1
|
Cao Z, Zhang H, Wu X, Zhang Y, Yu J, Li W. Brain near-infrared study of upstairs movement after anterior cruciate ligament reconstruction. Front Neurol 2025; 15:1500579. [PMID: 39839871 PMCID: PMC11748792 DOI: 10.3389/fneur.2024.1500579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/24/2024] [Indexed: 01/23/2025] Open
Abstract
Objective After anterior cruciate ligament reconstruction (ACLR), patients undergo specific changes in body and specific brain functions, which stem from neuroplasticity. In this study, we employed functional near-infrared spectroscopy (fNIRS) to investigate the characteristics of brain activation in patients after ACLR during a repetitive upstairs task, and compared them with healthy individuals. We aimed to provide a new theoretical basis for the changes in brain function after ACLR and neurorehabilitation of sports injuries. Methods A total of 27 patients who undergoing right ACLR and 27 healthy controls participated in the study. We utilized fNIRS to collect hemodynamic data from the frontal and parietal cortices of both groups during a repetitive upstairs task. The Lysholm scale assessment was conducted prior to the commencement of the task. Compare the functional characteristics of the brain in post-operative patients and healthy subjects during upstairs tasks, and examine the functional differences between the two groups. Results (1) Patients undergoing ACLR demonstrated a significant negative change in β-value for Channel 25 (t = 4.0461, p = 0.0067) during the repetitive upstairs task. (2) In contrast, the healthy control group exhibited a significant increase in β-value across Channel 6 (t = -3.0489, p = 0.0066), Channel 7 (t = -4.5723, p = 0.0002), Channel 8 (t = -3.0089, p = 0.0072), Channel 13 (t = -2.8789, p = 0.0096), Channel 20 (t = -3.4200, p = 0.0029), and Channel 33 (t = -2.6974, p = 0.0143) during the task. (3) When compared to the healthy control group, ACLR patients exhibited a significant negative change in β-value for Channel 25 (t = 2.7583, p = 0.0089), and Channel 33 (t = 3.0618, p = 0.0040). Conclusion Patients with ACLR exhibited a significant negative activation in a specific brain region during upward stair movements. In contrast, healthy individuals demonstrated activation in two particular brain areas during the same task. Interventions targeting these brain regions may represent a novel rehabilitation approach. This provides a theoretical basis for incorporating fNIRS into the rehabilitation assessment of patients undergoing ACLR. In conclusion, this study provides a theoretical framework for potential interventions and assessments of brain regions following ACLR.
Collapse
Affiliation(s)
- Ziyuan Cao
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Hao Zhang
- Department of Rehabilitation Medicine, Shandong Provincial Third Hospital, Jinan, China
| | - Xipeng Wu
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Yuxuan Zhang
- School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Jiangli Yu
- Department of Neurology, The Second Medical Center and National Clinical Research Center for Geriatric Disease, Chinese PLA General Hospital, Beijing, China
| | - Wei Li
- Department of Rehabilitation, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
2
|
Lu H, Jiang J, Si J, Wang Y, Huang F. A functional near-infrared spectroscopy study on hemodynamic changes of patients with prolonged disorders of consciousness responding to different auditory stimuli. BMC Neurol 2023; 23:242. [PMID: 37353754 DOI: 10.1186/s12883-023-03292-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023] Open
Abstract
Treating prolonged disorders of consciousness (pDoC) is challenging. Thus, accurate assessment of residual consciousness in patients with pDoC is important for the management and recovery of patients. Functional near-infrared spectroscopy (fNIRS) can be used to detect brain activity through changes of oxygenated hemoglobin/deoxygenated hemoglobin (HbO/HbR) concentrations changes and has recently gained increasing attention for its potential applications in assessing residual consciousness. However, the number of fNIRS studies assessing residual awareness in patients with pDoC is still limited. In this study, fNIRS was used to evaluate the brain function in 18 patients with pDoC, including 14 vegetative states (VS) and 4 minimally conscious states (MCS), and 15 healthy controls (HC). All participants accepted two types of external stimuli, i.e., active stimulation (motor imagery, MI) and passive stimulation (subject's own name, SON). The results showed that the mean concentrations of HbO/HbR in the prefrontal cortex of the HC during the passive stimulation were significantly lower than those of the active stimulation, and the fitting slope was high. However, the hemodynamic responses of the patients with pDoC were opposite to those of the HC. Additionally, the mean concentrations of HbO/HbR increased as the level of consciousness decreased during passive stimulation. Our findings suggest that the residual level of consciousness in pDoC patients can be assessed by measuring brain responses to different stimulations using fNIRS. The present study further demonstrates the feasibility and reliability of fNIRS in assessing residual consciousness in patients with pDoC, providing a basis for its expanded clinical application.
