1
|
Chisholm TS, Hunter CA. Ligands for Protein Fibrils of Amyloid-β, α-Synuclein, and Tau. Chem Rev 2025. [PMID: 40327808 DOI: 10.1021/acs.chemrev.4c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Amyloid fibrils are characteristic features of many neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. The use of small molecule ligands that bind to amyloid fibrils underpins both fundamental research aiming to better understand the pathology of neurodegenerative disease, and clinical research aiming to develop diagnostic tools for these diseases. To date, a large number of amyloid-binding ligands have been reported in the literature, predominantly targeting protein fibrils composed of amyloid-β (Aβ), tau, and α-synuclein (αSyn) fibrils. Fibrils formed by a particular protein can adopt a range of possible morphologies, but protein fibrils formed in vivo possess disease-specific morphologies, highlighting the need for morphology-specific amyloid-binding ligands. This review details the morphologies of Aβ, tau, and αSyn fibril polymorphs that have been reported as a result of structural work and describes a database of amyloid-binding ligands containing 4,288 binding measurements for 2,404 unique compounds targeting Aβ, tau, or αSyn fibrils.
Collapse
Affiliation(s)
- Timothy S Chisholm
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| |
Collapse
|
2
|
Bisi N, Pinzi L, Rastelli G. Selective imaging probes for differential detection of pathological tau polymorphs in tauopathies. Drug Discov Today 2025; 30:104352. [PMID: 40216294 DOI: 10.1016/j.drudis.2025.104352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/12/2025] [Accepted: 04/04/2025] [Indexed: 04/20/2025]
Abstract
Tauopathies, including Alzheimer's disease (AD), Pick's disease (PiD), progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD), are characterized by the misfolding and pathological aggregation of the tau protein, leading to neurodegeneration. Although the pathogenesis of these diseases is still a matter for debate, the formation of amyloid inclusions still represents the only histopathological hallmark available. Tau inclusions are not the same in terms of structure and morphology, and different tauopathies are characterized by different polymorphs. Remarkably, the selective detection of these polymorphs is crucial for differential diagnosis, disease monitoring and evaluation of the potential harmfulness of polymorphs, with a significant impact on drug discovery. This review discusses recent advances in the development of imaging probes designed for the selective detection of pathological tau forms associated with specific tauopathies. We explore the application of compounds that can target tau polymorphs characteristic of AD, PiD, PSP and CBD. In particular, we focus on discussing the probes' selectivity and sensitivity in distinguishing between the different tauopathy-associated polymorphs in preclinical settings. The progress and the weaknesses in this field are discussed, to guide the researchers in identifying accurate and potent probes for the selective diagnosis of these different neurodegenerative diseases.
Collapse
Affiliation(s)
- Nicolò Bisi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy.
| | - Luca Pinzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy
| | - Giulio Rastelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy
| |
Collapse
|
3
|
Zeng X, Lafferty TK, Sehrawat A, Chen Y, Ferreira PCL, Bellaver B, Povala G, Kamboh MI, Klunk WE, Cohen AD, Lopez OL, Ikonomovic MD, Pascoal TA, Ganguli M, Villemagne VL, Snitz BE, Karikari TK. Multi-analyte proteomic analysis identifies blood-based neuroinflammation, cerebrovascular and synaptic biomarkers in preclinical Alzheimer's disease. Mol Neurodegener 2024; 19:68. [PMID: 39385222 PMCID: PMC11465638 DOI: 10.1186/s13024-024-00753-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Blood-based biomarkers are gaining grounds for the detection of Alzheimer's disease (AD) and related disorders (ADRDs). However, two key obstacles remain: the lack of methods for multi-analyte assessments and the need for biomarkers for related pathophysiological processes like neuroinflammation, vascular, and synaptic dysfunction. A novel proteomic method for pre-selected analytes, based on proximity extension technology, was recently introduced. Referred to as the NULISAseq CNS disease panel, the assay simultaneously measures ~ 120 analytes related to neurodegenerative diseases, including those linked to both core (i.e., tau and amyloid-beta (Aβ)) and non-core AD processes. This study aimed to evaluate the technical and clinical performance of this novel targeted proteomic panel. METHODS The NULISAseq CNS disease panel was applied to 176 plasma samples from 113 individuals in the MYHAT-NI cohort of predominantly cognitively normal participants from an economically underserved region in southwestern Pennsylvania, USA. Classical AD biomarkers, including p-tau181, p-tau217, p-tau231, GFAP, NEFL, Aβ40, and Aβ42, were independently measured using Single Molecule Array (Simoa) and correlations and diagnostic performances compared. Aβ pathology, tau pathology, and neurodegeneration (AT(N) statuses) were evaluated with [11C] PiB PET, [18F]AV-1451 PET, and an MRI-based AD-signature composite cortical thickness index, respectively. Linear mixed models were used to examine cross-sectional and Wilcoxon rank sum tests for longitudinal associations between NULISA and neuroimaging-determined AT(N) biomarkers. RESULTS NULISA concurrently measured 116 plasma biomarkers with good technical performance (97.2 ± 13.9% targets gave signals above assay limits of detection), and significant correlation with Simoa assays for the classical biomarkers. Cross-sectionally, p-tau217 was the top hit to identify Aβ pathology, with age, sex, and APOE genotype-adjusted AUC of 0.930 (95%CI: 0.878-0.983). Fourteen markers were significantly decreased in Aβ-PET + participants, including TIMP3, BDNF, MDH1, and several cytokines. Longitudinally, FGF2, IL4, and IL9 exhibited Aβ PET-dependent yearly increases in Aβ-PET + participants. Novel plasma biomarkers with tau PET-dependent longitudinal changes included proteins associated with neuroinflammation, synaptic function, and cerebrovascular integrity, such as CHIT1, CHI3L1, NPTX1, PGF, PDGFRB, and VEGFA; all previously linked to AD but only reliable when measured in cerebrospinal fluid. The autophagosome cargo protein SQSTM1 exhibited significant association with neurodegeneration after adjusting age, sex, and APOE ε4 genotype. CONCLUSIONS Together, our results demonstrate the feasibility and potential of immunoassay-based multiplexing to provide a comprehensive view of AD-associated proteomic changes, consistent with the recently revised biological and diagnostic framework. Further validation of the identified inflammation, synaptic, and vascular markers will be important for establishing disease state markers in asymptomatic AD.
Collapse
Affiliation(s)
- Xuemei Zeng
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Tara K Lafferty
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Anuradha Sehrawat
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Yijun Chen
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Pamela C L Ferreira
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Bruna Bellaver
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Guilherme Povala
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - M Ilyas Kamboh
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - William E Klunk
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Ann D Cohen
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Oscar L Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Milos D Ikonomovic
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh HS, Pittsburgh, PA, USA
| | - Tharick A Pascoal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Mary Ganguli
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Victor L Villemagne
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Beth E Snitz
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Thomas K Karikari
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
4
|
Pradeepkiran JA, Baig J, Islam MA, Kshirsagar S, Reddy PH. Amyloid-β and Phosphorylated Tau are the Key Biomarkers and Predictors of Alzheimer's Disease. Aging Dis 2024; 16:658-682. [PMID: 38739937 PMCID: PMC11964437 DOI: 10.14336/ad.2024.0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
Alzheimer's disease (AD) is a age-related neurodegenerative disease and is a major public health concern both in Texas, US and Worldwide. This neurodegenerative disease is mainly characterized by amyloid-beta (Aβ) and phosphorylated Tau (p-Tau) accumulation in the brains of patients with AD and increasing evidence suggests that these are key biomarkers in AD. Both Aβ and p-tau can be detected through various imaging techniques (such as positron emission tomography, PET) and cerebrospinal fluid (CSF) analysis. The presence of these biomarkers in individuals, who are asymptomatic or have mild cognitive impairment can indicate an increased risk of developing AD in the future. Furthermore, the combination of Aβ and p-tau biomarkers is often used for more accurate diagnosis and prediction of AD progression. Along with AD being a neurodegenerative disease, it is associated with other chronic conditions such as cardiovascular disease, obesity, depression, and diabetes because studies have shown that these comorbid conditions make people more vulnerable to AD. In the first part of this review, we discuss that biofluid-based biomarkers such as Aβ, p-Tau in cerebrospinal fluid (CSF) and Aβ & p-Tau in plasma could be used as an alternative sensitive technique to diagnose AD. In the second part, we discuss the underlying molecular mechanisms of chronic conditions linked with AD and how they affect the patients in clinical care.
