease Neuroimaging Initiative. Genetic analysis of quantitative phenotypes in AD and MCI: imaging, cognition and biomarkers. Brain Imaging Behav 2014; 8:183-207. [PMID: 24092460 PMCID: PMC3976843 DOI: 10.1007/s11682-013-9262-z] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The Genetics Core of the Alzheimer's Disease Neuroimaging Initiative (ADNI), formally established in 2009, aims to provide resources and facilitate research related to genetic predictors of multidimensional Alzheimer's disease (AD)-related phenotypes. Here, we provide a systematic review of genetic studies published between 2009 and 2012 where either ADNI APOE genotype or genome-wide association study (GWAS) data were used. We review and synthesize ADNI genetic associations with disease status or quantitative disease endophenotypes including structural and functional neuroimaging, fluid biomarker assays, and cognitive performance. We also discuss the diverse analytical strategies used in these studies, including univariate and multivariate analysis, meta-analysis, pathway analysis, and interaction and network analysis. Finally, we perform pathway and network enrichment analyses of these ADNI genetic associations to highlight key mechanisms that may drive disease onset and trajectory. Major ADNI findings included all the top 10 AD genes and several of these (e.g., APOE, BIN1, CLU, CR1, and PICALM) were corroborated by ADNI imaging, fluid and cognitive phenotypes. ADNI imaging genetics studies discovered novel findings (e.g., FRMD6) that were later replicated on different data sets. Several other genes (e.g., APOC1, FTO, GRIN2B, MAGI2, and TOMM40) were associated with multiple ADNI phenotypes, warranting further investigation on other data sets. The broad availability and wide scope of ADNI genetic and phenotypic data has advanced our understanding of the genetic basis of AD and has nominated novel targets for future studies employing next-generation sequencing and convergent multi-omics approaches, and for clinical drug and biomarker development.
Collapse
Affiliation(s)
- Li Shen
- Center for Neuroimaging and Indiana Alzheimer’s Disease Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th Street, Suite 4100, Indianapolis, IN 46202 USA
| | - Paul M. Thompson
- Imaging Genetics Center, Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA 90095 USA
| | - Steven G. Potkin
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA 92617 USA
| | - Lars Bertram
- Neuropsychiatric Genetics Group, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lindsay A. Farrer
- Biomedical Genetics L320, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118 USA
| | - Tatiana M. Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Robert C. Green
- Division of Genetics and Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Xiaolan Hu
- Clinical Genetics, Exploratory Clinical & Translational Research, Bristol-Myers Squibbs, Pennington, NJ 08534 USA
| | - Matthew J. Huentelman
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ 85004 USA
| | - Sungeun Kim
- Center for Neuroimaging and Indiana Alzheimer’s Disease Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th Street, Suite 4100, Indianapolis, IN 46202 USA
| | - John S. K. Kauwe
- Departments of Biology, Neuroscience, Brigham Young University, 675 WIDB, Provo, UT 84602 USA
| | - Qingqin Li
- Department of Neuroscience Biomarkers, Janssen Research and Development, LLC, Raritan, NJ 08869 USA
| | - Enchi Liu
- Biomarker Discovery, Janssen Alzheimer Immunotherapy Research and Development, LLC, South San Francisco, CA 94080 USA
| | - Fabio Macciardi
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA 92617 USA
- Department of Sciences and Biomedical Technologies, University of Milan, Segrate, MI Italy
| | - Jason H. Moore
- Department of Genetics, Computational Genetics Laboratory, Dartmouth Medical School, Lebanon, NH 03756 USA
| | - Leanne Munsie
- Tailored Therapeutics, Eli Lilly and Company, Indianapolis, IN 46285 USA
| | - Kwangsik Nho
- Center for Neuroimaging and Indiana Alzheimer’s Disease Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th Street, Suite 4100, Indianapolis, IN 46202 USA
| | - Vijay K. Ramanan
- Center for Neuroimaging and Indiana Alzheimer’s Disease Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th Street, Suite 4100, Indianapolis, IN 46202 USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Shannon L. Risacher
- Center for Neuroimaging and Indiana Alzheimer’s Disease Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th Street, Suite 4100, Indianapolis, IN 46202 USA
