1
|
Soncu Büyükişcan E. Neuropsychology of Alzheimer's disease: From preclinical phase to dementia. APPLIED NEUROPSYCHOLOGY. ADULT 2025:1-9. [PMID: 39982692 DOI: 10.1080/23279095.2025.2469236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by significant cognitive and functional decline, initially presenting with episodic memory impairment. A thorough neuropsychological assessment is essential for AD diagnosis, particularly in the early stages in which interventions may be more effective. This paper reviews the neuropsychology of Alzheimer's disease, highlighting the cognitive progression of the disease. In the typical forms of AD, episodic memory appears to be the first and foremost affected cognitive domain. As AD progresses, cognitive impairments extend beyond memory to affect various domains such as attention, executive functions, language, and visuospatial abilities. Neuropsychiatric issues, such as depression and anxiety, which often accompany cognitive decline, are also common, especially at the advanced stages of the disease. While episodic memory impairment is the earliest and most prominent feature in typical AD cases, comprehensive assessments, including social cognition and neuropsychiatric evaluations, are crucial for accurate diagnosis and treatment planning.
Collapse
|
2
|
Mian M, Tahiri J, Habbal S, Aftan F, Reddy PH. The impact of sleep and exercise on brain atrophy in mild cognitive impairment. Mech Ageing Dev 2025; 223:112023. [PMID: 39732176 DOI: 10.1016/j.mad.2024.112023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/15/2024] [Accepted: 12/26/2024] [Indexed: 12/30/2024]
Abstract
Chronic sleep deprivation and lack of physical exercise may have detrimental effects on overall health, particularly in terms of brain health, with significant implications for cognitive function and well-being. This review explores the impact of chronic sleep deprivation and physical exercise on brain atrophy in mild cognitive impairment (MCI) and Alzheimer's disease (AD). Drawing insights from 40 selected studies, the review synthesizes evidence on these lifestyle factors' correlations with neurodegenerative changes. Chronic sleep deprivation disrupts circadian rhythms and neurochemical pathways, potentially accelerating brain atrophy, while physical exercise preserves brain structure by enhancing vascular health, reducing inflammation, and supporting synaptic plasticity, particularly in regions like the hippocampus. Results highlight distinct patterns of brain atrophy in AD and MCI, underscoring the potential for targeted interventions to mitigate cognitive decline. Understanding the relationship between sleep disruption and brain health provides insights into strategies for possibly delaying neurodegenerative diseases like MCI, which represents a milder form of Alzheimer's, and AD. The findings underscore the potential utility of integrating sleep therapy and physical exercise interventions in clinical practice for early detection of mild cognitive impairment and potentially delaying disease progression. This integrated approach has been found to promote healthy aging, reduce atrophy rates, and enhance cognitive resilience across aging populations.
Collapse
Affiliation(s)
- Maamoon Mian
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Jihane Tahiri
- School of Biology, Texas Tech University, Lubbock, TX 79430, USA.
| | - Saadeddine Habbal
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Fatima Aftan
- School of Biology, University of North Texas, Denton, TX 76201, USA.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
3
|
Bick A, McKyton A, Glick-Shames H, Rein N, Levin N. Abnormal network connections to early visual cortex in posterior cortical atrophy. J Neurol Sci 2023; 454:120826. [PMID: 37832379 DOI: 10.1016/j.jns.2023.120826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
INTRODUCTION Posterior Cortical Atrophy (PCA), a visual variant of Alzheimer's disease, initially manifests with higher-order visual disorders and parieto/temporo-occipital atrophy. Recent studies have shown remote functional impairment in both distant brain networks and along the calcarine sulcus (V1). Functional alteration in the calcarine differs along its length, reflecting center to periphery visual space differences. Herein, we aim to connect between these two sets of findings by looking at the retinotopic patterns of functional connectivity between large-scale brain networks and V1, comparing patients with normally sighted subjects. METHODS Resting state functional magnetic resonance imaging (fMRI) and T1 anatomical scans were obtained from 11 PCA patients and 17 age-matched healthy volunteers. Default mode network (DMN) and fronto parietal network (FPN) were defined and differences between the networks in patients and healthy controls were evaluated at the whole brain level, specifically their connectivity to V1. RESULTS Connectivity patterns within the DMN and the FPN were similar between the groups, although differences were found in regions within and beyond the networks. Focusing on V1, in the control group we identified the expected pattern of a distributed connectivity along eccentricity, with foveal regions showing stronger connectivity to the FPN and peripheral regions showing stronger connectivity to the DMN. However, in PCA patients we could not identify a clear difference in connectivity along the eccentricities. CONCLUSION Lost specialization of function along the calcarine in PCA patients may have further implications on large-scale networks or vice versa. This impairment, distant from the core pathology, might explain patients' visual disabilities.
Collapse
Affiliation(s)
- Atira Bick
- fMRI unit, Neurology department, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Ayelet McKyton
- fMRI unit, Neurology department, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Haya Glick-Shames
- fMRI unit, Neurology department, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Netaniel Rein
- fMRI unit, Neurology department, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Netta Levin
- fMRI unit, Neurology department, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel.
| |
Collapse
|
4
|
González-López M, Gonzalez-Moreira E, Areces-González A, Paz-Linares D, Fernández T. Who's driving? The default mode network in healthy elderly individuals at risk of cognitive decline. Front Neurol 2022; 13:1009574. [PMID: 36530633 PMCID: PMC9749402 DOI: 10.3389/fneur.2022.1009574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/08/2022] [Indexed: 09/10/2024] Open
Abstract
Introduction Age is the main risk factor for the development of neurocognitive disorders, with Alzheimer's disease being the most common. Its physiopathological features may develop decades before the onset of clinical symptoms. Quantitative electroencephalography (qEEG) is a promising and cost-effective tool for the prediction of cognitive decline in healthy older individuals that exhibit an excess of theta activity. The aim of the present study was to evaluate the feasibility of brain connectivity variable resolution electromagnetic tomography (BC-VARETA), a novel source localization algorithm, as a potential tool to assess brain connectivity with 19-channel recordings, which are common in clinical practice. Methods We explored differences in terms of functional connectivity among the nodes of the default mode network between two groups of healthy older participants, one of which exhibited an EEG marker of risk for cognitive decline. Results The risk group exhibited increased levels of delta, theta, and beta functional connectivity among nodes of the default mode network, as well as reversed directionality patterns of connectivity among nodes in every frequency band when compared to the control group. Discussion We propose that an ongoing pathological process may be underway in healthy elderly individuals with excess theta activity in their EEGs, which is further evidenced by changes in their connectivity patterns. BC-VARETA implemented on 19-channels EEG recordings appears to be a promising tool to detect dysfunctions at the connectivity level in clinical settings.