Collapse
Affiliation(s)
- Haitao Lu
- Department of Neurorehabilitation, Beijing Bo'ai Hospital, Rehabilitation Research Center, School of Rehabilitation Medicine, Capital Medical University, Beijing, China.
| | - Jin Jiang
- Laboratory of Human Factors Engineering, China Astronaut Research and Training Centre, Beijing, China
| | - Juanning Si
- School of Instrumentation Science and Opto-electronics Engineering, Beijing Information Science and Technology University, 100192, Beijing, China
| | - Yizheng Wang
- Department of Neurorehabilitation, Beijing Bo'ai Hospital, Rehabilitation Research Center, School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Fubiao Huang
- Department of Occupational Therapy, Rehabilitation Research Center, School of Rehabilitation Medicine, Beijing Bo'ai Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Culiver A, Grooms D, Edwards N, Schmitt L, Oñate J. A Preliminary Investigation into the Neural Correlates of Knee Loading during a Change of Direction Task in Individuals after Anterior Cruciate Ligament Reconstruction. Int J Sports Phys Ther 2023; 18:70-80. [PMID: 36793571 PMCID: PMC9897027 DOI: 10.26603/001c.57782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 11/03/2022] [Indexed: 02/04/2023] Open
Abstract
Background Central nervous system (CNS) function after ACLR, quantified by the blood oxygen level dependent (BOLD) response, is altered in regions of sensory function during knee movement after ACLR. However, it is unknown how this altered neural response may manifest in knee loading and response to sensory perturbations during sport specific movements. Purpose To investigate the relationship among CNS function and lower extremity kinetics, under multiple visual conditions, during 180° change of direction task in individuals with a history of ACLR. Methods Eight participants, 39.3 ± 37.1 months after primary, left ACLR performed repetitive active knee flexion and extension of their involved knee during fMRI scanning. Participants separately performed 3D motion capture analysis of a 180° change of direction task under full vision (FV) and stroboscopic vision (SV) conditions. A neural correlate analysis was performed to associate BOLD signal to knee loading of the left lower extremity. Results Involved limb peak internal knee extension moment (pKEM) was significantly lower in the SV condition (1.89 ± 0.37 N*m/Kg) compared to the FV condition (2.0 ± 0.34 N*m/Kg) (p = .018). Involved limb pKEM during the SV condition was positively correlated with BOLD signal in the contralateral precuneus and superior parietal lobe (Voxels: 53; p = .017; z-stat max: 6.47; MNI peak: 6, -50, 66). Conclusion There is a positive association between involved limb pKEM in the SV condition and BOLD response in areas of visual-sensory integration. Activation of contralateral precuneus and superior parietal lobe brain regions may be a strategy to maintain joint loading when vision is perturbed. Level of Evidence Level 3.