| | - David J. Stone
- Merck Research Laboratories, 770 Sumneytown Pike, WP53B-120, West Point, PA 19486 USA
| | - Shanker Swaminathan
- Center for Neuroimaging and Indiana Alzheimer’s Disease Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th Street, Suite 4100, Indianapolis, IN 46202 USA
| | - Arthur W. Toga
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA 90095 USA
| | - Michael W. Weiner
- Departments of Radiology, Medicine and Psychiatry, UC San Francisco, San Francisco, CA 94143 USA
| | - Andrew J. Saykin
- Center for Neuroimaging and Indiana Alzheimer’s Disease Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th Street, Suite 4100, Indianapolis, IN 46202 USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - for the Alzheimer’s Disease Neuroimaging Initiative
- Center for Neuroimaging and Indiana Alzheimer’s Disease Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th Street, Suite 4100, Indianapolis, IN 46202 USA
- Imaging Genetics Center, Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA 90095 USA
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA 92617 USA
- Neuropsychiatric Genetics Group, Max-Planck Institute for Molecular Genetics, Berlin, Germany
- Biomedical Genetics L320, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118 USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
- Division of Genetics and Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
- Clinical Genetics, Exploratory Clinical & Translational Research, Bristol-Myers Squibbs, Pennington, NJ 08534 USA
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ 85004 USA
- Departments of Biology, Neuroscience, Brigham Young University, 675 WIDB, Provo, UT 84602 USA
- Department of Neuroscience Biomarkers, Janssen Research and Development, LLC, Raritan, NJ 08869 USA
- Biomarker Discovery, Janssen Alzheimer Immunotherapy Research and Development, LLC, South San Francisco, CA 94080 USA
- Department of Sciences and Biomedical Technologies, University of Milan, Segrate, MI Italy
- Department of Genetics, Computational Genetics Laboratory, Dartmouth Medical School, Lebanon, NH 03756 USA
- Tailored Therapeutics, Eli Lilly and Company, Indianapolis, IN 46285 USA
- Merck Research Laboratories, 770 Sumneytown Pike, WP53B-120, West Point, PA 19486 USA
- Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA 90095 USA
- Departments of Radiology, Medicine and Psychiatry, UC San Francisco, San Francisco, CA 94143 USA
| |
Collapse
|
45
|
Guintivano J, Arad M, Gould TD, Payne JL, Kaminsky ZA. Antenatal prediction of postpartum depression with blood DNA methylation biomarkers. Mol Psychiatry 2014; 19:560-7. [PMID: 23689534 PMCID: PMC7039252 DOI: 10.1038/mp.2013.62] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/02/2013] [Indexed: 01/06/2023]
Abstract
Postpartum depression (PPD) affects ∼10-18% of women in the general population and results in serious consequences to both the mother and offspring. We hypothesized that predisposition to PPD risk is due to an altered sensitivity to estrogen-mediated epigenetic changes that act in a cell autonomous manner detectable in the blood. We investigated estrogen-mediated epigenetic reprogramming events in the hippocampus and risk to PPD using a cross-species translational design. DNA methylation profiles were generated using methylation microarrays in a prospective sample of the blood from the antenatal period of pregnant mood disorder patients who would and would not develop depression postpartum. These profiles were cross-referenced with syntenic locations exhibiting hippocampal DNA methylation changes in the mouse responsive to long-term treatment with 17β-estradiol (E2). DNA methylation associated with PPD risk correlated significantly with E2-induced DNA methylation change, suggesting an enhanced sensitivity to estrogen-based DNA methylation reprogramming exists in those at risk for PPD. Using the combined mouse and human data, we identified two biomarker loci at the HP1BP3 and TTC9B genes that predicted PPD with an area under the receiver operator characteristic (ROC) curve (area under the curve (AUC)) of 0.87 in antenatally euthymic women and 0.12 in a replication sample of antenatally depressed women. Incorporation of blood count data into the model accounted for the discrepancy and produced an AUC of 0.96 across both prepartum depressed and euthymic women. Pathway analyses demonstrated that DNA methylation patterns related to hippocampal synaptic plasticity may be of etiological importance to PPD.