Collapse
Affiliation(s)
- Mauricio González-López
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Eduardo Gonzalez-Moreira
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Ariosky Areces-González
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- Faculty of Technical Sciences, University of Pinar del Río “Hermanos Saiz Montes de Oca, ” Pinar del Rio, Cuba
| | - Deirel Paz-Linares
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- Neuroinformatics Department, Cuban Neuroscience Center, Havana, Cuba
| | - Thalía Fernández
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
5
|
Overman MJ, Zamboni G, Butler C, Ahmed S. Splenial white matter integrity is associated with memory impairments in posterior cortical atrophy. Brain Commun 2021; 3:fcab060. [PMID: 34007964 PMCID: PMC8112963 DOI: 10.1093/braincomms/fcab060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/09/2020] [Accepted: 02/23/2021] [Indexed: 11/22/2022] Open
Abstract
Posterior cortical atrophy is an atypical form of Alzheimer’s disease characterized by visuospatial impairments and predominant tissue loss in the posterior parieto-occipital and temporo-occipital cortex. Whilst episodic memory is traditionally thought to be relatively preserved in posterior cortical atrophy, recent work indicates that memory impairments form a common clinical symptom in the early stages of the disease. Neuroimaging studies suggest that memory dysfunction in posterior cortical atrophy may originate from atrophy and functional hypoconnectivity of parietal cortex. The structural connectivity patterns underpinning these memory impairments, however, have not been investigated. This line of inquiry is of particular interest, as changes in white matter tracts of posterior cortical atrophy patients have been shown to be more extensive than expected based on posterior atrophy of grey matter. In this cross-sectional diffusion tensor imaging MRI study, we examine the relationship between white matter microstructure and verbal episodic memory in posterior cortical atrophy. We assessed episodic memory performance in a group of posterior cortical atrophy patients (n = 14) and a group of matched healthy control participants (n = 19) using the Free and Cued Selective Reminding Test with Immediate Recall. Diffusion tensor imaging measures were obtained for 13 of the posterior cortical atrophy patients and a second control group of 18 healthy adults. Patients and healthy controls demonstrated similar memory encoding performance, indicating that learning of verbal information was preserved in posterior cortical atrophy. However, retrieval of verbal items was significantly impaired in the patient group compared with control participants. As expected, tract-based spatial statistics analyses showed widespread reductions of white matter integrity in posterior cortical regions of patients compared with healthy adults. Correlation analyses indicated that poor verbal retrieval in the patient group was specifically associated with microstructural damage of the splenium of the corpus callosum. Post-hoc tractography analyses in healthy controls demonstrated that this splenial region was connected to thalamic radiations and the retrolenticular part of the internal capsule. These results provide insight into the brain circuits that underlie memory impairments in posterior cortical atrophy. From a cognitive perspective, we propose that the association between splenial integrity and memory dysfunction could arise indirectly via disruption of attentional processes. We discuss implications for the clinical phenotype and development of therapeutic aids for cognitive impairment in posterior cortical atrophy.
Collapse
Affiliation(s)
- Margot Juliëtte Overman
- Research Institute for the Care of Older People (RICE), Bath BA1 3NG, UK.,MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - Giovanna Zamboni
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Modena, Italy.,Center for Neuroscience and Neurotechnology, Università di Modena e Reggio Emilia, Modena, Italy.,Nuffield Department of Clinical Neuroscience, University of Oxford, Oxfordshire OX3 9DU, UK
| | - Christopher Butler
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxfordshire OX3 9DU, UK.,Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK.,Departamento de Neurología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Samrah Ahmed
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxfordshire OX3 9DU, UK.,School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6 6ES, UK
| |
Collapse
|
6
|
Manninen S, Karjalainen T, Tuominen LJ, Hietala J, Kaasinen V, Joutsa J, Rinne J, Nummenmaa L. Cerebral grey matter density is associated with neuroreceptor and neurotransporter availability: A combined PET and MRI study. Neuroimage 2021; 235:117968. [PMID: 33785434 DOI: 10.1016/j.neuroimage.2021.117968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 02/12/2021] [Accepted: 03/05/2021] [Indexed: 12/21/2022] Open
Abstract
Positron emission tomography (PET) can be used for in vivo measurement of specific neuroreceptors and transporters using radioligands, while voxel-based morphometric analysis of magnetic resonance images allows automated estimation of local grey matter densities. However, it is not known how regional neuroreceptor or transporter densities are reflected in grey matter densities. Here, we analyzed brain scans retrospectively from 328 subjects and compared grey matter density estimates with neuroreceptor and transporter availabilities. µ-opioid receptors (MORs) were measured with [11C]carfentanil (162 scans), dopamine D2 receptors with [11C]raclopride (92 scans) and serotonin transporters (SERT) with [11C]MADAM (74 scans). The PET data were modelled with simplified reference tissue model. Voxel-wise correlations between binding potential and grey matter density images were computed. Regional binding of all the used radiotracers was associated with grey matter density in region and ligand-specific manner independently of subjects' age or sex. These data show that grey matter density and MOR and D2R neuroreceptor / SERT availability are correlated, with effect sizes (r2) ranging from 0.04 to 0.69. This suggests that future studies comparing PET outcome measure different groups (such as patients and controls) should also analyze interactive effects of grey matter density and PET outcome measures.
Collapse
Affiliation(s)
- Sandra Manninen
- Turku Pet Centre and Turku University Hospital, Turku, Finland.
| | | | - Lauri J Tuominen
- Turku Pet Centre and Turku University Hospital, Turku, Finland; University of Ottawa, Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - Jarmo Hietala
- Department of Psychiatry, Turku University Hospital, Turku, Finland
| | - Valtteri Kaasinen
- Clinical Neurosciences, University of Turku, Turku, Finland; Neurocenter, Turku University Hospital, Turku, Finland
| | - Juho Joutsa
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Juha Rinne
- Turku Pet Centre and Turku University Hospital, Turku, Finland
| | - Lauri Nummenmaa
- Turku Pet Centre and Turku University Hospital, Turku, Finland; Department of Psychology, University of Turku, Finland
| |
Collapse
|
7
|
de Best PB, Abulafia R, McKyton A, Levin N. Convergence Along the Visual Hierarchy Is Altered in Posterior Cortical Atrophy. Invest Ophthalmol Vis Sci 2020; 61:8. [PMID: 32897377 PMCID: PMC7488212 DOI: 10.1167/iovs.61.11.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Posterior cortical atrophy (PCA) is a rare neurodegenerative syndrome manifesting with visuospatial processing impairment. We recently suggested that abnormal population receptive field properties are associated with the symptoms of PCA patients. Specifically, simultanagnosia, the inability to perceive multiple items simultaneously, can be explained by smaller peripheral population receptive fields, and foveal crowding, in which nearby distractors interfere with object perception, may result from larger foveal population receptive fields. These effects occurred predominantly in V1, even though atrophy mainly involves high-order areas. In this study, we used connective field modeling to better understand these inter-area interactions. Methods We used functional magnetic resonance imaging to scan six PCA patients and eight controls while they viewed drifting bar stimuli. Resting-state data were also collected. Connective field modeling was applied for both conditions: once when the source was V1 and the targets were extrastriate areas and once for the opposite direction. The difference between the two was defined as convergence magnitude. Results With stimulus, the convergence magnitude of the controls increased along the visual pathway, suggesting that spatial integration from V1 becomes larger up the visual hierarchy. No such slope was found in the PCA patients. The difference between the groups originated mainly from the dorsal pathway. Without stimulus, the convergence magnitude was negative, slightly more so for the PCA patients, with no slope, suggesting constant divergence along the visual hierarchy. Conclusions Atrophy in one part of the visual system can affect other areas within the network through complex intervisual area interactions, resulting in modulation of population receptive field properties and an ensemble of visuocognitive function impairments.