Collapse
Affiliation(s)
- Adam Culiver
- School of Health and Rehabilitation Sciences Ohio State University
- Jameson Crane Sports Medicine Research Institute Ohio State University
| | - Dustin Grooms
- Division of Physical Therapy, School of Rehabilitation and Communication Sciences, College of Health Sciences and Professions Ohio University
- Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions Ohio University
- 5. Ohio Musculoskeletal and Neurological Institute Ohio University
| | - Nathan Edwards
- School of Health and Rehabilitation Sciences Ohio State University
- Jameson Crane Sports Medicine Research Institute Ohio State University
| | - Laura Schmitt
- Jameson Crane Sports Medicine Research Institute Ohio State University
- Division of Physical Therapy, School of Health and Rehabilitation Sciences Ohio State University
| | - James Oñate
- Jameson Crane Sports Medicine Research Institute Ohio State University
- Division of Athletic Training, School of Health and Rehabilitation Sciences Ohio State University
| |
Collapse
|
4
|
Mayhew SD, Coleman SC, Mullinger KJ, Can C. Across the adult lifespan the ipsilateral sensorimotor cortex negative BOLD response exhibits decreases in magnitude and spatial extent suggesting declining inhibitory control. Neuroimage 2022; 253:119081. [PMID: 35278710 PMCID: PMC9130740 DOI: 10.1016/j.neuroimage.2022.119081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 11/27/2022] Open
Abstract
Ipsilateral sensorimotor (iSM1) cortex negative BOLD responses (NBR) are observed to unilateral tasks and are thought to reflect a functionally relevant component of sensorimotor inhibition. Evidence suggests that sensorimotor inhibitory mechanisms degrade with age, along with aspects of motor ability and dexterity. However, understanding of age-related changes to NBR is restricted by limited comparisons between young vs old adults groups with relatively small samples sizes. Here we analysed a BOLD fMRI dataset (obtained from the CamCAN repository) of 581 healthy subjects, gender-balanced, sampled from the whole adult lifespan performing a motor response task to an audio-visual stimulus. We aimed to investigate how sensorimotor and default-mode NBR characteristics of magnitude, spatial extent and response shape alter at every decade of the aging process. A linear decrease in iSM1 NBR magnitude was observed across the whole lifespan whereas the contralateral sensorimotor (cSM1) PBR magnitude was unchanged. An age-related decrease in the spatial extent of NBR and an increase in the ipsilateral positive BOLD response (PBR) was observed. This occurred alongside an increasing negative correlation between subject's iSM1 NBR and cSM1 PBR magnitude, reflecting a change in the balance between cortical excitation and inhibition. Conventional GLM analysis, using a canonical haemodynamic response (HR) function, showed disappearance of iSM1 NBR in subjects over 50 years of age. However, a deconvolution analysis showed that the shape of the iSM1 HR altered throughout the lifespan, with delayed time-to-peak and decreased magnitude. The most significant decreases in iSM1 HR magnitude occurred in older age (>60 years) but the first changes in shape and timing occurred as early as 30 years, suggesting possibility of separate mechanisms underlying these alterations. Reanalysis using data-driven HRs for each decade detected significant sensorimotor NBR into late older age, showing the importance of taking changes in HR morphology into account in fMRI aging studies. These results may reflect fMRI measures of the age-related decreases in transcollosal inhibition exerted upon ipsilateral sensorimotor cortex and alterations to the excitatory-inhibitory balance in the sensorimotor network.
Collapse
Affiliation(s)
- Stephen D Mayhew
- Centre for Human Brain Health (CHBH), School of Psychology, University of Birmingham, Birmingham, UK.