Collapse
Affiliation(s)
| | - Javaria Baig
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Md Ariful Islam
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Sudhir Kshirsagar
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - P. Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Neurology Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Public Health Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
5
|
Chisholm TS, Hunter CA. A closer look at amyloid ligands, and what they tell us about protein aggregates. Chem Soc Rev 2024; 53:1354-1374. [PMID: 38116736 DOI: 10.1039/d3cs00518f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The accumulation of amyloid fibrils is characteristic of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease. Detecting these fibrils with fluorescent or radiolabelled ligands is one strategy for diagnosing and better understanding these diseases. A vast number of amyloid-binding ligands have been reported in the literature as a result. To obtain a better understanding of how amyloid ligands bind, we have compiled a database of 3457 experimental dissociation constants for 2076 unique amyloid-binding ligands. These ligands target Aβ, tau, or αSyn fibrils, as well as relevant biological samples including AD brain homogenates. From this database significant variation in the reported dissociation constants of ligands was found, possibly due to differences in the morphology of the fibrils being studied. Ligands were also found to bind to Aβ(1-40) and Aβ(1-42) fibrils with similar affinities, whereas a greater difference was found for binding to Aβ and tau or αSyn fibrils. Next, the binding of ligands to fibrils was shown to be largely limited by the hydrophobic effect. Some Aβ ligands do not fit into this hydrophobicity-limited model, suggesting that polar interactions can play an important role when binding to this target. Finally several binding site models were outlined for amyloid fibrils that describe what ligands target what binding sites. These models provide a foundation for interpreting and designing site-specific binding assays.
Collapse
Affiliation(s)
- Timothy S Chisholm
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1 EW, UK.
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1 EW, UK.
| |
Collapse
|
6
|
Cools R, Kerkhofs K, Leitao RCF, Bormans G. Preclinical Evaluation of Novel PET Probes for Dementia. Semin Nucl Med 2023; 53:599-629. [PMID: 37149435 DOI: 10.1053/j.semnuclmed.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 05/08/2023]
Abstract
The development of novel PET imaging agents that selectively bind specific dementia-related targets can contribute significantly to accurate, differential and early diagnosis of dementia causing diseases and support the development of therapeutic agents. Consequently, in recent years there has been a growing body of literature describing the development and evaluation of potential new promising PET tracers for dementia. This review article provides a comprehensive overview of novel dementia PET probes under development, classified by their target, and pinpoints their preclinical evaluation pathway, typically involving in silico, in vitro and ex/in vivo evaluation. Specific target-associated challenges and pitfalls, requiring extensive and well-designed preclinical experimental evaluation assays to enable successful clinical translation and avoid shortcomings observed for previously developed 'well-established' dementia PET tracers are highlighted in this review.
Collapse
Affiliation(s)
- Romy Cools
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Kobe Kerkhofs
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; NURA, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Renan C F Leitao
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Cogswell PM, Fan AP. Multimodal comparisons of QSM and PET in neurodegeneration and aging. Neuroimage 2023; 273:120068. [PMID: 37003447 PMCID: PMC10947478 DOI: 10.1016/j.neuroimage.2023.120068] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Quantitative susceptibility mapping (QSM) has been used to study susceptibility changes that may occur based on tissue composition and mineral deposition. Iron is a primary contributor to changes in magnetic susceptibility and of particular interest in applications of QSM to neurodegeneration and aging. Iron can contribute to neurodegeneration through inflammatory processes and via interaction with aggregation of disease-related proteins. To better understand the local susceptibility changes observed on QSM, its signal has been studied in association with other imaging metrics such as positron emission tomography (PET). The associations of QSM and PET may provide insight into the pathophysiology of disease processes, such as the role of iron in aging and neurodegeneration, and help to determine the diagnostic utility of QSM as an indirect indicator of disease processes typically evaluated with PET. In this review we discuss the proposed mechanisms and summarize prior studies of the associations of QSM and amyloid PET, tau PET, TSPO PET, FDG-PET, 15O-PET, and F-DOPA PET in evaluation of neurologic diseases with a focus on aging and neurodegeneration.
Collapse
Affiliation(s)
- Petrice M Cogswell
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| | - Audrey P Fan
- Department of Biomedical Engineering and Department of Neurology, University of California, Davis, 1590 Drew Avenue, Davis, CA 95618, USA
| |
Collapse
|
8
|
Nagle VL, Ikotun OF, Henry KE. A Highlight on Dr. Julie C. Price: an Exceptional Career and a Candid Conversation on Diversity, Equity, and Inclusion. Mol Imaging Biol 2023; 25:265-270. [PMID: 35982280 DOI: 10.1007/s11307-022-01765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 07/24/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
Affiliation(s)
- Veronica L Nagle
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | | | | |
Collapse
|
9
|
Fu JF, Lois C, Sanchez J, Becker JA, Rubinstein ZB, Thibault E, Salvatore AN, Sari H, Farrell ME, Guehl NJ, Normandin MD, Fakhri GE, Johnson KA, Price JC. Kinetic evaluation and assessment of longitudinal changes in reference region and extracerebral [ 18F]MK-6240 PET uptake. J Cereb Blood Flow Metab 2023; 43:581-594. [PMID: 36420769 PMCID: PMC10063833 DOI: 10.1177/0271678x221142139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/17/2022] [Accepted: 11/06/2022] [Indexed: 11/25/2022]
Abstract
[18F]MK-6240 meningeal/extracerebral off-target binding may impact tau quantification. We examined the kinetics and longitudinal changes of extracerebral and reference regions. [18F]MK-6240 PET was performed in 24 cognitively-normal and eight cognitively-impaired subjects, with arterial samples in 13 subjects. Follow-up scans at 6.1 ± 0.5 (n = 25) and 13.3 ± 0.9 (n = 16) months were acquired. Extracerebral and reference region (cerebellar gray matter (CerGM)-based, cerebral white matter (WM), pons) uptake were evaluated using standardized uptake values (SUV90-110), spectral analysis, and distribution volume. Longitudinal changes in SUV90-110 were examined. The impact of reference region on target region outcomes, partial volume correction (PVC) and regional erosion were evaluated. Eroded WM and pons showed lower variability, lower extracerebral contamination, and lower longitudinal changes than CerGM-based regions. CerGM-based regions resulted larger cross-sectional effect sizes for group differentiation. Extracerebral signal was high in 50% of subjects and exhibited irreversible kinetics and nonsignificant longitudinal changes over one-year but was highly variable at subject-level. PVC resulted in higher variability in reference region uptake and longitudinal changes. Our results suggest that eroded CerGM may be preferred for cross-sectional, whilst eroded WM or pons may be preferred for longitudinal [18F]MK-6240 studies. For CerGM, erosion was necessary (preferred over PVC) to address the heterogenous nature of extracerebral signal.
Collapse
Affiliation(s)
- Jessie Fanglu Fu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Department of Radiology, Boston, MA, USA
| | - Cristina Lois
- Harvard Medical School, Department of Radiology, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Justin Sanchez
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - J Alex Becker
- Harvard Medical School, Department of Radiology, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Zoe B Rubinstein
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Emma Thibault
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew N Salvatore
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Hasan Sari
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Department of Radiology, Boston, MA, USA
| | | | - Nicolas J Guehl
- Harvard Medical School, Department of Radiology, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Marc D Normandin
- Harvard Medical School, Department of Radiology, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Georges El Fakhri
- Harvard Medical School, Department of Radiology, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Keith A Johnson
- Harvard Medical School, Department of Radiology, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Julie C Price
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Department of Radiology, Boston, MA, USA
| |
Collapse
|
10
|
Zhang T, Guo S, Li F, Lan X, Jia Y, Zhang J, Huang Y, Liang XJ. Image-guided/improved diseases management: From immune-strategies and beyond. Adv Drug Deliv Rev 2022; 188:114446. [PMID: 35820600 DOI: 10.1016/j.addr.2022.114446] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/25/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022]
Abstract
Timely and accurate assessment and diagnosis are extremely important and beneficial for all diseases, especially for some of the major human disease, such as cancers, cardiovascular diseases, infectious diseases, and neurodegenerative diseases. Limited by the variable disease microenvironment, early imperceptible symptoms, complex immune system interactions, and delayed clinical phenotypes, disease diagnosis and treatment are difficult in most cases. Molecular imaging (MI) techniques can track therapeutic drugs and disease sites in vivo and in vitro in a non-invasive, real-time and visible strategies. Comprehensive visual imaging and quantitative analysis based on different levels can help to clarify the disease process, pathogenesis, drug pharmacokinetics, and further evaluate the therapeutic effects. This review summarizes the application of different MI techniques in the diagnosis and treatment of these major human diseases. It is hoped to shed a light on the development of related technologies and fields.
Collapse
Affiliation(s)
- Tian Zhang
- School of Life Science Advanced Research Institute of Multidisciplinary Science School of Medical Technology (Institute of Engineering Medicine) Key Laboratory of Molecular Medicine and Biotherapy Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Beijing Institute of Technology, Beijing 100081, China
| | - Shuai Guo
- School of Life Science Advanced Research Institute of Multidisciplinary Science School of Medical Technology (Institute of Engineering Medicine) Key Laboratory of Molecular Medicine and Biotherapy Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Beijing Institute of Technology, Beijing 100081, China
| | - Fangzhou Li
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Xinmiao Lan
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Yaru Jia
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Jinchao Zhang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China
| | - Yuanyu Huang
- School of Life Science Advanced Research Institute of Multidisciplinary Science School of Medical Technology (Institute of Engineering Medicine) Key Laboratory of Molecular Medicine and Biotherapy Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Beijing Institute of Technology, Beijing 100081, China.