Collapse
Affiliation(s)
- Pieter B. de Best
- fMRI Unit, Neurology Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ruth Abulafia
- fMRI Unit, Neurology Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ayelet McKyton
- fMRI Unit, Neurology Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Netta Levin
- fMRI Unit, Neurology Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
8
|
Cortical diffusivity investigation in posterior cortical atrophy and typical Alzheimer's disease. J Neurol 2020; 268:227-239. [PMID: 32770413 PMCID: PMC7815619 DOI: 10.1007/s00415-020-10109-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/26/2020] [Accepted: 07/22/2020] [Indexed: 11/24/2022]
Abstract
Objectives To investigate the global cortical and regional quantitative features of cortical neural architecture in the brains of patients with posterior cortical atrophy (PCA) and typical Alzheimer’s disease (tAD) compared with elderly healthy controls (HC). Methods A novel diffusion MRI method, that has been shown to correlate with minicolumnar organization changes in the cerebral cortex, was used as a surrogate of neuropathological changes in dementia. A cohort of 15 PCA patients, 23 tAD and 22 healthy elderly controls (HC) were enrolled to investigate the changes in cortical diffusivity among groups. For each subject, 3 T MRI T1-weighted images and diffusion tensor imaging (DTI) scans were analysed to extract novel cortical DTI derived measures (AngleR, PerpPD and ParlPD). Receiver operating characteristics (ROC) curve analysis and the area under the curve (AUC) were used to assess the group discrimination capability of the method. Results The results showed that the global cortical DTI derived measures were able to detect differences, in both PCA and tAD patients compared to healthy controls. The AngleR was the best measure to discriminate HC from tAD (AUC = 0.922), while PerpPD was the best measure to discriminate HC from PCA (AUC = 0.961). Finally, the best global measure to differentiate the two patient groups was ParlPD (AUC = 0.771). The comparison between PCA and tAD patients revealed a different pattern of damage within the AD spectrum and the regional comparisons identified significant differences in key regions including parietal and temporal lobe cortical areas. The best AUCs were shown by PerpPD right lingual cortex (AUC = 0.856), PerpPD right superior parietal cortex (AUC = 0.842) and ParlPD right lateral occipital cortex (AUC = 0.826). Conclusions Diagnostic group differences were found, suggesting that the new cortical DTI analysis method may be useful to investigate cortical changes in dementia, providing better characterization of neurodegeneration, and potentially aiding differential diagnosis and prognostic accuracy. Electronic supplementary material The online version of this article (10.1007/s00415-020-10109-w) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Glick-Shames H, Keadan T, Backner Y, Bick A, Levin N. Global Brain Involvement in Posterior Cortical Atrophy: Multimodal MR Imaging Investigation. Brain Topogr 2020; 33:600-612. [PMID: 32761400 DOI: 10.1007/s10548-020-00788-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 07/23/2020] [Indexed: 02/04/2023]
Abstract
Posterior cortical atrophy (PCA), considered a visual variant of Alzheimer's disease, has similar pathological characteristics yet shows a selective visual manifestation with relative preservation of other cortical areas, at least at early stages of disease. Using a gamut of imaging methods, we aim to evaluate the global aspect of this relatively local disease and describe the interplay of the involvement of the different brain components. Ten PCA patients and 14 age-matched controls underwent MRI scans. Cortical thickness was examined to identify areas of cortical thinning. Hippocampal volume was assessed using voxel-based morphometry. The integrity of 20 fiber tracts was assessed by Diffusion Tensor Imaging. Regions of difference in global functional connectivity were identified by resting-state fMRI, using multi-variant pattern analysis. Correlations were examined to evaluate the connection between grey matter atrophy, the network changes and the disease load. The patients presented bilateral cortical thinning, primarily in their brains' posterior segments. Impaired segments of white matter integrity were evident only within three fiber tracts in the left hemisphere. Four areas were identified as different in their global connectivity pattern. The visual network-related areas showed reduced connectivity and was correlated to atrophy. Right Broadman area 39 showed in addition increased connectivity to the frontal areas. Global structural and functional imaging pointed to the highly localized nature of PCA. Functional connectivity followed grey matter atrophy in visual regions. White matter involvement seemed less prominent, however damage is directly related to presence of disease and not mediated only by grey matter damage.
Collapse
Affiliation(s)
- Haya Glick-Shames
- fMRI Lab, Neurology Department, Hadassah-Hebrew University Medical Center, POB 12000, Jerusalem, 91120, Israel
| | - Tarek Keadan
- fMRI Lab, Neurology Department, Hadassah-Hebrew University Medical Center, POB 12000, Jerusalem, 91120, Israel
| | - Yael Backner
- fMRI Lab, Neurology Department, Hadassah-Hebrew University Medical Center, POB 12000, Jerusalem, 91120, Israel
| | - Atira Bick
- fMRI Lab, Neurology Department, Hadassah-Hebrew University Medical Center, POB 12000, Jerusalem, 91120, Israel
| | - Netta Levin
- fMRI Lab, Neurology Department, Hadassah-Hebrew University Medical Center, POB 12000, Jerusalem, 91120, Israel.
| |
Collapse
|
10
|
Briels CT, Eertink JJ, Stam CJ, van der Flier WM, Scheltens P, Gouw AA. Profound regional spectral, connectivity, and network changes reflect visual deficits in posterior cortical atrophy: an EEG study. Neurobiol Aging 2020; 96:1-11. [PMID: 32905950 DOI: 10.1016/j.neurobiolaging.2020.07.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022]
Abstract
Patients with posterior cortical atrophy (PCA-AD) show more severe visuospatial and perceptual deficits than those with typical AD (tAD). The aim of this study was to investigate whether functional alterations measured by electroencephalography can help understand the mechanisms that explain this clinical heterogeneity. 21-channel electroencephalography recordings of 29 patients with PCA-AD were compared with 29 patients with tAD and 29 controls matched for age, gender, and disease severity. Patients with PCA-AD and tAD both showed a global decrease in fast and increase in slow oscillatory activity compared with controls. This pattern was, however, more profound in patients with PCA-AD which was driven by more extensive slowing of the posterior regions. Alpha band functional connectivity showed a similar decrease in PCA-AD and tAD. Compared with controls, a less integrated network topology was observed in PCA-AD, with a decrease of posterior and an increase of frontal hubness. In PCA-AD, decreased right parietal peak frequency correlated with worse performance on visual tasks. Regional vulnerability of the posterior network might explain the atypical pattern of neurodegeneration in PCA-AD.