| | - Sebastian C Coleman
- Sir Peter Mansfield Imaging Centre (SPMIC), School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Karen J Mullinger
- Centre for Human Brain Health (CHBH), School of Psychology, University of Birmingham, Birmingham, UK; Sir Peter Mansfield Imaging Centre (SPMIC), School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Cam Can
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Maudrich T, Hähner S, Kenville R, Ragert P. Somatosensory-Evoked Potentials as a Marker of Functional Neuroplasticity in Athletes: A Systematic Review. Front Physiol 2022; 12:821605. [PMID: 35111081 PMCID: PMC8801701 DOI: 10.3389/fphys.2021.821605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Somatosensory-evoked potentials (SEP) represent a non-invasive tool to assess neural responses elicited by somatosensory stimuli acquired via electrophysiological recordings. To date, there is no comprehensive evaluation of SEPs for the diagnostic investigation of exercise-induced functional neuroplasticity. This systematic review aims at highlighting the potential of SEP measurements as a diagnostic tool to investigate exercise-induced functional neuroplasticity of the sensorimotor system by reviewing studies comparing SEP parameters between athletes and healthy controls who are not involved in organized sports as well as between athlete cohorts of different sport disciplines. METHODS A systematic literature search was conducted across three electronic databases (PubMed, Web of Science, and SPORTDiscus) by two independent researchers. Three hundred and ninety-seven records were identified, of which 10 cross-sectional studies were considered eligible. RESULTS Differences in SEP amplitudes and latencies between athletes and healthy controls or between athletes of different cohorts as well as associations between SEP parameters and demographic/behavioral variables (years of training, hours of training per week & reaction time) were observed in seven out of 10 included studies. In particular, several studies highlight differences in short- and long-latency SEP parameters, as well as high-frequency oscillations (HFO) when comparing athletes and healthy controls. Neuroplastic differences in athletes appear to be modality-specific as well as dependent on training regimens and sport-specific requirements. This is exemplified by differences in SEP parameters of various athlete populations after stimulation of their primarily trained limb. CONCLUSION Taken together, the existing literature suggests that athletes show specific functional neuroplasticity in the somatosensory system. Therefore, this systematic review highlights the potential of SEP measurements as an easy-to-use and inexpensive diagnostic tool to investigate functional neuroplasticity in the sensorimotor system of athletes. However, there are limitations regarding the small sample sizes and inconsistent methodology of SEP measurements in the studies reviewed. Therefore, future intervention studies are needed to verify and extend the conclusions drawn here.
Collapse
Affiliation(s)
- Tom Maudrich
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Susanne Hähner
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany
| | - Rouven Kenville
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Patrick Ragert
- Department of Movement Neuroscience, Faculty of Sport Science, Leipzig University, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
6
|
Gopinath K, Krishnamurthy V, Sathian K. Accounting for Non-Gaussian Sources of Spatial Correlation in Parametric Functional Magnetic Resonance Imaging Paradigms I: Revisiting Cluster-Based Inferences. Brain Connect 2018; 8:1-9. [PMID: 28927289 DOI: 10.1089/brain.2017.0521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In a recent study, Eklund et al. employed resting-state functional magnetic resonance imaging data as a surrogate for null functional magnetic resonance imaging (fMRI) datasets and posited that cluster-wise family-wise error (FWE) rate-corrected inferences made by using parametric statistical methods in fMRI studies over the past two decades may have been invalid, particularly for cluster defining thresholds less stringent than p < 0.001; this was principally because the spatial autocorrelation functions (sACF) of fMRI data had been modeled incorrectly to follow a Gaussian form, whereas empirical data suggested otherwise. Here, we show that accounting for non-Gaussian signal components such as those arising from resting-state neural activity as well as physiological responses and motion artifacts in the null fMRI datasets yields first- and second-level general linear model analysis residuals with nearly uniform and Gaussian sACF. Further comparison with nonparametric permutation tests indicates that cluster-based FWE corrected inferences made with Gaussian spatial noise approximations are valid.
Collapse
Affiliation(s)
- Kaundinya Gopinath
- 1 Department of Radiology and Imaging Sciences, Emory University , Atlanta, Georgia
| | | | - K Sathian
- 2 Department of Neurology, Emory University , Atlanta, Georgia .,3 Department of Rehabilitation Medicine, Emory University , Atlanta, Georgia .,4 Department of Psychology, Emory University , Atlanta, Georgia .,5 Rehabilitation R&D Center for Visual and Neurocognitive Rehabilitation , Atlanta VAMC, Decatur, Georgia
| |
Collapse
|
7
|
Voluntary modulation of mental effort investment: an fMRI study. Sci Rep 2017; 7:17191. [PMID: 29222423 PMCID: PMC5722925 DOI: 10.1038/s41598-017-17519-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/27/2017] [Indexed: 12/30/2022] Open
Abstract
Mental effort is a common phenomenological construct deeply linked to volition and self-control. While it is often assumed that the amount of exertion invested in a task can be voluntarily regulated, the neural bases of such faculty and its behavioural effects are yet insufficiently understood. In this study, we investigated how the instructions to execute a demanding cognitive task either “with maximum exertion” or “as relaxed as possible” affected performance and brain activity. The maximum exertion condition, compared to relaxed execution, was associated with speeded motor responses without an accuracy trade-off, and an amplification of both task-related activations in dorsal frontoparietal and cerebellar regions, and task-related deactivations in default mode network (DMN) areas. Furthermore, the visual cue to engage maximum effort triggered an anticipatory widespread increase of activity in attentional, sensory and executive regions, with its peak in the brain stem reticular activating system. Across individuals, this surge of activity in the brain stem, but also in medial wall cortical regions projecting to the adrenal medulla, positively correlated with increases in heart rate, suggesting that the intention to willfully modulate invested effort involves mechanisms related to catecholaminergic transmission and a suppression of DMN activity in favor of externally-directed attentional processes.