Collapse
Affiliation(s)
- J Guintivano
- The Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - M Arad
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - TD Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA;,Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - JL Payne
- The Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - ZA Kaminsky
- The Mood Disorders Center, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
46
|
Callahan CM, Foroud T, Saykin AJ, Shekhar A, Hendrie HC. Translational research on aging: clinical epidemiology as a bridge between the sciences. Transl Res 2014; 163:439-45. [PMID: 24090769 PMCID: PMC4012418 DOI: 10.1016/j.trsl.2013.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 09/06/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Christopher M Callahan
- Indiana University Center for Aging Research, Indianapolis, Indiana; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Regenstrief Institute, Inc, Indianapolis, Indiana.
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Andrew J Saykin
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana; Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, Indiana
| | - Anantha Shekhar
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana; Indiana Clinical and Translational Sciences Institute, Indianapolis, Indiana
| | - Hugh C Hendrie
- Indiana University Center for Aging Research, Indianapolis, Indiana; Regenstrief Institute, Inc, Indianapolis, Indiana; Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, Indiana; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
47
|
Overrepresentation of glutamate signaling in Alzheimer's disease: network-based pathway enrichment using meta-analysis of genome-wide association studies. PLoS One 2014; 9:e95413. [PMID: 24755620 PMCID: PMC3995778 DOI: 10.1371/journal.pone.0095413] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 03/26/2014] [Indexed: 02/07/2023] Open
Abstract
Genome-wide association studies (GWAS) have successfully identified several risk loci for Alzheimer's disease (AD). Nonetheless, these loci do not explain the entire susceptibility of the disease, suggesting that other genetic contributions remain to be identified. Here, we performed a meta-analysis combining data of 4,569 individuals (2,540 cases and 2,029 healthy controls) derived from three publicly available GWAS in AD and replicated a broad genomic region (>248,000 bp) associated with the disease near the APOE/TOMM40 locus in chromosome 19. To detect minor effect size contributions that could help to explain the remaining genetic risk, we conducted network-based pathway analyses either by extracting gene-wise p-values (GW), defined as the single strongest association signal within a gene, or calculated a more stringent gene-based association p-value using the extended Simes (GATES) procedure. Comparison of these strategies revealed that ontological sub-networks (SNs) involved in glutamate signaling were significantly overrepresented in AD (p<2.7×10−11, p<1.9×10−11; GW and GATES, respectively). Notably, glutamate signaling SNs were also found to be significantly overrepresented (p<5.1×10−8) in the Alzheimer's disease Neuroimaging Initiative (ADNI) study, which was used as a targeted replication sample. Interestingly, components of the glutamate signaling SNs are coordinately expressed in disease-related tissues, which are tightly related to known pathological hallmarks of AD. Our findings suggest that genetic variation within glutamate signaling contributes to the remaining genetic risk of AD and support the notion that functional biological networks should be targeted in future therapies aimed to prevent or treat this devastating neurological disorder.