Collapse
Affiliation(s)
- Casper T Briels
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; Department of Clinical Neurophysiology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.
| | - Jakoba J Eertink
- Department of Clinical Neurophysiology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; Department of Epidemiology and Biostatistics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Alida A Gouw
- Department of Clinical Neurophysiology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Kaskikallio A, Karrasch M, Koikkalainen J, Lötjönen J, Rinne JO, Tuokkola T, Parkkola R, Grönholm-Nyman P. White Matter Hyperintensities and Cognitive Impairment in Healthy and Pathological Aging: A Quantified Brain MRI Study. Dement Geriatr Cogn Disord 2020; 48:297-307. [PMID: 32209796 DOI: 10.1159/000506124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/23/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Brain changes involving the white matter (WM), often an indication of cerebrovascular pathology, are frequently seen in patients with mild cognitive impairment (MCI) and Alzheimer disease (AD). Few studies have examined possible cognitive domain- or group-specific cognitive effects of WM pathology in old age, MCI, and AD. OBJECTIVE Our purpose was to examine the relationship between WM hyperintensities (WMH), a typical marker for WM pathology, and cognitive functioning in healthy old age and pathological aging using quantified MRI data. METHODS We utilized multidomain neuropsychological data and quantified MRI data from a sample of 42 cognitively healthy older adults and 44 patients with MCI/AD (total n = 86). RESULTS After controlling for age and education, WMH in the temporal and parieto-occipital lobes was associated with impairments in processing speed and parieto-occipital pathology with verbal memory impairment in the whole sample. Additionally, temporal WMH was associated with impaired processing speed in the patient group specifically. CONCLUSIONS WM pathology is strongly associated with impaired processing speed, and our results indicate that these impairments arise from WMH in the temporal and parieto-occipital regions. In MCI and AD patients with temporal WMH, processing speed impairments are especially prominent. The results of this study increase our knowledge of cognitive repercussions stemming from temporal and/or parieto-occipital WM pathology in healthy and pathological aging.
Collapse
Affiliation(s)
| | | | | | | | - Juha O Rinne
- Turku PET Centre, University of Turku, Turku, Finland.,Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | | | - Riitta Parkkola
- Department of Radiology, University and University Hospital of Turku, Turku, Finland
| | | |
Collapse
|
12
|
Ghali MGZ, Marchenko V, Yaşargil MG, Ghali GZ. Structure and function of the perivascular fluid compartment and vertebral venous plexus: Illumining a novel theory on mechanisms underlying the pathogenesis of Alzheimer's, cerebral small vessel, and neurodegenerative diseases. Neurobiol Dis 2020; 144:105022. [PMID: 32687942 DOI: 10.1016/j.nbd.2020.105022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/13/2020] [Accepted: 07/15/2020] [Indexed: 01/14/2023] Open
Abstract
Blood dynamically and richly supplies the cerebral tissue via microvessels invested in pia matter perforating the cerebral substance. Arteries penetrating the cerebral substance derive an investment from one or two successive layers of pia mater, luminally apposed to the pial-glial basal lamina of the microvasculature and abluminally apposed to a series of aquaporin IV-studded astrocytic end feet constituting the soi-disant glia limitans. The full investment of successive layers forms the variably continuous walls of the periarteriolar, pericapillary, and perivenular divisions of the perivascular fluid compartment. The pia matter disappears at the distal periarteriolar division of the perivascular fluid compartment. Plasma from arteriolar blood sequentially transudates into the periarteriolar division of the perivascular fluid compartment and subarachnoid cisterns in precession to trickling into the neural interstitium. Fluid from the neural interstitium successively propagates into the venules through the subarachnoid cisterns and perivenular division of the perivascular fluid compartment. Fluid fluent within the perivascular fluid compartment flows gegen the net direction of arteriovenular flow. Microvessel oscillations at the central tendency of the cerebral vasomotion generate corresponding oscillations of within the surrounding perivascular fluid compartment, interposed betwixt the abluminal surface of the vessels and internal surface of the pia mater. The precise microanatomy of this most fascinating among designable spaces has eluded the efforts of various investigators to interrogate its structure, though most authors non-consensusly concur the investing layers effectively and functionally segregate the perivascular and subarachnoid fluid compartments. Enlargement of the perivascular fluid compartment in a variety of neurological disorders, including senile dementia of the Alzheimer's type and cerebral small vessel disease, may alternately or coordinately constitute a correlative marker of disease severity and a possible cause implicated in the mechanistic pathogenesis of these conditions. Venular pressures modulating oscillatory dynamic flow within the perivascular fluid compartment may similarly contribute to the development of a variety among neurological disorders. An intimate understanding of subtle features typifying microanatomy and microphysiology of the investing structures and spaces of the cerebral microvasculature may powerfully inform mechanistic pathophysiology mediating a variety of neurovascular ischemic, neuroinfectious, neuroautoimmune, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Michael George Zaki Ghali
- Department of Neurological Surgery, University of California San Francisco, 505 Parnassus Street, San Francisco, CA 94143, United States; Department of Neurobiology and Anatomy, 2900 W. Queen Lane, Philadelphia, PA 19129, United States.
| | - Vitaliy Marchenko
- Department of Neurobiology and Anatomy, 2900 W. Queen Lane, Philadelphia, PA 19129, United States; Department of Neurophysiology, Bogomoletz Institute, Kyiv, Ukraine; Department of Neuroscience, Московский государственный университет имени М. В., Ломоносова GSP-1, Leninskie Gory, Moscow 119991, Russian Federation
| | - M Gazi Yaşargil
- Department of Neurosurgery, University Hospital Zurich Rämistrasse 100, 8091 Zurich, Switzerland
| | - George Zaki Ghali
- United States Environmental Protection Agency, Arlington, Virginia, USA; Emeritus Professor of Toxicology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
13
|
Navarro-Martínez R, Cauli O. Therapeutic Plasmapheresis with Albumin Replacement in Alzheimer's Disease and Chronic Progressive Multiple Sclerosis: A Review. Pharmaceuticals (Basel) 2020; 13:ph13020028. [PMID: 32059404 PMCID: PMC7169443 DOI: 10.3390/ph13020028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 01/24/2023] Open
Abstract
Background: Reducing the burden of beta-amyloid accumulation and toxic autoimmunity-related proteins, one of the recognized pathophysiological markers of chronic and common neurological disorders such as Alzheimer’s disease (AD) and multiple sclerosis (MS), may be a valid alternative therapy to reduce their accumulation in the brain and thus reduce the progression of these disorders. The objective of this review was to evaluate the efficacy of plasmapheresis (PP) in AD and chronic progressive MS patients (in terms of improving clinical symptoms) and to analyze its safety and protocols. Methods: Articles related to this topic and published without time limitations in the Medline, and Cochrane databases were reviewed. Results: In AD patients, PP reduced amyloid beta (Aβ) levels in the brain, accompanied by a tendency towards cognitive stabilization, and improved language and verbal fluency. In regards to structural and functional brain changes, PP reduced brain volume and favored the stabilization, or absence, of the progression of perfusion. In chronic progressive form of MS patients, PP improved neurological deficits in 20–70% of patients with a chronic progressive form of MS, and restored interferon (IFN) responsiveness, which was not accompanied by any image change in brain plaques. Conclusions: Therapeutic plasmapheresis with albumin replacement is a promising strategy for reducing Aβ mediated toxicity and slowing the progression of the disorder. Some patients with chronic progressive forms of MS show improvement in neurological deficits. The features of AD and MS patients who benefit most from this approach need further research.