Collapse
|
8
|
Maudrich T, Kenville R, Lepsien J, Villringer A, Ragert P, Steele CJ. Mirror Electromyografic Activity in the Upper and Lower Extremity: A Comparison between Endurance Athletes and Non-Athletes. Front Hum Neurosci 2017; 11:485. [PMID: 29085288 PMCID: PMC5649197 DOI: 10.3389/fnhum.2017.00485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/20/2017] [Indexed: 11/13/2022] Open
Abstract
During unimanual motor tasks, muscle activity may not be restricted to the contracting muscle, but rather occurs involuntarily in the contralateral resting limb, even in healthy individuals. This phenomenon has been referred to as mirror electromyographic activity (MEMG). To date, the physiological (non-pathological) form of MEMG has been observed predominately in upper extremities (UE), while remaining sparsely described in lower extremities (LE). Accordingly, evidence regarding the underlying mechanisms and modulation capability of MEMG, i.e., the extent of MEMG in dependency of exerted force during unilateral isometric contractions are insufficiently investigated in terms of LE. Furthermore, it still remains elusive if and how MEMG is affected by long-term exercise training. Here, we provide novel quantitative evidence for physiological MEMG in homologous muscles of LE (tibialis anterior (TA), rectus femoris (RF)) during submaximal unilateral dorsiflexion in healthy young adults. Furthermore, endurance athletes (EA, n = 11) show a higher extent of MEMG in LE compared to non-athletes (NA, n = 11) at high force demands (80% MVC, maximum voluntary contraction). While the underlying neurophysiological mechanisms of MEMG still remain elusive, our study indicates, at least indirectly, that sport-related long-term training might affect the amount of MEMG during strong isometric contractions specifically in trained limbs. To support this assumption of exercise-induced limb-specific MEMG modulation, future studies including different sports disciplines with contrasting movement patterns and parameters should additionally be performed.
Collapse
Affiliation(s)
- Tom Maudrich
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Rouven Kenville
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jöran Lepsien
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany
| | - Patrick Ragert
- Institute for General Kinesiology and Exercise Science, Faculty of Sport Science, University of Leipzig, Leipzig, Germany.,Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christopher J Steele
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
9
|
Mayer AR, Ryman SG, Hanlon FM, Dodd AB, Ling JM. Look Hear! The Prefrontal Cortex is Stratified by Modality of Sensory Input During Multisensory Cognitive Control. Cereb Cortex 2017; 27:2831-2840. [PMID: 27166168 PMCID: PMC6059096 DOI: 10.1093/cercor/bhw131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Parsing multisensory information from a complex external environment is a fundamental skill for all organisms. However, different organizational schemes currently exist for how multisensory information is processed in human (supramodal; organized by cognitive demands) versus primate (organized by modality/cognitive demands) lateral prefrontal cortex (LPFC). Functional magnetic resonance imaging results from a large cohort of healthy controls (N = 64; Experiment 1) revealed a rostral-caudal stratification of LPFC for auditory versus visual attention during an audio-visual Stroop task. The stratification existed in spite of behavioral and functional evidence of increased interference from visual distractors. Increased functional connectivity was also observed between rostral LPFC and auditory cortex across independent samples (Experiments 2 and 3) and multiple methodologies. In contrast, the caudal LPFC was preferentially activated during visual attention but functioned in a supramodal capacity for resolving multisensory conflict. The caudal LPFC also did not exhibit increased connectivity with visual cortices. Collectively, these findings closely mirror previous nonhuman primate studies suggesting that visual attention relies on flexible use of a supramodal cognitive control network in caudal LPFC whereas rostral LPFC is specialized for directing attention to auditory inputs (i.e., human auditory fields).