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China; College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, China; University of Chinese Academy of Sciences. Beijing 100049, China.
| |
Collapse
|
11
|
Haass C, Selkoe D. If amyloid drives Alzheimer disease, why have anti-amyloid therapies not yet slowed cognitive decline? PLoS Biol 2022; 20:e3001694. [PMID: 35862308 PMCID: PMC9302755 DOI: 10.1371/journal.pbio.3001694] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Strong genetic evidence supports an imbalance between production and clearance of amyloid β-protein (Aβ) in people with Alzheimer disease (AD). Microglia that are potentially involved in alternative mechanisms are actually integral to the amyloid cascade. Fluid biomarkers and brain imaging place accumulation of Aβ at the beginning of molecular and clinical changes in the disease. So why have clinical trials of anti-amyloid therapies not provided clear-cut benefits to patients with AD? Can anti-amyloid therapies robustly decrease Aβ in the human brain, and if so, could this lowering be too little, too late? These central questions in research on AD are being urgently addressed. Evidence suggests that an imbalance between production and clearance of amyloid-beta is an early, invariant feature of Alzheimer disease that drives its neuronal and glial pathology and precedes cognitive symptoms. So why are we still unable to slow cognitive decline with anti-amyloid therapies?
Collapse
Affiliation(s)
- Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians University, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- * E-mail: (CH); (DS)
| | - Dennis Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (CH); (DS)
| |
Collapse
|
12
|
Künze G, Kümpfel R, Rullmann M, Barthel H, Brendel M, Patt M, Sabri O. Molecular Simulations Reveal Distinct Energetic and Kinetic Binding Properties of [ 18F]PI-2620 on Tau Filaments from 3R/4R and 4R Tauopathies. ACS Chem Neurosci 2022; 13:2222-2234. [PMID: 35762647 DOI: 10.1021/acschemneuro.2c00291] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Tauopathies are a class of neurodegenerative disorders characterized by the accumulation of tau protein filaments in the brain. On the basis of isoforms with three or four microtubule-binding repeats (3R or 4R) that constitute tau filaments, tauopathies can be divided into 3R, 4R, and 3R/4R tauopathies. [18F]PI-2620 is a tau-positron emission tomography (PET) tracer that detects tau filaments in the 3R/4R tauopathy Alzheimer's disease (AD) and the 4R tauopathies corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP) with differential binding characteristics. A multiscale simulation workflow, including molecular docking, molecular dynamics simulation, metadynamics, and Brownian dynamics, was applied to uncover the molecular basis for the different binding properties of [18F]PI-2620 in these tauopathies. The energetically best binding sites of [18F]PI-2620 in the AD-tau filament are located in the C-shaped groove of the filament core structure that is accessible to the outside. The most favorable binding sites in CBD-tau and PSP-tau filaments are localized to cavities in the inner filament core. Sites on the outer surface have higher binding free energies, and interaction of [18F]PI-2620 at these sites was short-lived in the molecular dynamics simulations. Computationally predicted associated rates of [18F]PI-2620 with the groove sites in the AD-tau filament were higher than association rates with the cavity sites in the CBD- and PSP-tau filaments. The results indicate that tau filaments in AD combine favorable energetic and kinetic properties with regard to tracer binding, while the binding of [18F]PI-2620 to filaments in CBD and PSP is kinetically restricted. Our findings reveal that distinct structural, energetic, and kinetic properties of tau filaments from AD, CBD, and PSP govern their interaction with PET tracers, which highlights the possibility to achieve tau isoform specificity in future tracer developments.
Collapse
Affiliation(s)
- Georg Künze
- Institute for Drug Discovery, University of Leipzig, 04103 Leipzig, Germany
| | - Richy Kümpfel
- Institute for Drug Discovery, University of Leipzig, 04103 Leipzig, Germany
| | - Michael Rullmann
- Department of Nuclear Medicine, University of Leipzig, Leipzig 04103, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Leipzig 04103, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377 Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich 81377, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich 81377, Germany
| | - Marianne Patt
- Department of Nuclear Medicine, University of Leipzig, Leipzig 04103, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig 04103, Germany
| |
Collapse
|
13
|
Maschio C, Ni R. Amyloid and Tau Positron Emission Tomography Imaging in Alzheimer’s Disease and Other Tauopathies. Front Aging Neurosci 2022; 14:838034. [PMID: 35527737 PMCID: PMC9074832 DOI: 10.3389/fnagi.2022.838034] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
The detection and staging of Alzheimer’s disease (AD) using non-invasive imaging biomarkers is of substantial clinical importance. Positron emission tomography (PET) provides readouts to uncover molecular alterations in the brains of AD patients with high sensitivity and specificity. A variety of amyloid-β (Aβ) and tau PET tracers are already available for the clinical diagnosis of AD, but there is still a lack of imaging biomarkers with high affinity and selectivity for tau inclusions in primary tauopathies, such as progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and Pick’s disease (PiD). This review aims to provide an overview of the existing Aβ and tau PET imaging biomarkers and their binding properties from in silico, in vitro, and in vivo assessment. Imaging biomarkers for pathologic proteins are vital for clinical diagnosis, disease staging and monitoring of the potential therapeutic approaches of AD. Off-target binding of radiolabeled tracers to white matter or other neural structures is one confounding factor when interpreting images. To improve binding properties such as binding affinity and to eliminate off-target binding, second generation of tau PET tracers have been developed. To conclude, we further provide an outlook for imaging tauopathies and other pathological features of AD and primary tauopathies.
Collapse
Affiliation(s)
- Cinzia Maschio
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- *Correspondence: Cinzia Maschio,
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH Zürich and University of Zurich, Zurich, Switzerland
- Ruiqing Ni,
| |
Collapse
|
14
|
Concordance of Alzheimer’s Disease Subtypes Produced from Different Representative Morphological Measures: A Comparative Study. Brain Sci 2022; 12:brainsci12020187. [PMID: 35203950 PMCID: PMC8869952 DOI: 10.3390/brainsci12020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Gray matter (GM) density and cortical thickness (CT) obtained from structural magnetic resonance imaging are representative GM morphological measures that have been commonly used in Alzheimer’s disease (AD) subtype research. However, how the two measures affect the definition of AD subtypes remains unclear. Methods: A total of 180 AD patients from the ADNI database were used to identify AD subgroups. The subtypes were identified via a data-driven strategy based on the density features and CT features, respectively. Then, the similarity between the two features in AD subtype definition was analyzed. Results: Four distinct subtypes were discovered by both density and CT features: diffuse atrophy AD, minimal atrophy AD (MAD), left temporal dominant atrophy AD (LTAD), and occipital sparing AD. The matched subtypes exhibited relatively high similarity in atrophy patterns and neuropsychological and neuropathological characteristics. They differed only in MAD and LTAD regarding the carrying of apolipoprotein E ε2. Conclusions: The results verified that different representative morphological GM measurement methods could produce similar AD subtypes. Meanwhile, the influences of apolipoprotein E genotype, asymmetric disease progression, and their interactions should be considered and included in the AD subtype definition. This study provides a valuable reference for selecting features in future studies of AD subtypes.
Collapse
|
15
|
Prem Kumar A, Singh N, Nair D, Justin A. Neuronal PET tracers for Alzheimer's disease. Biochem Biophys Res Commun 2022; 587:58-62. [PMID: 34864547 DOI: 10.1016/j.bbrc.2021.11.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 11/02/2022]
Abstract
Advancements in brain imaging techniques have emerged as a significant tool in detecting Alzheimer's disease (AD) progression. The complicated cascade of AD progression can be detected using radio imaging, especially with Positron emission tomography (PET). The review focus on recently introduced investigational PET tracers targeting neurofibrillary tau aggregates found typically in AD. Herein, we also address the use of different PET tracers and the clinical implementation of established and newer generation tracers. This review also intends to discuss the importance of several PET radiotracers and challenges in PET imaging.