Collapse
Affiliation(s)
- Rut Navarro-Martínez
- Haematology Department, Hospital General Universitario, 46014 Valencia, Spain;
- Department of Nursing, University of Valencia, 46010 Valencia, Spain
- Frailty and Cognitive Impairment Group (FROG), University of Valencia, 46010 Valencia, Spain
| | - Omar Cauli
- Department of Nursing, University of Valencia, 46010 Valencia, Spain
- Frailty and Cognitive Impairment Group (FROG), University of Valencia, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-96-386-41-82
| |
Collapse
|
14
|
Guerrier L, Cransac C, Pages B, Saint-Aubert L, Payoux P, Péran P, Pariente J. Posterior Cortical Atrophy: Does Complaint Match the Impairment? A Neuropsychological and FDG-PET Study. Front Neurol 2019; 10:1010. [PMID: 31616363 PMCID: PMC6764288 DOI: 10.3389/fneur.2019.01010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022] Open
Abstract
Objective: Posterior Cortical Atrophy (PCA) is a neurodegenerative disease characterized predominantly by visual impairment. However, diagnosis of PCA remains complicated with an interval of several years between initial reporting of symptoms and diagnosis. The aim of the present study is to define if patients' visual and gestural complaints are consistent with their clinical profile. Method: An evaluation of daily visual problems as well as a full neuropsychological assessment and FDG-PET were performed in 15 PCA patients. We compared glucose metabolism between these PCA patients and 18 healthy controls. Correlation analyses were conducted in PCA patients between visual and gestural complaint, clinical impairments, and brain glucose metabolism. Results: Major impairment of cognitive functions was detected in PCA patients specifically in visual domains. Positive correlations were found between visual impairments and hypometabolism in the right temporo-parieto-occipital cortices. However, no correlation was found between complaint and visual impairment in PCA patients. Discussion: Our main results suggest a consistent relationship between clinical impairment and brain metabolism. However, the patient's complaint and visual performance are not linked. Combining the literature and our results, it seems that patients are generally aware of difficulties but misinterpret them. This misinterpretation may be responsible for the delayed diagnosis.
Collapse
Affiliation(s)
- Laura Guerrier
- ToNIC, Toulouse NeuroImaging Centre, University of Toulouse, Inserm, UPS, Toulouse, France
| | - Camille Cransac
- Department of Neurology, University Hospital of Toulouse, Toulouse, France
| | - Bérengère Pages
- Department of Neurology, University Hospital of Toulouse, Toulouse, France
| | - Laure Saint-Aubert
- ToNIC, Toulouse NeuroImaging Centre, University of Toulouse, Inserm, UPS, Toulouse, France.,Department of Nuclear Medicine, University Hospital of Toulouse, Toulouse, France
| | - Pierre Payoux
- ToNIC, Toulouse NeuroImaging Centre, University of Toulouse, Inserm, UPS, Toulouse, France.,Department of Nuclear Medicine, University Hospital of Toulouse, Toulouse, France
| | - Patrice Péran
- ToNIC, Toulouse NeuroImaging Centre, University of Toulouse, Inserm, UPS, Toulouse, France
| | - Jérémie Pariente
- ToNIC, Toulouse NeuroImaging Centre, University of Toulouse, Inserm, UPS, Toulouse, France.,Department of Neurology, University Hospital of Toulouse, Toulouse, France
| |
Collapse
|
15
|
Bier N, El-Samra A, Bottari C, Vallet G, Carignan M, Paquette G, Brambati S, Demers L, Génier-Marchand D, Rouleau I. Posterior cortical atrophy: Impact on daily living activities and exploration of a cognitive rehabilitation approach. COGENT PSYCHOLOGY 2019. [DOI: 10.1080/23311908.2019.1634911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- N. Bier
- School of rehabilitation, Université de Montréal, Montréal, Canada
- Centre de recherche, Institut universitaire de gériatrie de Montréal, CIUSSS du Centre-Sud-de-l’Île-de-Montréal, Montreal, Canada
| | - A. El-Samra
- School of rehabilitation, Université de Montréal, Montréal, Canada
| | - C. Bottari
- School of rehabilitation, Université de Montréal, Montréal, Canada
- Centre de recherche en réadaptation du Montréal Métropolitain (CRIR), Montreal, Canada
| | - G.T. Vallet
- Centre de recherche, Institut universitaire de gériatrie de Montréal, CIUSSS du Centre-Sud-de-l’Île-de-Montréal, Montreal, Canada
| | - M. Carignan
- Centre de recherche en réadaptation du Montréal Métropolitain (CRIR), Montreal, Canada
- Institut Nazareth et Louis Braille, CISSS de la Montérégie-Centre, Montreal, Canada
| | - G. Paquette
- Centre de recherche, Institut universitaire de gériatrie de Montréal, CIUSSS du Centre-Sud-de-l’Île-de-Montréal, Montreal, Canada
- Centre de recherche en réadaptation du Montréal Métropolitain (CRIR), Montreal, Canada
| | - S. Brambati
- Centre de recherche, Institut universitaire de gériatrie de Montréal, CIUSSS du Centre-Sud-de-l’Île-de-Montréal, Montreal, Canada
- Department of psychology, Université de Montréal, Montreal, Canada
| | - L. Demers
- School of rehabilitation, Université de Montréal, Montréal, Canada
- Centre de recherche, Institut universitaire de gériatrie de Montréal, CIUSSS du Centre-Sud-de-l’Île-de-Montréal, Montreal, Canada
| | - D. Génier-Marchand
- Department of psychology, Université du Québec à Montréal, Montreal, Canada
| | - I. Rouleau
- Department of psychology, Université du Québec à Montréal, Montreal, Canada
| |
Collapse
|
16
|
Parker TD, Slattery CF, Yong KXX, Nicholas JM, Paterson RW, Foulkes AJM, Malone IB, Thomas DL, Cash DM, Crutch SJ, Fox NC, Schott JM. Differences in hippocampal subfield volume are seen in phenotypic variants of early onset Alzheimer's disease. Neuroimage Clin 2018; 21:101632. [PMID: 30558867 PMCID: PMC6411912 DOI: 10.1016/j.nicl.2018.101632] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 12/05/2018] [Accepted: 12/08/2018] [Indexed: 11/02/2022]
Abstract
The most common presentation of early onset Alzheimer's disease (EOAD - defined as symptom onset <65 years) is with progressive episodic memory impairment - amnestic or typical Alzheimer's disease (tAD). However, EOAD is notable for its phenotypic heterogeneity, with posterior cortical atrophy (PCA) - characterised by prominent higher-order visual processing deficits and relative sparing of episodic memory - the second most common canonical phenotype. The hippocampus, which comprises a number of interconnected anatomically and functionally distinct subfields, is centrally involved in Alzheimer's disease and is a crucial mediator of episodic memory. The extent to which volumes of individual hippocampal subfields differ between different phenotypes in EOAD is unclear. The aim of this analysis was to investigate the hypothesis that patients with a PCA phenotype will exhibit differences in specific hippocampal subfield volumes compared to tAD. We studied 63 participants with volumetric T1-weighted MRI performed on the same 3T scanner: 39 EOAD patients [27 with tAD and 12 with PCA] and 24 age-matched controls. Volumetric estimates of the following hippocampal subfields for each participant were obtained using Freesurfer version 6.0: CA1, CA2/3, CA4, presubiculum, subiculum, hippocampal tail, parasubiculum, the molecular and granule cell layers of the dentate gryus (GCMLDG), the molecular layer, and the hippocampal amygdala transition area (HATA). Linear regression analyses comparing mean hippocampal subfield volumes between groups, adjusting for age, sex and head size, were performed. Using a Bonferonni-corrected p-value of p < 0.0025, compared to controls, tAD was associated with atrophy in all hippocampal regions, except the parasubiculum. In PCA patients compared to controls, the strongest evidence for volume loss was in the left presubiclum, right subiculum, right GCMLDG, right molecular layer and the right HATA. Compared to PCA, patients with tAD had strong evidence for smaller volumes in left CA1 and left hippocampal tail. In conclusion, these data provide evidence that hippocampal subfield volumes differ in different phenotypes of EOAD.