Collapse
Affiliation(s)
- Andrew R. Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA
- Departments of Neurology and Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Sephira G. Ryman
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Faith M. Hanlon
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA
| | - Andrew B. Dodd
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA
| | - Josef M. Ling
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA
| |
Collapse
|
10
|
Mayer AR, Hanlon FM, Dodd AB, Yeo RA, Haaland KY, Ling JM, Ryman SG. Proactive response inhibition abnormalities in the sensorimotor cortex of patients with schizophrenia. J Psychiatry Neurosci 2016; 41:312-21. [PMID: 26883319 PMCID: PMC5008920 DOI: 10.1503/jpn.150097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Previous studies of response inhibition in patients with schizophrenia have focused on reactive inhibition tasks (e.g., stop-signal, go/no-go), primarily observing lateral prefrontal cortex abnormalities. However, recent studies suggest that purposeful and sustained (i.e., proactive) inhibition may also be affected in these patients. METHODS Patients with chronic schizophrenia and healthy controls underwent fMRI while inhibiting motor responses during multisensory (audiovisual) stimulation. Resting state data were also collected. RESULTS We included 37 patients with schizophrenia and 37 healthy controls in our study. Both controls and patients with schizophrenia successfully inhibited the majority of overt motor responses. Functional results indicated basic inhibitory failure in the lateral premotor and sensorimotor cortex, with opposing patterns of positive (schizophrenia) versus negative (control) activation. Abnormal activity was associated with independently assessed signs of psychomotor retardation. Patients with schizophrenia also exhibited unique activation of the pre-supplementary motor area (pre-SMA)/SMA and precuneus relative to baseline as well as a failure to deactivate anterior nodes of the default mode network. Independent resting-state connectivity analysis indicated reduced connectivity between anterior (task results) and posterior regions of the sensorimotor cortex for patients as well as abnormal connectivity between other regions (cerebellum, thalamus, posterior cingulate gyrus and visual cortex). LIMITATIONS Aside from rates of false-positive responses, true proactive response inhibition tasks do not provide behavioural metrics that can be independently used to quantify task performance. CONCLUSION Our results suggest that basic cortico-cortico and intracortical connections between the sensorimotor cortex and adjoining regions are impaired in patients with schizophrenia and that these impaired connections contribute to inhibitory failures (i.e., a positive rather than negative hemodynamic response).
Collapse
Affiliation(s)
- Andrew R. Mayer
- Correspondence to: A. Mayer, The Mind Research Network, Pete & Nancy Domenici Hall, 1101 Yale Blvd. NE, Albuquerque NM 87106;
| | | | | | | | | | | | | |
Collapse
|
11
|
Functional near infrared spectroscopy as a probe of brain function in people with prolonged disorders of consciousness. NEUROIMAGE-CLINICAL 2016; 12:312-9. [PMID: 27547728 PMCID: PMC4983150 DOI: 10.1016/j.nicl.2016.07.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/27/2016] [Accepted: 07/27/2016] [Indexed: 11/22/2022]
Abstract
Near infrared spectroscopy (NIRS) is a non-invasive technique which measures changes in brain tissue oxygenation. NIRS has been used for continuous monitoring of brain oxygenation during medical procedures carrying high risk of iatrogenic brain ischemia and also has been adopted by cognitive neuroscience for studies on executive and cognitive functions. Until now, NIRS has not been used to detect residual cognitive functions in patients with prolonged disorders of consciousness (pDOC). In this study we aimed to evaluate the brain function of patients with pDOC by using a motor imagery task while recording NIRS. We also collected data from a group of age and gender matched healthy controls while they carried out both real and imagined motor movements to command. We studied 16 pDOC patients in total, split into two groups: five had a diagnosis of Vegetative state/Unresponsive Wakefulness State, and eleven had a diagnosis of Minimally Conscious State. In the control subjects we found a greater oxy-haemoglobin (oxyHb) response during real movement compared with imagined movement. For the between group comparison, we found a main effect of hemisphere, with greater depression of oxyHb signal in the right > left hemisphere compared with rest period for all three groups. A post-hoc analysis including only the two pDOC patient groups was also significant suggesting that this effect was not just being driven by the control subjects. This study demonstrates for the first time the feasibility of using NIRS for the assessment of brain function in pDOC patients using a motor imagery task.