Collapse
Affiliation(s)
- Ashwini Prem Kumar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, 643001, Nilgiris, Tamilnadu, India
| | - Nivedita Singh
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Deepak Nair
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Antony Justin
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, 643001, Nilgiris, Tamilnadu, India.
| |
Collapse
|
16
|
Nihashi T, Sakurai K, Kato T, Iwata K, Kimura Y, Ikenuma H, Yamaoka A, Takeda A, Arahata Y, Washimi Y, Suzuki K, Bundo M, Sakurai T, Okamura N, Yanai K, Ito K, Nakamura A. Patterns of Distribution of 18F-THK5351 Positron Emission Tomography in Alzheimer's Disease Continuum. J Alzheimers Dis 2021; 85:223-234. [PMID: 34776443 DOI: 10.3233/jad-215024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is conceptualized as a biological continuum encompassing the preclinical (clinically asymptomatic but with evidence of AD pathology) and clinical (symptomatic) phases. OBJECTIVE Using 18F-THK5351 as a tracer that binds to both tau and MAO-B, we investigated the changes in 18F-THK5351 accumulation patterns in AD continuum individuals with positive amyloid PET consisting of cognitively normal individuals (CNp), amnestic mild cognitive impairment (aMCI), and AD and cognitively normal individuals (CNn) with negative amyloid PET. METHODS We studied 69 individuals (32 CNn, 11 CNp, 9 aMCI, and 17 AD) with structural magnetic resonance imaging, 11C-Pittsburgh compound-B (PIB) and 18F-THK5351 PET, and neuropsychological assessment. 18F-THK5351 accumulation was evaluated with visual analysis, voxel-based analysis and combined region of interest (ROI)-based analysis corresponding to Braak neurofibrillary tangle stage. RESULTS On visual analysis, 18F-THK5351 accumulation was increased with stage progression in the AD continuum. On voxel-based analysis, there was no statistical difference in 18F-THK5351 accumulation between CNp and CNn. However, a slight increase of the bilateral posterior cingulate gyrus in aMCI and definite increase of the bilateral parietal temporal association area and posterior cingulate gyrus/precuneus in AD were detected compared with CNn. On ROI-based analyses, 18F-THK5351 accumulation correlated positively with supratentorial 11C-PIB accumulation and negatively with the hippocampal volume and neuropsychological assessment. CONCLUSION The AD continuum showed an increase in 18F-THK5351 with stage progression, suggesting that 18F-THK5351 has the potential to visualize the severity of tau deposition and neurodegeneration in accordance with the AD continuum.
Collapse
Affiliation(s)
- Takashi Nihashi
- Department of Radiology, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Keita Sakurai
- Department of Radiology, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Takashi Kato
- Department of Radiology, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan.,Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Kaori Iwata
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Yasuyuki Kimura
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Hiroshi Ikenuma
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Akiko Yamaoka
- Department of Neurology, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Akinori Takeda
- Department of Neurology, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Yutaka Arahata
- Department of Neurology, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Yukihiko Washimi
- Department of Neurology, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Keisuke Suzuki
- Innovation Center for Translational Research, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Masahiko Bundo
- Department of Neurosurgery, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Takashi Sakurai
- Center for Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Aoba Ward, Sendai, Miyagi, Japan.,Department of Pharmacology, Tohoku University School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
| | - Kazuhiko Yanai
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Aoba Ward, Sendai, Miyagi, Japan.,Department of Pharmacology, Tohoku University School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
| | - Kengo Ito
- National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | - Akinori Nakamura
- Department of Clinical and Experimental Neuroimaging, National Center for Geriatrics and Gerontology, Obu City, Aichi Prefecture, Japan
| | | |
Collapse
|
17
|
San Segundo-Acosta P, Montero-Calle A, Jernbom-Falk A, Alonso-Navarro M, Pin E, Andersson E, Hellström C, Sánchez-Martínez M, Rábano A, Solís-Fernández G, Peláez-García A, Martínez-Useros J, Fernández-Aceñero MJ, Månberg A, Nilsson P, Barderas R. Multiomics Profiling of Alzheimer's Disease Serum for the Identification of Autoantibody Biomarkers. J Proteome Res 2021; 20:5115-5130. [PMID: 34628858 DOI: 10.1021/acs.jproteome.1c00630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New biomarkers of Alzheimer's disease (AD) with a diagnostic value in preclinical and prodromal stages are urgently needed. AD-related serum autoantibodies are potential candidate biomarkers. Here, we aimed at identifying AD-related serum autoantibodies using protein microarrays and mass spectrometry-based methods. To this end, an untargeted complementary screening using high-density (42,100 antigens) and low-density (384 antigens) planar protein-epitope signature tag (PrEST) arrays and an immunoprecipitation protocol coupled to mass spectrometry analysis were used for serum autoantibody profiling. From the untargeted screening phase, 377 antigens corresponding to 338 proteins were selected for validation. Out of them, IVD, CYFIP1, and ADD2 seroreactivity was validated using 128 sera from AD patients and controls by PrEST-suspension bead arrays, and ELISA or luminescence Halotag-based bead immunoassay using full-length recombinant proteins. Importantly, IVD, CYFIP1, and ADD2 showed in combination a noticeable AD diagnostic ability. Moreover, IVD protein abundance in the prefrontal cortex was significantly two-fold higher in AD patients than in controls by western blot and immunohistochemistry, whereas CYFIP1 and ADD2 were significantly down-regulated in AD patients. The panel of AD-related autoantigens identified by a comprehensive multiomics approach may provide new insights of the disease and should help in the blood-based diagnosis of Alzheimer's disease. Mass spectrometry raw data are available in the ProteomeXchange database with the access number PXD028392.
Collapse
Affiliation(s)
- Pablo San Segundo-Acosta
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ana Montero-Calle
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain
| | - August Jernbom-Falk
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Solna, Stockholm 171 65, Sweden
| | - Miren Alonso-Navarro
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain
| | - Elisa Pin
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Solna, Stockholm 171 65, Sweden
| | - Eni Andersson
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Solna, Stockholm 171 65, Sweden
| | - Cecilia Hellström
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Solna, Stockholm 171 65, Sweden
| | | | - Alberto Rábano
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid 28031, Spain
| | | | - Alberto Peláez-García
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), Madrid 28046, Spain
| | - Javier Martínez-Useros
- Translational Oncology Division, OncoHealth Institute, Health Research Institute-Fundacion Jimenez Diaz University Hospital, Madrid 28040, Spain
| | - María Jesús Fernández-Aceñero
- Servicio de Anatomía Patológica Hospital Universitario Clínico San Carlos, Departamento de Anatomía Patológica, Facultad de Medicina, Complutense University of Madrid, Madrid 28040, Spain
| | - Anna Månberg
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Solna, Stockholm 171 65, Sweden
| | - Peter Nilsson
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Solna, Stockholm 171 65, Sweden
| | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, Madrid 28220, Spain
| |
Collapse
|
18
|
Sexton C, Snyder H, Beher D, Boxer AL, Brannelly P, Brion JP, Buée L, Cacace AM, Chételat G, Citron M, DeVos SL, Diaz K, Feldman HH, Frost B, Goate AM, Gold M, Hyman B, Johnson K, Karch CM, Kerwin DR, Koroshetz WJ, Litvan I, Morris HR, Mummery CJ, Mutamba J, Patterson MC, Quiroz YT, Rabinovici GD, Rommel A, Shulman MB, Toledo-Sherman LM, Weninger S, Wildsmith KR, Worley SL, Carrillo MC. Current directions in tau research: Highlights from Tau 2020. Alzheimers Dement 2021; 18:988-1007. [PMID: 34581500 DOI: 10.1002/alz.12452] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/07/2021] [Accepted: 07/22/2021] [Indexed: 11/07/2022]
Abstract
Studies supporting a strong association between tau deposition and neuronal loss, neurodegeneration, and cognitive decline have heightened the allure of tau and tau-related mechanisms as therapeutic targets. In February 2020, leading tau experts from around the world convened for the first-ever Tau2020 Global Conference in Washington, DC, co-organized and cosponsored by the Rainwater Charitable Foundation, the Alzheimer's Association, and CurePSP. Representing academia, industry, government, and the philanthropic sector, presenters and attendees discussed recent advances and current directions in tau research. The meeting provided a unique opportunity to move tau research forward by fostering global partnerships among academia, industry, and other stakeholders and by providing support for new drug discovery programs, groundbreaking research, and emerging tau researchers. The meeting also provided an opportunity for experts to present critical research-advancing tools and insights that are now rapidly accelerating the pace of tau research.