Collapse
Affiliation(s)
- Thomas D Parker
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK.
| | - Catherine F Slattery
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - Keir X X Yong
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - Jennifer M Nicholas
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK; Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Ross W Paterson
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - Alexander J M Foulkes
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - Ian B Malone
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - David L Thomas
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK; Leonard Wolfson Experimental Neurology Centre, UCL Institute of Neurology, London, UK
| | - David M Cash
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - Sebastian J Crutch
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - Nick C Fox
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - Jonathan M Schott
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| |
Collapse
|
17
|
The impact of localized grey matter damage on neighboring connectivity: posterior cortical atrophy and the visual network. Brain Imaging Behav 2018; 13:1292-1301. [DOI: 10.1007/s11682-018-9952-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Chen R, Shi J, Yin Q, Li X, Sheng Y, Han J, Zhuang P, Zhang Y. Morphological and Pathological Characteristics of Brain in Diabetic Encephalopathy. J Alzheimers Dis 2018; 65:15-28. [DOI: 10.3233/jad-180314] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Rui Chen
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiangwei Shi
- Department of Integrated Rehabilitation, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qingsheng Yin
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaojin Li
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanyuan Sheng
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Juan Han
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Pengwei Zhuang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanjun Zhang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
19
|
Esteves S, Ramirez Romero DA, Torralva T, Martínez Cuitiño M, Herndon S, Couto B, Ibañez A, Manes F, Roca M. Posterior cortical atrophy: a single case cognitive and radiological follow-up. Neurocase 2018; 24:16-30. [PMID: 29308699 DOI: 10.1080/13554794.2017.1421667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Posterior cortical atrophy (PCA) is a rare neurodegenerative syndrome characterized by initial predominant visuoperceptual deficits followed by a progressive decline in other cognitive functions. This syndrome has not been as thoroughly described as other dementias, particularly from a neuropsychological evolution perspective with only a few studies describing the evolution of its cognitive progression. In this investigation we review the literature on this rare condition and we perform a 7-year neuropsychological and neuroradiological follow-up of a 64-year-old man with PCA. The subject's deficits initially appeared in his visuoperceptual skills with later affectation appearing in language and other cognitive functions, this being coherent with the patient's parieto-temporal atrophy evolution.
Collapse
Affiliation(s)
- Sol Esteves
- a Neuropsychological Research Laboratory, Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, CONICET , Buenos Aires , Argentina
| | - Diana Andrea Ramirez Romero
- a Neuropsychological Research Laboratory, Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, CONICET , Buenos Aires , Argentina
| | - Teresa Torralva
- a Neuropsychological Research Laboratory, Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, CONICET , Buenos Aires , Argentina
| | - Macarena Martínez Cuitiño
- a Neuropsychological Research Laboratory, Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, CONICET , Buenos Aires , Argentina
| | - Shannon Herndon
- a Neuropsychological Research Laboratory, Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, CONICET , Buenos Aires , Argentina.,b Department of Psychiatry, School of Medicine, University of North Carolina Chapel Hill , Chapel Hill , USA
| | - Blas Couto
- c Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, CONICET , Buenos Aires , Argentina
| | - Agustín Ibañez
- c Laboratory of Experimental Psychology and Neuroscience (LPEN), Institute of Cognitive and Translational Neuroscience (INCyT), INECO Foundation, Favaloro University, CONICET , Buenos Aires , Argentina.,d Centre of Excellence in Cognition and its Disorders, Australian Research Council (ACR) , Sydney , Australia.,e Universidad Autónoma del Caribe, Barranquilla , Colombia.,f Centre for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibañez , Santiago de Chile , Chile.,g National Scientific and Technical Research Council (CONICET) , Buenos Aires , Argentina
| | - Facundo Manes
- d Centre of Excellence in Cognition and its Disorders, Australian Research Council (ACR) , Sydney , Australia.,g National Scientific and Technical Research Council (CONICET) , Buenos Aires , Argentina
| | - María Roca
- g National Scientific and Technical Research Council (CONICET) , Buenos Aires , Argentina
| |
Collapse
|
20
|
The Nature and Natural History of Posterior Cortical Atrophy Syndrome. Alzheimer Dis Assoc Disord 2017; 31:295-306. [DOI: 10.1097/wad.0000000000000207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Neitzel J, Ortner M, Haupt M, Redel P, Grimmer T, Yakushev I, Drzezga A, Bublak P, Preul C, Sorg C, Finke K. Neuro-cognitive mechanisms of simultanagnosia in patients with posterior cortical atrophy. Brain 2016; 139:3267-3280. [DOI: 10.1093/brain/aww235] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/01/2016] [Accepted: 07/31/2016] [Indexed: 11/13/2022] Open
|
22
|
Weill-Chounlamountry A, Alves J, Pradat-Diehl P. Non-pharmacological intervention for posterior cortical atrophy. World J Clin Cases 2016; 4:195-201. [PMID: 27574605 PMCID: PMC4983688 DOI: 10.12998/wjcc.v4.i8.195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/26/2016] [Accepted: 05/27/2016] [Indexed: 02/05/2023] Open
Abstract
Posterior cortical atrophy (PCA) is a rare neurodegenerative condition characterized by progressive visual-perceptual deficits. Although the neurocognitive profile of PCA is a growing and relatively well-established field, non-pharmacological care remains understudied and to be widely established in clinical practice. In the present work we review the available literature on non-pharmacological approaches for PCA, such as cognitive rehabilitation including individual cognitive exercises and compensatory techniques to improve autonomy in daily life, and psycho-education aiming to inform people with PCA about the nature of their visual deficits and limits of cognitive rehabilitation. The reviewed studies represented a total of 7 patients. There is a scarcity of the number of studies, and mostly consisting of case studies. Results suggest non-pharmacological intervention to be a potentially beneficial approach for the partial compensation of deficits, improvement of daily functionality and improvement of quality of life. Clinical implications and future directions are also highlighted for the advancement of the field, in order to clarify the possible role of non-pharmacological interventions, and its extent, in PCA.