Collapse
Key Words
- (Prolonged) disorders of consciousness
- Brain function assessment in disorders of consciousness
- Functional near infrared spectroscopy
- M1, primary motor cortex
- MCS, minimally conscious state
- MI, motor imagery
- MM, motor movement
- SMA, supplementary motor area
- SMART, Sensory Modality Assessment for Rehabilitation Technique
- UWS, unresponsive wakefulness state
- VS, vegetative state
- fNIRS, functional near infrared spectroscopy
- pDOC, prolonged disorders of consciousness
Collapse
|
12
|
Ketamine-induced brain activation in awake female nonhuman primates: a translational functional imaging model. Psychopharmacology (Berl) 2016; 233:961-72. [PMID: 26660447 PMCID: PMC4761287 DOI: 10.1007/s00213-015-4175-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/26/2015] [Indexed: 12/28/2022]
Abstract
RATIONALE There is significant interest in the NMDA receptor antagonist ketamine due to its efficacy in treating depressive disorders and its induction of psychotic-like symptoms that make it a useful tool for modeling psychosis. OBJECTIVE The present study extends the successful development of an apparatus and methodology to conduct pharmacological MRI studies in awake rhesus monkeys in order to evaluate the CNS effects of ketamine. METHODS Functional MRI scans were conducted in four awake adult female rhesus monkeys during sub-anesthetic intravenous (i.v.) infusions of ketamine (0.345 mg/kg bolus followed by 0.256 mg/kg/h constant infusion) with and without risperidone pretreatment (0.06 mg/kg). Statistical parametric maps of ketamine-induced blood oxygenation level-dependent (BOLD) activation were obtained with appropriate general linear regression models (GLMs) incorporating motion and hemodynamics of ketamine infusion. RESULTS Ketamine infusion induced and sustained robust BOLD activation in a number of cortical and subcortical regions, including the thalamus, cingulate gyrus, and supplementary motor area. Pretreatment with the antipsychotic drug risperidone markedly blunted ketamine-induced activation in many brain areas. CONCLUSIONS The results are remarkably similar to human imaging studies showing ketamine-induced BOLD activation in many of the same brain areas, and pretreatment with risperidone or another antipsychotic blunting the ketamine response to a similar extent. The strong concordance of the functional imaging data in humans with these results from nonhuman primates highlights the translational value of the model and provides an excellent avenue for future research examining the CNS effects of ketamine. This model may also be a useful tool for evaluating the efficacy of novel antipsychotic drugs.