Collapse
Affiliation(s)
| | | | | | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Pat Brannelly
- Alzheimer's Disease Data Initiative, Kirkland, WI, USA
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Luc Buée
- Univ Lille, Inserm, CHU-Lille, Lille Neuroscience and Cognition, Place de Verdun, Lille, France
| | | | - Gaël Chételat
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Martin Citron
- Neuroscience TA, Braine l'Alleud, UCB Biopharma, Brussels, Belgium
| | - Sarah L DeVos
- Translational Sciences, Denali Therapeutics, San Francisco, California, USA
| | | | - Howard H Feldman
- Alzheimer's Disease Cooperative Study, Department of Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Bess Frost
- Sam & Ann Barshop Institute for Longevity and Aging Studies, Glenn Biggs Institute for Alzheimer's & Neurodegenerative Disorders, Department of Cell Systems & Anatomy, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Neuroscience, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael Gold
- AbbVie, Neurosciences Development, North Chicago, Illinois, USA
| | - Bradley Hyman
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Keith Johnson
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Celeste M Karch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Diana R Kerwin
- Kerwin Medical Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Walter J Koroshetz
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Irene Litvan
- Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego, San Diego, California, USA
| | - Huw R Morris
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Catherine J Mummery
- Dementia Research Centre, National Hospital for Neurology and Neurosurgery, University College London, London, UK
| | | | - Marc C Patterson
- Departments of Neurology, Pediatrics and Medical Genetics, Mayo Clinic, Rochester, Minnesota, USA
| | - Yakeel T Quiroz
- Departments of Neurology and Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Gil D Rabinovici
- Memory & Aging Center, Departments of Neurology, Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Amy Rommel
- Tau Consortium, Rainwater Charitable Foundation, Fort Worth, Texas, USA
| | - Melanie B Shulman
- Neurodegeneration Development Unit, Biogen, Boston, Massachusetts, USA
| | | | | | - Kristin R Wildsmith
- Department of Biomarker Development, Genentech, South San Francisco, California, USA
| | - Susan L Worley
- Independent science writer, Bryn Mawr, Pennsylvania, USA
| | | |
Collapse
|
19
|
The Evaluation of Tau Deposition with [ 18F]PI-2620 by Using a Semiquantitative Method in Cognitively Normal Subjects and Patients with Mild Cognitive Impairment and Alzheimer's Disease. Mol Imaging 2021; 2021:6640054. [PMID: 34381315 PMCID: PMC8328488 DOI: 10.1155/2021/6640054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/18/2021] [Accepted: 06/22/2021] [Indexed: 11/18/2022] Open
Abstract
Background Some studies have reported the effectiveness of [18F]PI-2620 as an effective tau-binding radiotracer; however, few reports have applied semiquantitative analysis to the tracer. Therefore, this study's aim was to perform a semiquantitative analysis of [18F]PI-2620 in individuals with normal cognition and patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). Methods Twenty-six cognitively normal (CN) subjects, 7 patients with AD, and 36 patients with MCI were enrolled. A dynamic positron emission tomography (PET) scan was performed 30–75 min postinjection. PET and T1-weighted magnetic resonance imaging scans were coregistered. The standardized uptake value ratio (SUVr) was used for semiquantitative analysis. The P-Mod software was applied to create volumes of interest. The ANOVA and post hoc Tukey HSD were used for statistical analysis. Results In the AD group, the occipital lobe had a significantly higher mean SUVr (1.46 ± 0.57) than in the CN and MCI groups. Compared with the CN group, the AD group showed significantly higher mean SUVr in the fusiform gyrus (1.06 ± 0.09 vs. 1.49 ± 0.86), inferior temporal (1.07 ± 0.07 vs. 1.46 ± 0.08), parietal lobe, lingual gyrus, and precuneus regions. Similarly, the AD group demonstrated a higher mean SUVr than the MCI group in the precuneus, lingual, inferior temporal, fusiform, supramarginal, orbitofrontal, and superior temporal regions. The remaining observed regions, including the striatum, basal ganglia, thalamus, and white matter, showed a low SUVr across all groups with no statistically significant differences. Conclusion A significantly higher mean SUVr of [18F]PI-2620 was observed in the AD group; a significant area of the brain in the AD group demonstrated tau protein deposit in concordance with Braak Stages III–V, providing useful information to differentiate AD from CN and MCI. Moreover, the low SUVr in the deep striatum and thalamus could be useful for excluding primary tauopathies.
Collapse
|
20
|
Zammit MD, Tudorascu DL, Laymon CM, Hartley SL, Ellison PA, Zaman SH, Ances BM, Johnson SC, Stone CK, Sabbagh MN, Mathis CA, Klunk WE, Cohen AD, Handen BL, Christian BT. Neurofibrillary tau depositions emerge with subthreshold cerebral beta-amyloidosis in down syndrome. NEUROIMAGE-CLINICAL 2021; 31:102740. [PMID: 34182407 PMCID: PMC8252122 DOI: 10.1016/j.nicl.2021.102740] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/20/2021] [Accepted: 06/21/2021] [Indexed: 01/04/2023]
Abstract
Neurofibrillary tau deposition in Down syndrome follows the Braak staging pathology. Neurofibrillary tau emerges in individuals with very low amyloid burden. There is a short latency between the onset of amyloid and tau in Down syndrome. Elevated tau was observed in Braak stages I-II with very low amyloid burden, and in stages III-VI with greater amyloid burden.
Introduction Adults with Down syndrome are genetically predisposed to develop Alzheimer’s disease and accumulate beta-amyloid plaques (Aβ) early in life. While Aβ has been heavily studied in Down syndrome, its relationship with neurofibrillary tau is less understood. The aim of this study was to evaluate neurofibrillary tau deposition in individuals with Down syndrome with varying levels of Aβ burden. Methods A total of 161 adults with Down syndrome (mean age = 39.2 (8.50) years) and 40 healthy, non-Down syndrome sibling controls (43.2 (12.6) years) underwent T1w-MRI, [C-11]PiB and [F-18]AV-1451 PET scans. PET images were converted to units of standardized uptake value ratios (SUVrs). Aβ burden was calculated using the amyloid load metric (AβL); a measure of global Aβ burden that improves quantification from SUVrs by suppressing the nonspecific binding signal component and computing the specific Aβ signal from all Aβ-carrying voxels from the image. Regional tau was assessed using control-standardized AV-1451 SUVr. Control-standardized SUVrs were compared across Down syndrome groups of Aβ-negative (A-) (AβL < 13.3), subthreshold A+ (13.3 ≤ AβL < 20) and conventionally A+ (AβL ≥ 20) individuals. The subthreshold A + group was identified as having significantly higher Aβ burden compared to the A- group, but not high enough to satisfy a conventional A + classification. Results A large-sized association that survived adjustment for chronological age, mental age (assessed using the Peabody Picture Vocabulary Test), and imaging site was observed between AβL and AV-1451 within each Braak region (p < .05). The A + group showed significantly higher AV-1451 retention across all Braak regions compared to the A- and subthreshold A + groups (p < .05). The subthreshold A + group showed significantly higher AV-1451 retention in Braak regions I-III compared to an age-matched sample from the A- group (p < .05). Discussion These results show that even the earliest detectable Aβ accumulation in Down syndrome is accompanied by elevated tau in the early Braak stage regions. This early detection of tau can help characterize the tau accumulation phase during preclinical Alzheimer’s disease progression in Down syndrome and suggests that there may be a relatively narrow window after Aβ accumulation begins to prevent the downstream cascade of events that leads to Alzheimer’s disease.
Collapse
Affiliation(s)
- Matthew D Zammit
- University of Wisconsin-Madison Waisman Center, Madison, WI, USA; University of Wisconsin-Madison Department of Medical Physics, Madison, WI, USA.
| | - Dana L Tudorascu
- University of Pittsburgh Department of Psychiatry, Pittsburgh, PA, USA
| | - Charles M Laymon
- University of Pittsburgh Department of Radiology, Pittsburgh, PA, USA; University of Pittsburgh Department of Bioengineering, Pittsburgh, PA, USA
| | - Sigan L Hartley
- University of Wisconsin-Madison Waisman Center, Madison, WI, USA
| | - Paul A Ellison
- University of Wisconsin-Madison Department of Medical Physics, Madison, WI, USA
| | - Shahid H Zaman
- Cambridge Intellectual Disability Research Group, University of Cambridge, Cambridge, UK
| | - Beau M Ances
- Washington University in St. Louis Department of Neurology, St. Louis, MO, USA
| | - Sterling C Johnson
- University of Wisconsin-Madison Alzheimer's Disease Research Center, Madison, WI, USA
| | - Charles K Stone
- University of Wisconsin-Madison Department of Medicine, Madison, WI, USA
| | | | - Chester A Mathis
- University of Pittsburgh Department of Psychiatry, Pittsburgh, PA, USA
| | - William E Klunk
- University of Pittsburgh Department of Psychiatry, Pittsburgh, PA, USA
| | - Ann D Cohen
- University of Pittsburgh Department of Psychiatry, Pittsburgh, PA, USA
| | - Benjamin L Handen
- University of Pittsburgh Department of Psychiatry, Pittsburgh, PA, USA
| | - Bradley T Christian
- University of Wisconsin-Madison Waisman Center, Madison, WI, USA; University of Wisconsin-Madison Department of Medical Physics, Madison, WI, USA
| |
Collapse
|
21
|
Neurotoxic Soluble Amyloid Oligomers Drive Alzheimer's Pathogenesis and Represent a Clinically Validated Target for Slowing Disease Progression. Int J Mol Sci 2021; 22:ijms22126355. [PMID: 34198582 PMCID: PMC8231952 DOI: 10.3390/ijms22126355] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
A large body of clinical and nonclinical evidence supports the role of neurotoxic soluble beta amyloid (amyloid, Aβ) oligomers as upstream pathogenic drivers of Alzheimer's disease (AD). Recent late-stage trials in AD that have evaluated agents targeting distinct species of Aβ provide compelling evidence that inhibition of Aβ oligomer toxicity represents an effective approach to slow or stop disease progression: (1) only agents that target soluble Aβ oligomers show clinical efficacy in AD patients; (2) clearance of amyloid plaque does not correlate with clinical improvements; (3) agents that predominantly target amyloid monomers or plaque failed to show clinical effects; and (4) in positive trials, efficacy is greater in carriers of the ε4 allele of apolipoprotein E (APOE4), who are known to have higher brain concentrations of Aβ oligomers. These trials also show that inhibiting Aβ neurotoxicity leads to a reduction in tau pathology, suggesting a pathogenic sequence of events where amyloid toxicity drives an increase in tau formation and deposition. The late-stage agents with positive clinical or biomarker data include four antibodies that engage Aβ oligomers (aducanumab, lecanemab, gantenerumab, and donanemab) and ALZ-801, an oral agent that fully blocks the formation of Aβ oligomers at the clinical dose.