Collapse
|
23
|
Arighi A, Rango M, Bozzali M, Pietroboni AM, Fumagalli G, Ghezzi L, Fenoglio C, Biondetti PR, Bresolin N, Galimberti D, Scarpini E. Usefulness of Multi-Parametric MRI for the Investigation of Posterior Cortical Atrophy. PLoS One 2015; 10:e0140639. [PMID: 26480294 PMCID: PMC4610670 DOI: 10.1371/journal.pone.0140639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/28/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Posterior Cortical Atrophy (PCA) is a neurodegenerative disease characterized by a progressive decline in selective cognitive functions anatomically referred to occipital, parietal and temporal brain regions, whose diagnosis is rather challenging for clinicians. The aim of this study was to assess, using quantitative Magnetic Resonance Imaging techniques, the pattern of regional grey matter loss and metabolism in individuals with PCA to improve pathophysiological comprehension and diagnostic confidence. METHODS We enrolled 5 patients with PCA and 5 matched controls who all underwent magnetic resonance imaging (MRI) and spectroscopy (MRS). Patients also underwent neuropsychological and cerebrospinal fluid (CSF) assessments. MRI data were used for unbiased assessment of regional grey matter loss in PCA patients compared to controls. MRS data were obtained from a set of brain regions, including the occipital lobe and the centrum semiovale bilaterally, and the posterior and anterior cingulate. RESULTS VBM analysis documented the presence of focal brain atrophy in the occipital lobes and in the posterior parietal and temporal lobes bilaterally but more pronounced on the right hemisphere. MRS revealed, in the occipital lobes and in the posterior cingulate cortex of PCA patients, reduced levels of N-Acetyl Aspartate (NAA, a marker of neurodegeneration) and increased levels of Myo-Inositol (Ins, a glial marker), with no hemispheric lateralization. CONCLUSION The bilateral but asymmetric pattern of regional grey matter loss is consistent with patients' clinical and neuropsychological features and with previous literature. The MRS findings reveal different stages of neurodegeneration (neuronal loss; gliosis), which coexist and likely precede the occurrence of brain tissue loss, and might represent early biomarkers. In conclusion, this study indicates the potential usefulness of a multi-parametric MRI approach for an early diagnosis and staging of patients with PCA.
Collapse
Affiliation(s)
- Andrea Arighi
- Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20121, Milan, Italy
| | - Mario Rango
- Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20121, Milan, Italy
- Magnetic Resonance Spectroscopy Center, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20121, Milan, Italy
| | - Marco Bozzali
- Neuorimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Anna M. Pietroboni
- Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20121, Milan, Italy
| | - Giorgio Fumagalli
- Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20121, Milan, Italy
| | - Laura Ghezzi
- Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20121, Milan, Italy
| | - Chiara Fenoglio
- Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20121, Milan, Italy
| | - Pietro R. Biondetti
- Department of Radiology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20121, Milan, Italy
| | - Nereo Bresolin
- Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20121, Milan, Italy
- Magnetic Resonance Spectroscopy Center, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20121, Milan, Italy
| | - Daniela Galimberti
- Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20121, Milan, Italy
| | - Elio Scarpini
- Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20121, Milan, Italy
| |
Collapse
|
24
|
Gleichgerrcht E, Fridriksson J, Bonilha L. Neuroanatomical foundations of naming impairments across different neurologic conditions. Neurology 2015; 85:284-92. [PMID: 26115732 DOI: 10.1212/wnl.0000000000001765] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/17/2015] [Indexed: 12/14/2022] Open
Abstract
The ability to name objects or abstract entities is an essential feature of speech and language, being commonly considered a central component of normal neurologic function. For this reason, the bedside testing of naming performance is part of the neurologic examination, especially since naming impairments can signify the early onset of a progressive disease or the occurrence of a more established problem. Modern neuroscience research suggests that naming relies on specific and distributed networks that operate in concert to support various processing stages, spanning from object recognition to spoken words. Likewise, studies evaluating the types of naming impairments in patients with neurologic conditions have contributed to the understanding of acquired forms of naming impairments and the underlying stages during normal language processing. In this article, we review the neurobiological mechanisms supporting naming, with a focus on the clinical application of these concepts. We provide an overview of the stages of cognitive processing that are hypothesized to support naming. For each stage, we explore the evidence revealing its neural basis, drawing parallels to clinical syndromes that commonly disrupt each stage. We review the patterns of naming impairment across various neurologic conditions, including classic language disorders, such as poststroke aphasia or primary progressive aphasia, as well as other diseases where language impairments may be subtle but helpful for the appropriate diagnosis. In this context, we provide a structured and practical guide for the bedside naming assessments rooted in modern neuroscience, aimed at supporting the evaluation and diagnosis of neurologic conditions that affect language.
Collapse
Affiliation(s)
- Ezequiel Gleichgerrcht
- From the Department of Neurology (E.G., L.B.), Medical University of South Carolina, Charleston; and the Department of Communication Sciences and Disorders (J.F.), University of South Carolina, Columbia
| | - Julius Fridriksson
- From the Department of Neurology (E.G., L.B.), Medical University of South Carolina, Charleston; and the Department of Communication Sciences and Disorders (J.F.), University of South Carolina, Columbia
| | - Leonardo Bonilha
- From the Department of Neurology (E.G., L.B.), Medical University of South Carolina, Charleston; and the Department of Communication Sciences and Disorders (J.F.), University of South Carolina, Columbia.
| |
Collapse
|
25
|
Solyga VM, Western E, Solheim H, Hassel B, Kerty E. [Posterior cortical atrophy]. TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2015; 135:949-52. [PMID: 26037756 DOI: 10.4045/tidsskr.14.1127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Posterior cortical atrophy is a neurodegenerative condition with atrophy of posterior parts of the cerebral cortex, including the visual cortex and parts of the parietal and temporal cortices. It presents early, in the 50s or 60s, with nonspecific visual disturbances that are often misinterpreted as ophthalmological, which can delay the diagnosis. The purpose of this article is to present current knowledge about symptoms, diagnostics and treatment of this condition. METHOD The review is based on a selection of relevant articles in PubMed and on the authors' own experience with the patient group. RESULTS Posterior cortical atrophy causes gradually increasing impairment in reading, distance judgement, and the ability to perceive complex images. Examination of higher visual functions, neuropsychological testing, and neuroimaging contribute to diagnosis. In the early stages, patients do not have problems with memory or insight, but cognitive impairment and dementia can develop. It is unclear whether the condition is a variant of Alzheimer's disease, or whether it is a separate disease entity. There is no established treatment, but practical measures such as the aid of social care workers, telephones with large keypads, computers with voice recognition software and audiobooks can be useful. INTERPRETATION Currently available treatment has very limited effect on the disease itself. Nevertheless it is important to identify and diagnose the condition in its early stages in order to be able to offer patients practical assistance in their daily lives.
Collapse
Affiliation(s)
| | - Elin Western
- Psykosomatisk avdeling Oslo universitetssykehus, Rikshospitalet
| | - Hanne Solheim
- Nukleærmedisinsk avdeling Oslo universitetssykehus, Radiumhospitalet
| | - Bjørnar Hassel
- Nevrologisk avdeling Oslo universitetssykehus, Rikshospitalet og Forsvarets forskningsinstitutt Kjeller
| | - Emilia Kerty
- Nevrologisk avdeling Oslo universitetssykehus, Rikshospitalet og Det medisinske fakultet Universitetet i Oslo
| |
Collapse
|
26
|
Isella V, Villa G, Mapelli C, Ferri F, Appollonio IM, Ferrarese C. The neuropsychiatric profile of posterior cortical atrophy. J Geriatr Psychiatry Neurol 2015; 28:136-44. [PMID: 25330926 DOI: 10.1177/0891988714554713] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/03/2014] [Indexed: 01/29/2023]
Abstract
We analyzed scores obtained at the Neuropsychiatric Inventory (NPI) by 20 patients with posterior cortical atrophy (PCA) and contrasted it with 20 patients having Alzheimer disease (AD). Patients with hallucinations and delusions were not included due to the high probability of a diagnosis of Lewy body disease. Prevalence of behavioral and psychological symptoms (BPSD) was 95% in the PCA group, the most frequent being apathy and anxiety. Cluster analysis on NPI subscales highlighted a behavioral subsyndrome characterized by agitated temper and irritability. Depression, anxiety, and apathy did not cluster with any other BPSD nor with each other. The PCA group showed a significantly higher proportion of anxious patients and worse anxiety score than patients with AD. No correlation was found between NPI data and demographic, clinical, or neuropsychological features nor were there significant differences for the same variables between anxious and nonanxious cases with PCA. In agreement with anecdotal reports, anxiety seems particularly relevant in PCA.