Collapse
|
48
|
Shang H, Liu G, Jiang Y, Fu J, Zhang B, Song R, Wang W. Pathway Analysis of Two Amyotrophic Lateral Sclerosis GWAS Highlights Shared Genetic Signals with Alzheimer’s Disease and Parkinson’s Disease. Mol Neurobiol 2014; 51:361-9. [DOI: 10.1007/s12035-014-8673-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
|
49
|
Mukherjee S, Kim S, Ramanan VK, Gibbons LE, Nho K, Glymour MM, Ertekin-Taner N, Montine TJ, Saykin AJ, Crane PK. Gene-based GWAS and biological pathway analysis of the resilience of executive functioning. Brain Imaging Behav 2014; 8:110-8. [PMID: 24072271 PMCID: PMC3944472 DOI: 10.1007/s11682-013-9259-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Resilience in executive functioning (EF) is characterized by high EF measured by neuropsychological test performance despite structural brain damage from neurodegenerative conditions. We previously reported single nucleotide polymorphism (SNP) genome-wide association study (GWAS) results for EF resilience. Here, we report gene- and pathway-based analyses of the same resilience phenotype, using an optimal SNP-set (Sequence) Kernel Association Test (SKAT) for gene-based analyses (conservative threshold for genome-wide significance = 0.05/18,123 = 2.8 × 10(-6)) and the gene-set enrichment package GSA-SNP for biological pathway analyses (False discovery rate (FDR) < 0.05). Gene-based analyses found a genome-wide significant association between RNASE13 and EF resilience (p = 1.33 × 10(-7)). Genetic pathways involved with dendritic/neuron spine, presynaptic membrane, postsynaptic density, etc., were enriched with association to EF resilience. Although replication of these results is necessary, our findings indicate the potential value of gene- and pathway-based analyses in research on determinants of cognitive resilience.
Collapse
Affiliation(s)
- Shubhabrata Mukherjee
- Department of Medicine, University of Washington, Box 359780, 325 Ninth Avenue, Seattle, WA, 98104, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ramanan VK, Saykin AJ. Pathways to neurodegeneration: mechanistic insights from GWAS in Alzheimer's disease, Parkinson's disease, and related disorders. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2013; 2:145-175. [PMID: 24093081 PMCID: PMC3783830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/25/2013] [Indexed: 06/02/2023]
Abstract
The discovery of causative genetic mutations in affected family members has historically dominated our understanding of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS). Nevertheless, most cases of neurodegenerative disease are not explained by Mendelian inheritance of known genetic variants, but instead are thought to have a complex etiology with numerous genetic and environmental factors contributing to susceptibility. Although unbiased genome-wide association studies (GWAS) have identified novel associations to neurodegenerative diseases, most of these hits explain only modest fractions of disease heritability. In addition, despite the substantial overlap of clinical and pathologic features among major neurodegenerative diseases, surprisingly few GWAS-implicated variants appear to exhibit cross-disease association. These realities suggest limitations of the focus on individual genetic variants and create challenges for the development of diagnostic and therapeutic strategies, which traditionally target an isolated molecule or mechanistic step. Recently, GWAS of complex diseases and traits have focused less on individual susceptibility variants and instead have emphasized the biological pathways and networks revealed by genetic associations. This new paradigm draws on the hypothesis that fundamental disease processes may be influenced on a personalized basis by a combination of variants - some common and others rare, some protective and others deleterious - in key genes and pathways. Here, we review and synthesize the major pathways implicated in neurodegeneration, focusing on GWAS from the most prevalent neurodegenerative disorders, AD and PD. Using literature mining, we also discover a novel regulatory network that is enriched with AD- and PD-associated genes and centered on the SP1 and AP-1 (Jun/Fos) transcription factors. Overall, this pathway- and network-driven model highlights several potential shared mechanisms in AD and PD that will inform future studies of these and other neurodegenerative disorders. These insights also suggest that biomarker and treatment strategies may require simultaneous targeting of multiple components, including some specific to disease stage, in order to assess and modulate neurodegeneration. Pathways and networks will provide ideal vehicles for integrating relevant findings from GWAS and other modalities to enhance clinical translation.
Collapse
Affiliation(s)
- Vijay K Ramanan
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of MedicineIndianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of MedicineIndianapolis, IN, USA
- Medical Scientist Training Program, Indiana University School of MedicineIndianapolis, IN, USA
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of MedicineIndianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of MedicineIndianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of MedicineIndianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of MedicineIndianapolis, IN, USA
| |
Collapse
|