Collapse
|
22
|
An Update on the State of Tau Radiotracer Development: a Brief Review. Mol Imaging Biol 2021; 23:797-808. [PMID: 33987775 DOI: 10.1007/s11307-021-01612-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Evolving scientific evidence has begun to point towards hyperphosphorylated tau as a major neurotoxic component in the pathophysiological development of many major neurodegenerative conditions. In response to a need for accurate and reliable diagnosis and disease monitoring in clinical and trial settings, there has been great effort put into the development of tau radiotracers. While first-generation and second-generation radiotracers have provided a basis for assessing tau, concerns of inadequate specificity and selectivity have continued to motivate further study of these radiotracers and the development of novel radiopharmaceuticals. Given the prospective scientific and clinical value of a valid tau radiotracer, the molecular neuroimaging community must be aware of the most recent developments in the realm of tau radiotracer development. This brief review article will critically overview the most established tau radiotracers and, most importantly, concentrate on the progress of more recently developed tau radiotracers.
Collapse
|
23
|
Yang F, Chowdhury SR, Jacobs HIL, Sepulcre J, Wedeen VJ, Johnson KA, Dutta J. Longitudinal predictive modeling of tau progression along the structural connectome. Neuroimage 2021; 237:118126. [PMID: 33957234 DOI: 10.1016/j.neuroimage.2021.118126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 01/03/2023] Open
Abstract
Tau neurofibrillary tangles, a pathophysiological hallmark of Alzheimer's disease (AD), exhibit a stereotypical spatiotemporal trajectory that is strongly correlated with disease progression and cognitive decline. Personalized prediction of tau progression is, therefore, vital for the early diagnosis and prognosis of AD. Evidence from both animal and human studies is suggestive of tau transmission along the brains preexisting neural connectivity conduits. We present here an analytic graph diffusion framework for individualized predictive modeling of tau progression along the structural connectome. To account for physiological processes that lead to active generation and clearance of tau alongside passive diffusion, our model uses an inhomogenous graph diffusion equation with a source term and provides closed-form solutions to this equation for linear and exponential source functionals. Longitudinal imaging data from two cohorts, the Harvard Aging Brain Study (HABS) and the Alzheimer's Disease Neuroimaging Initiative (ADNI), were used to validate the model. The clinical data used for developing and validating the model include regional tau measures extracted from longitudinal positron emission tomography (PET) scans based on the 18F-Flortaucipir radiotracer and individual structural connectivity maps computed from diffusion tensor imaging (DTI) by means of tractography and streamline counting. Two-timepoint tau PET scans were used to assess the goodness of model fit. Three-timepoint tau PET scans were used to assess predictive accuracy via comparison of predicted and observed tau measures at the third timepoint. Our results show high consistency between predicted and observed tau and differential tau from region-based analysis. While the prognostic value of this approach needs to be validated in a larger cohort, our preliminary results suggest that our longitudinal predictive model, which offers an in vivo macroscopic perspective on tau progression in the brain, is potentially promising as a personalizable predictive framework for AD.
Collapse
Affiliation(s)
- Fan Yang
- University of Massachusetts Lowell, Lowell, MA, United States
| | | | - Heidi I L Jacobs
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Jorge Sepulcre
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Van J Wedeen
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Keith A Johnson
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Joyita Dutta
- University of Massachusetts Lowell, Lowell, MA, United States; Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
24
|
Smith GS, Kuwabara H, Nandi A, Gould NF, Nassery N, Savonenko A, Joo JH, Kraut M, Brasic J, Holt DP, Hall AW, Mathews WB, Dannals RF, Avramopoulos D, Workman CI. Molecular imaging of beta-amyloid deposition in late-life depression. Neurobiol Aging 2021; 101:85-93. [PMID: 33592548 PMCID: PMC8730327 DOI: 10.1016/j.neurobiolaging.2021.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/16/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
Abstract
Late-life depression (LLD) is associated with an increased risk of all-cause dementia and may involve Alzheimer's disease pathology. Twenty-one LLD patients who met the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, criteria for a current major depressive episode and 21 healthy controls underwent clinical and neuropsychological assessments, magnetic resonance imaging to measure gray matter volumes, and high-resolution positron emission tomography to measure beta-amyloid (Aβ) deposition. Clinical and neuropsychological assessments were repeated after 10-12 weeks of Citalopram or Sertraline treatment (LLD patients only). LLD patients did not differ from healthy controls in baseline neuropsychological function, although patients improved in both depressive symptoms and visual-spatial memory during treatment. Greater Aβ in the left parietal cortex was observed in LLD patients compared with controls. Greater Aβ was correlated with greater depressive symptoms and poorer visual-spatial memory, but not with improvement with treatment. The study of LLD patients with prospective measurements of mood and cognitive responses to antidepressant treatment is an opportunity to understand early neurobiological mechanisms underlying the association between depression and subsequent cognitive decline.
Collapse
Affiliation(s)
- Gwenn S Smith
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Nuclear Medicine and Molecular Imaging.
| | | | - Ayon Nandi
- Division of Nuclear Medicine and Molecular Imaging
| | - Neda F Gould
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Najilla Nassery
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alena Savonenko
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jin Hui Joo
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Kraut
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James Brasic
- Division of Nuclear Medicine and Molecular Imaging
| | | | | | | | | | - Dimitrios Avramopoulos
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Clifford I Workman
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
25
|
Comprehensive review on design perspective of PET ligands based on β-amyloids, tau and neuroinflammation for diagnostic intervention of Alzheimer’s disease. Clin Transl Imaging 2021. [DOI: 10.1007/s40336-021-00410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Campese N, Palermo G, Del Gamba C, Beatino MF, Galgani A, Belli E, Del Prete E, Della Vecchia A, Vergallo A, Siciliano G, Ceravolo R, Hampel H, Baldacci F. Progress regarding the context-of-use of tau as biomarker of Alzheimer's disease and other neurodegenerative diseases. Expert Rev Proteomics 2021; 18:27-48. [PMID: 33545008 DOI: 10.1080/14789450.2021.1886929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Tau protein misfolding and accumulation in toxic species is a critical pathophysiological process of Alzheimer's disease (AD) and other neurodegenerative disorders (NDDs). Tau biomarkers, namely cerebrospinal fluid (CSF) total-tau (t-tau), 181-phosphorylated tau (p-tau), and tau-PET tracers, have been recently embedded in the diagnostic criteria for AD. Nevertheless, the role of tau as a diagnostic and prognostic biomarker for other NDDs remains controversial.Areas covered: We performed a systematical PubMed-based review of the most recent advances in tau-related biomarkers for NDDs. We focused on papers published from 2015 to 2020 assessing the diagnostic or prognostic value of each biomarker.Expert opinion: The assessment of tau biomarkers in alternative easily accessible matrices, through the development of ultrasensitive techniques, represents the most significant perspective for AD-biomarker research. In NDDs, novel tau isoforms (e.g. p-tau217) or proteolytic fragments (e.g. N-terminal fragments) may represent candidate diagnostic and prognostic biomarkers and may help monitoring disease progression. Protein misfolding amplification assays, allowing the identification of different tau strains (e.g. 3 R- vs. 4 R-tau) in CSF, may constitute a breakthrough for the in vivo stratification of NDDs. Tau-PET may help tracking the spatial-temporal evolution of tau pathophysiology in AD but its application outside the AD-spectrum deserves further studies.