Collapse
Affiliation(s)
- Valeria Isella
- Department of Surgery and Translational Medicine, Milan Center for Neurosciences, University of Milan Bicocca, Milan, Italy Neurology Unit, S. Gerardo Hospital, Monza, Italy
| | - Giulia Villa
- Department of Surgery and Translational Medicine, Milan Center for Neurosciences, University of Milan Bicocca, Milan, Italy Neurology Unit, S. Gerardo Hospital, Monza, Italy
| | - Cristina Mapelli
- Department of Surgery and Translational Medicine, Milan Center for Neurosciences, University of Milan Bicocca, Milan, Italy Neurology Unit, S. Gerardo Hospital, Monza, Italy
| | - Francesca Ferri
- Department of Surgery and Translational Medicine, Milan Center for Neurosciences, University of Milan Bicocca, Milan, Italy Neurology Unit, S. Gerardo Hospital, Monza, Italy
| | - Ildebrando Marco Appollonio
- Department of Surgery and Translational Medicine, Milan Center for Neurosciences, University of Milan Bicocca, Milan, Italy Neurology Unit, S. Gerardo Hospital, Monza, Italy
| | - Carlo Ferrarese
- Department of Surgery and Translational Medicine, Milan Center for Neurosciences, University of Milan Bicocca, Milan, Italy Neurology Unit, S. Gerardo Hospital, Monza, Italy
| |
Collapse
|
27
|
Functional neural substrates of posterior cortical atrophy patients. J Neurol 2015; 262:1751-61. [PMID: 25976028 DOI: 10.1007/s00415-015-7774-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/30/2015] [Accepted: 05/01/2015] [Indexed: 10/23/2022]
Abstract
Posterior cortical atrophy (PCA) is a neurodegenerative syndrome in which the most pronounced pathologic involvement is in the occipito-parietal visual regions. Herein, we aimed to better define the cortical reflection of this unique syndrome using a thorough battery of behavioral and functional MRI (fMRI) tests. Eight PCA patients underwent extensive testing to map their visual deficits. Assessments included visual functions associated with lower and higher components of the cortical hierarchy, as well as dorsal- and ventral-related cortical functions. fMRI was performed on five patients to examine the neuronal substrate of their visual functions. The PCA patient cohort exhibited stereopsis, saccadic eye movements and higher dorsal stream-related functional impairments, including simultant perception, image orientation, figure-from-ground segregation, closure and spatial orientation. In accordance with the behavioral findings, fMRI revealed intact activation in the ventral visual regions of face and object perception while more dorsal aspects of perception, including motion and gestalt perception, revealed impaired patterns of activity. In most of the patients, there was a lack of activity in the word form area, which is known to be linked to reading disorders. Finally, there was evidence of reduced cortical representation of the peripheral visual field, corresponding to the behaviorally assessed peripheral visual deficit. The findings are discussed in the context of networks extending from parietal regions, which mediate navigationally related processing, visually guided actions, eye movement control and working memory, suggesting that damage to these networks might explain the wide range of deficits in PCA patients.
Collapse
|
28
|
Millington RS, Ajina S, Bridge H. Novel brain imaging approaches to understand acquired and congenital neuro-ophthalmological conditions. Curr Opin Neurol 2014; 27:92-97. [PMID: 24300791 PMCID: PMC3983755 DOI: 10.1097/wco.0000000000000050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW The arrival of large datasets and the on-going refinement of neuroimaging technology have led to a number of recent advances in our understanding of visual pathway disorders. This work can broadly be classified into two areas, both of which are important when considering the optimal management strategies. The first looks at the delineation of damage, teasing out subtle changes to (specific components of) the visual pathway, which may help evaluate the severity and extent of disease. The second uses neuroimaging to investigate neuroplasticity, via changes in connectivity, cortical thickness, and retinotopic maps within the visual cortex. RECENT FINDINGS Here, we give consideration to both acquired and congenital patients with damage to the visual pathway, and how they differ. Congenital disorders of the peripheral visual system can provide insight into the large-scale reorganization of the visual cortex: these are investigated with reference to disorders of the optic chiasm and anophthalmia (absence of the eyes). In acquired conditions, we consider the recent work describing patterns of degeneration, both following single insult and in neurodegenerative conditions. We also discuss the developments in functional neuroimaging, with particular reference to work on hemianopia and the controversial suggestion of cortical reorganization following acquired retinal injury. SUMMARY Techniques for comparing neuro-ophthalmological conditions with healthy visual systems provide sensitive metrics to uncover subtle differences in grey and white matter structure of the brain. It is now possible to compare the massive reorganization present in congenital conditions with the apparent lack of plasticity following acquired damage.
Collapse
Affiliation(s)
| | - Sara Ajina
- Corresponding author: Dr Sara Ajina, Oxford Centre for FMRI of the Brain, John Radcliffe Hospital, Oxford, OX3 9DU, UK. Tel: +44-1865-740348;
| | | |
Collapse
|
29
|
Alves J, Magalhães R, Machado &A, Gonçalves &OF, Sampaio A, Petrosyan A. Non-pharmacological cognitive intervention for aging and dementia: Current perspectives. World J Clin Cases 2013; 1:233-241. [PMID: 24340275 PMCID: PMC3856300 DOI: 10.12998/wjcc.v1.i8.233] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/30/2013] [Accepted: 10/18/2013] [Indexed: 02/05/2023] Open
Abstract
In recent years, cognitive difficulties associated with normal aging and dementia have been receiving increased attention from both public and scientific communities. With an increase in overall lifespan, promoting healthy cognition has become a priority and a necessity for minimizing and preventing individual and societal burdens associated with cognitive dysfunctions in the elderly. The general awareness concerning the efficacy of preventive (e.g., lifestyles) and palliative treatment strategies of cognitive impairments, related to either healthy or unhealthy trajectories in cognitive aging, is continuously rising. There are several therapeutic strategies which can be broadly classified as either pharmacological or non-pharmacological/psychosocial. In face of the modest evidence for success of pharmacological treatments, especially for dementia related impairments, psychosocial interventions are progressively considered as a complementary treatment. Despite the relative spread of psychosocial interventions in clinical settings, research in this area is rather scarce with evidence for success of these therapies remaining controversial. In this work we provide an evidence based perspective on cognitive intervention(s) for healthy aging, pre-dementia (mild cognitive impairment), and dementia populations. Current evidence and future directions for improving cognitive functions in the elderly are discussed as well.
Collapse
|
30
|
|