Collapse
|
13
|
Hanlon FM, Shaff NA, Dodd AB, Ling JM, Bustillo JR, Abbott CC, Stromberg SF, Abrams S, Lin DS, Mayer AR. Hemodynamic response function abnormalities in schizophrenia during a multisensory detection task. Hum Brain Mapp 2015; 37:745-55. [PMID: 26598791 DOI: 10.1002/hbm.23063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/20/2015] [Accepted: 11/12/2015] [Indexed: 11/07/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) of the blood oxygen level dependent (BOLD) response has commonly been used to investigate the neuropathology underlying cognitive and sensory deficits in patients with schizophrenia (SP) by examining the positive phase of the BOLD response, assuming a fixed shape for the hemodynamic response function (HRF). However, the individual phases (positive and post-stimulus undershoot (PSU)) of the HRF may be differentially affected by a variety of underlying pathologies. The current experiment used a multisensory detection task with a rapid event-related fMRI paradigm to investigate both the positive and PSU phases of the HRF in SP and healthy controls (HC). Behavioral results indicated no significant group differences during task performance. Analyses that examined the shape of the HRF indicated two distinct group differences. First, SP exhibited a reduced and/or prolonged PSU following normal task-related positive BOLD activation in secondary auditory and visual sensory areas relative to HC. Second, SP did not show task-induced deactivation in the anterior node of the default-mode network (aDMN) relative to HC. In contrast, when performing traditional analyses that focus on the positive phase, there were no group differences. Interestingly, the magnitude of the PSU in secondary auditory and visual areas was positively associated with the magnitude of task-induced deactivation within the aDMN, suggesting a possible common neural mechanism underlying both of these abnormalities (failure in neural inhibition). Results are consistent with recent views that separate neural processes underlie the two phases of the HRF and that they are differentially affected in SP. Hum Brain Mapp 37:745-755, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Faith M Hanlon
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | - Nicholas A Shaff
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | - Andrew B Dodd
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | - Josef M Ling
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico
| | - Juan R Bustillo
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, New Mexico.,Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Christopher C Abbott
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Shannon F Stromberg
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Swala Abrams
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Denise S Lin
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Andrew R Mayer
- The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, New Mexico.,Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, New Mexico.,Department of Neurology, University of New Mexico School of Medicine, Albuquerque, New Mexico.,Department of Psychology, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
14
|
Sehm B, Steele CJ, Villringer A, Ragert P. Mirror Motor Activity During Right-Hand Contractions and Its Relation to White Matter in the Posterior Midbody of the Corpus Callosum. Cereb Cortex 2015; 26:4347-4355. [DOI: 10.1093/cercor/bhv217] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Zhang S, Tsai SJ, Hu S, Xu J, Chao HH, Calhoun VD, Li CSR. Independent component analysis of functional networks for response inhibition: Inter-subject variation in stop signal reaction time. Hum Brain Mapp 2015; 36:3289-302. [PMID: 26089095 DOI: 10.1002/hbm.22819] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 03/06/2015] [Accepted: 04/06/2015] [Indexed: 01/11/2023] Open
Abstract
Cognitive control is a critical executive function. Many studies have combined general linear modeling and the stop signal task (SST) to delineate the component processes of cognitive control. For instance, by contrasting stop success (SS) and stop error (SE) trials in the SST, investigators examined regional responses to stop signal inhibition. In contrast to this parameterized approach, independent component analysis (ICA) elucidates brain networks subserving cognitive control. In our earlier work of 59 adults performing the SST during fMRI, we characterized six independent components (ICs). However, none of these ICs correlated with stop signal performance, raising questions about their behavioral validity. Here, in a larger sample (n = 100), we identified and explored 23 ICs for correlation with the stop signal reaction time (SSRT), a measure of the efficiency of response inhibition. At a corrected threshold (P < 0.0005), a paracentral lobule-midcingulate network and a left inferior parietal-supplementary motor-somatomotor network showed a positive correlation between SE beta weight and SSRT. In contrast, a midline cerebellum-thalamus-pallidum network showed a negative correlation between SE beta weight and SSRT. These findings suggest that motor preparation and execution prolongs the SSRT, likely via an interaction between the go and stop processes as suggested by the race model. Behaviorally, consistent with this hypothesis, the difference in G and SE reaction times is positively correlated with SSRT across subjects. These new results highlight the importance of cognitive motor regions in response inhibition and support the utility of ICA in uncovering functional networks for cognitive control in the SST.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Psychiatry, Yale University, New Haven, Connecticut
| | - Shang-Jui Tsai
- Department of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Sien Hu
- Department of Psychiatry, Yale University, New Haven, Connecticut
| | - Jiansong Xu
- Department of Psychiatry, Yale University, New Haven, Connecticut
| | - Herta H Chao
- Department of Internal Medicine, Yale University, New Haven, Connecticut.,Medical Service, VA Connecticut Health Care System, West Haven, Connecticut
| | - Vince D Calhoun
- Department of Psychiatry, Yale University, New Haven, Connecticut.,The Mind Research Network, Albuquerque, New Mexico.,Department of Electrical and Computer Engineering, The University of New Mexico, Albuquerque, New Mexico
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University, New Haven, Connecticut.,Department of Neurobiology, Yale University, New Haven, Connecticut.,Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut
| |
Collapse
|