Collapse
Affiliation(s)
- Nicole Campese
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giovanni Palermo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Claudia Del Gamba
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Alessandro Galgani
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elisabetta Belli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Del Prete
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Andrea Vergallo
- GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard De L'hôpital, Sorbonne University, Paris, France
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Harald Hampel
- GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard De L'hôpital, Sorbonne University, Paris, France
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,GRC N° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard De L'hôpital, Sorbonne University, Paris, France
| |
Collapse
|
27
|
Goud NS, Bhattacharya A, Joshi RK, Nagaraj C, Bharath RD, Kumar P. Carbon-11: Radiochemistry and Target-Based PET Molecular Imaging Applications in Oncology, Cardiology, and Neurology. J Med Chem 2021; 64:1223-1259. [PMID: 33499603 DOI: 10.1021/acs.jmedchem.0c01053] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The positron emission tomography (PET) molecular imaging technique has gained its universal value as a remarkable tool for medical diagnosis and biomedical research. Carbon-11 is one of the promising radiotracers that can report target-specific information related to its pharmacology and physiology to understand the disease status. Currently, many of the available carbon-11 (t1/2 = 20.4 min) PET radiotracers are heterocyclic derivatives that have been synthesized using carbon-11 inserted different functional groups obtained from primary and secondary carbon-11 precursors. A spectrum of carbon-11 PET radiotracers has been developed against many of the upregulated and emerging targets for the diagnosis, prognosis, prediction, and therapy in the fields of oncology, cardiology, and neurology. This review focuses on the carbon-11 radiochemistry and various target-specific PET molecular imaging agents used in tumor, heart, brain, and neuroinflammatory disease imaging along with its associated pathology.
Collapse
Affiliation(s)
- Nerella Sridhar Goud
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Ahana Bhattacharya
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Raman Kumar Joshi
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Chandana Nagaraj
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Rose Dawn Bharath
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Pardeep Kumar
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| |
Collapse
|
28
|
Malafaia D, Albuquerque HMT, Silva AMS. Amyloid-β and tau aggregation dual-inhibitors: A synthetic and structure-activity relationship focused review. Eur J Med Chem 2021; 214:113209. [PMID: 33548635 DOI: 10.1016/j.ejmech.2021.113209] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/16/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is one of the most common types of dementia, especially in elderly, with an increasing number of people suffering from this disease worldwide. There are no available disease-modifying therapies and only four drugs are approved for the relief of symptoms. Currently, the therapeutic approach used for AD treatment is based on single target drugs, which are not capable to stop its progression. To address this issue, multi-target compounds, combining two or more pharmacophores in a single molecular entity, have gained increasing interest to deal with the multiple factors related to AD. The exact cause of AD is not yet completely disclosed, and several hallmarks have been associated to this neurodegenerative disease. Even though, the accumulation of both amyloid-β plaques (Aβ) and neurofibrillary tangles (NFTs) are fully accepted as the main AD hallmarks, being object of lots of research for early-stage diagnosis and pharmacological therapy. In this context, this review summarizes the state-of-the-art in the field of dual-target inhibitors of both Aβ and tau aggregation simultaneously, including the design and synthetic strategy of the dual-target compounds, as well as a brief structure-activity relationships (SAR) analysis.
Collapse
Affiliation(s)
- Daniela Malafaia
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Hélio M T Albuquerque
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| | - Artur M S Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
29
|
Tanprasertsuk J, Scott TM, Johnson MA, Poon LW, Nelson PT, Davey A, Woodard JL, Vishwanathan R, Barbey AK, Barger K, Wang XD, Johnson EJ. Brain Α-Tocopherol Concentration is Inversely Associated with Neurofibrillary Tangle Counts in Brain Regions Affected in Earlier Braak Stages: A Cross-Sectional Finding in the Oldest Old. JAR LIFE 2021; 10:8-16. [PMID: 36923512 PMCID: PMC10002902 DOI: 10.14283/jarlife.2021.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/17/2020] [Indexed: 11/11/2022]
Abstract
Objectives Higher vitamin E status has been associated with lower risk of Alzheimer's disease (AD). However, evidence of the association of vitamin E concentration in neural tissue with AD pathologies is limited. Design The cross-sectional relationship between the human brain concentrations of α- and γ-tocopherol and the severity of AD pathologies - neurofibrillary tangle (NFT) and neuritic plaque (NP) - was investigated. Setting & Participants Brains from 43 centenarians (≥ 98 years at death) enrolled in the Phase III of the Georgia Centenarian Study were collected at autopsy. Measurements Brain α- and γ-tocopherol concentrations (previously reported) were averaged from frontal, temporal, and occipital cortices. NP and NFT counts (previously reported) were assessed in frontal, temporal, parietal, entorhinal cortices, amygdala, hippocampus, and subiculum. NFT topological progression was assessed using Braak staging. Multiple linear regression was performed to assess the relationship between tocopherol concentrations and NP or NFT counts, with and without adjustment for covariates. Results Brain α-tocopherol concentrations were inversely associated with NFT but not NP counts in amygdala (β = -2.67, 95% CI [-4.57, -0.79]), entorhinal cortex (β = -2.01, 95% CI [-3.72, -0.30]), hippocampus (β = -2.23, 95% CI [-3.82, -0.64]), and subiculum (β = -2.52, 95% CI [-4.42, -0.62]) where NFT present earlier in its topological progression, but not in neocortices. Subjects with Braak III-IV had lower α-tocopherol (median = 69,622 pmol/g, IQR = 54,389-72,155 pmol/g) than those with Braak I-II (median = 72,108 pmol/g, IQR = 64,056-82,430 pmol/g), but the difference was of borderline significance (p = 0.063). γ-Tocopherol concentrations were not associated with either NFT or NP counts in any brain regions assessed. Conclusions Higher brain α-tocopherol level is specifically associated with lower NFT counts in brain structures affected in earlier Braak stages. Our findings emphasize the possible importance of α-tocopherol intervention timing in tauopathy progression and warrant future clinical trials.
Collapse
Affiliation(s)
- J Tanprasertsuk
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, 02111, United States of America
| | - T M Scott
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, 02111, United States of America
| | - M A Johnson
- Department of Nutrition and Health Sciences, University of Nebraska Lincoln, Lincoln, NE, 68583, United States of America
| | - L W Poon
- Institute of Gerontology, University of Georgia, Athens, GA, 30602, United States of America
| | - P T Nelson
- Department of Pathology, Division of Neuropathology, University of Kentucky, Lexington, KY, 40536, United States of America
| | - A Davey
- Department of Behavioral Health and Nutrition, College of Health Sciences, University of Delaware, Newark, DE, 19716, United States of America
| | - J L Woodard
- Department of Psychology, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI, 48202, United States of America
| | - R Vishwanathan
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, 02111, United States of America
| | - A K Barbey
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
| | - K Barger
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, 02111, United States of America
| | - X-D Wang
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, 02111, United States of America
| | - E J Johnson
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, 02111, United States of America
| |
Collapse
|
30
|
Clinical Evaluation of 18F-PI-2620 as a Potent PET Radiotracer Imaging Tau Protein in Alzheimer Disease and Other Neurodegenerative Diseases Compared With 18F-THK-5351. Clin Nucl Med 2020; 45:841-847. [PMID: 32910050 DOI: 10.1097/rlu.0000000000003261] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE PET is a useful tool for detecting the presence and extent of brain tau accumulation. However, most first-generation tau PET tracers are limited for high off-target binding and detection of tau in non-Alzheimer disease (AD). This study evaluated potential clinical applications of F-PI-2620 as a novel PET tracer with a high binding affinity for tau deposition in AD and non-AD tauopathies. METHODS Twenty-six participants diagnosed with either mild cognitive impairment, probable AD, frontotemporal dementia, or parkinsonism, as well as healthy controls underwent a 60- to 90-minute brain PET scan after 7 mci (259 MBq) injection of F-PI-2620. Some participants had previous PET scans using F-THK-5351 or F-FP-CIT for dopamine transporter imaging. RESULTS All participants showed no increase in off-target binding in basal ganglia on F-PI-2620 PET images, as noted for first-generation tau tracers. Aβ+ mild cognitive impairment or AD patients showed diverse cortical F-PI-2620 uptake in frontotemporoparietal cortex that correlated with Mini-Mental Status Examination (ρ = -0.692, P = 0.013). Aβ+ Parkinson disease with dementia and (Aβ unknown) primary progressive aphasia patients also showed increased F-PI-2620 uptakes in the frontotemporoparietal cortex. Patients with parkinsonism showed increased uptakes in the pallidum compared with Aβ- healthy controls (left: 1.41 ± 0.14 vs 1.04 ± 0.13, P = 0.014; right: 1.18 ± 0.16 vs 0.95 ± 0.07, P = 0.014). CONCLUSIONS F-PI-2620 PET might be a sensitive tool to detect cortical tau deposits in patients with Aβ+ AD and Aβ+ non-AD tauopathies. Furthermore, this study showed that "off-target" binding in the basal ganglia does not affect F-PI-2620.
Collapse
|
31
|
Characterization of MK6240, a tau PET tracer, in autopsy brain tissue from Alzheimer's disease cases. Eur J Nucl Med Mol Imaging 2020; 48:1093-1102. [PMID: 32970217 PMCID: PMC8041708 DOI: 10.1007/s00259-020-05035-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022]
Abstract
Purpose MK6240 is a second-generation tau PET tracer designed to detect the neurofibrillary tangles in the brains of patients with Alzheimer’s disease (AD). The aim of the study was to characterize 3H-MK6240 in AD and control brain tissue and to compare its binding properties with those of first-generation tau PET tracers. Methods Saturation binding assays with 3H-MK6240 were carried out in the temporal and parietal cortices of AD brains to determine the maximum number of binding sites (Bmax) and the dissociation constants (Kd) at these sites. Competitive binding assays were carried out between 3H-MK6240 and unlabelled MK6240, AV-1451 (aka T807, flortaucipir) and THK5117, and between 3H-THK5351 and unlabelled MK6240. Regional binding studies with 3H-MK6240 were carried out in homogenates from six AD and seven control brains and, using autoradiography, on large frozen sections from two AD brains and one control brain. Results The saturation binding assays gave Bmax and Kd values of 59.2 fmol/mg and 0.32 nM in the temporal cortex and 154.7 fmol/mg and 0.15 nM in the parietal cortex. The competitive binding assays revealed two binding sites with affinities in the picomolar and nanomolar range shared by 3H-MK6240 and all the tested unlabelled compounds. There were no binding sites in common between 3H-THK5351 and unlabelled MK6240. Regional binding of 3H-MK6240 was significantly higher in AD brain tissue than in controls. Binding in brain tissue from AD patients with early-onset AD was significantly higher than in brain tissue from patients with late-onset AD. Binding of 3H-MK6240 was not observed in off-target regions. Autoradiography showed high regional cortical binding in the two AD brains and very low binding in the control brain. Conclusions 3H-MK6240 has a high binding affinity for tau deposits in AD brain tissue but also has different binding characteristics from those of the first-generation tau tracers. This confirms the complexity of tau tracer binding on tau deposits with different binding affinities for different binding sites. Electronic supplementary material The online version of this article (10.1007/s00259-020-05035-y) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Sullivan KJ, Liu A, Chang CCH, Cohen AD, Lopresti BJ, Minhas DS, Laymon CM, Klunk WE, Aizenstein H, Nadkarni NK, Loewenstein D, Kamboh MI, Ganguli M, Snitz BE. Alzheimer's disease pathology in a community-based sample of older adults without dementia: The MYHAT neuroimaging study. Brain Imaging Behav 2020; 15:1355-1363. [PMID: 32748322 DOI: 10.1007/s11682-020-00334-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/07/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
A true understanding of the distribution and functional correlates of Alzheimer's disease pathology in dementia-free older adults requires a population-based perspective. Here we report initial findings from a sample of 102 cognitively unimpaired participants (average age 77.2 years, 54.9% women, 13.7% APOE*4 carriers) recruited for neuroimaging from a larger representative population-based cohort participating in an ongoing longitudinal study of aging, the Monongahela-Youghiogheny Healthy Aging Team (MYHAT). All participants scored < 1.0 on the Clinical Dementia Rating (CDR) Scale, with 8 participants (7.8%) scoring CDR = 0.5. Participants completed a positron emission tomography scan using the tracers [C-11]Pittsburgh Compound-B (PiB) and [F-18]AV-1451 to estimate amyloid and tau deposition. PiB positivity was defined on a regional basis using established standardized uptake value ratio cutoffs (SUVR; cerebellar gray matter reference), with 39 participants (38.2%) determined to be PiB(+). Health history, lifestyle, and cognitive abilities were assessed cross-sectionally at the nearest annual parent MYHAT study visit. A series of adjusted regression analyses modeled cognitive performance as a function of global PiB SUVR and [F-18]AV-1451 SUVR in Braak associated regions 1, 3/4, and 5/6. In comparison to PiB(-) participants (n = 63), PiB(+) participants were older, less educated, and were more likely to be APOE*4 carriers. Global PiB SUVR was significantly correlated with [F-18]AV-1451 SUVR in all Braak-associated regions (r = .38-0.53, p < .05). In independent models, higher Global PiB SUVR and Braak 1 [F-18]AV-1451 SUVR were associated with worse performance on a semantic interference verbal memory test. Our findings suggest that brain amyloid is common in a community-based setting, and is associated with tau deposition, but both pathologies show few associations with concurrent cognitive performance in a dementia-free sample.
Collapse
Affiliation(s)
- Kevin J Sullivan
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA.
| | - Anran Liu
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Ann D Cohen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Davneet S Minhas
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charles M Laymon
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Howard Aizenstein
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Neelesh K Nadkarni
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - David Loewenstein
- Department of Psychiatry and Behavioral Science, University of Miami, FL, Coral Gables, USA
| | - M Ilyas Kamboh
- Department of Human Genetics, University of Pittsburgh, PA, Pittsburgh, USA
| | - Mary Ganguli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beth E Snitz
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
33
|
Hunsberger HC, Greenwood BP, Tolstikov V, Narain NR, Kiebish MA, Denny CA. Divergence in the metabolome between natural aging and Alzheimer's disease. Sci Rep 2020; 10:12171. [PMID: 32699218 PMCID: PMC7376199 DOI: 10.1038/s41598-020-68739-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/18/2020] [Indexed: 01/08/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive and debilitating neurodegenerative disorder and one of the leading causes of death in the United States. Although amyloid plaques and fibrillary tangles are hallmarks of AD, research suggests that pathology associated with AD often begins 20 or more years before symptoms appear. Therefore, it is essential to identify early-stage biomarkers in those at risk for AD and age-related cognitive decline (ARCD) in order to develop preventative treatments. Here, we used an untargeted metabolomics analysis to define system-level alterations following cognitive decline in aged and APP/PS1 (AD) mice. At 6, 12, and 24 months of age, both control (Ctrl) and AD mice were tested in a 3-shock contextual fear conditioning (CFC) paradigm to assess memory decline. AD mice exhibited memory deficits across age and these memory deficits were also seen in naturally aged mice. Prefrontal cortex (PFC), hippocampus (HPC), and spleen were then collected and analyzed for metabolomic alterations. A number of significant pathways were altered between Ctrl and AD mice and naturally aged mice. By identifying systems-level alterations following ARCD and AD, these data could provide insights into disease mechanisms and advance the development of biomarker panels.
Collapse
Affiliation(s)
- Holly C Hunsberger
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, NY, USA
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), NYSPI Kolb Research Annex, Room 777, 1051 Riverside Drive, Unit 87, New York, NY, USA
| | | | | | | | | | - Christine Ann Denny
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, NY, USA.
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), NYSPI Kolb Research Annex, Room 777, 1051 Riverside Drive, Unit 87, New York, NY, USA.
| |
Collapse
|
34
|
Kuang G, Murugan NA, Zhou Y, Nordberg A, Ågren H. Computational Insight into the Binding Profile of the Second-Generation PET Tracer PI2620 with Tau Fibrils. ACS Chem Neurosci 2020; 11:900-908. [PMID: 32069017 DOI: 10.1021/acschemneuro.9b00578] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abnormal deposition of hyperphosphorylated tau as neurofibrillary tangles (NFTs) is an important pathological hallmark of Alzheimer's disease (AD) and of other neurodegenerative disorders. A noninvasive positron emission tomography (PET) tracer that quantifies neurofibrillary tangles in vivo can enhance the clinical diagnosis of AD and can also be used to evaluate the efficacy of therapeutics aimed at reducing the abnormal aggregation of the tau fibril in the brain. In this paper, we study the binding profile of fibrillar tau aggregates with a PET tracer PI2620, which is a new second generation tau PET tracer that is presently experimentally and clinically studied. The target structure for the tau fibril is based on cryo-electron microscopy (cryo-EM) structure. A multiscale simulation workflow including molecular docking, molecular dynamics simulation, metadynamics simulation, and free energy calculations was implemented. We find that PI2620 can bind to eight surface binding sites, three core binding sites, and one entry site. The binding at the core sites and entry site is found to be much more favorable than that on the surface sites due to stronger hydrophobic interactions and less solvent exposure. Furthermore, the entry site which is formed by the terminal β-sheets of the fibril is found to have the highest binding affinity to PI2620. Importantly, the binding capacity at the entry site can be much higher than that at other core sites, due to its easy accessibility. Therefore, the entry site is believed to be the major binding site for PI2620. A previous computational study on tracers with tau fibrils reports a maximum of four binding sites. Through use of methods that allow us to locate "cryptic binding sites", we report here additional core sites available for binding and we address the limitation of using the cryo-EM structure alone for structure-based tracer design. Our results could be helpful for elucidating the binding mechanism of imaging tracers with the fibrillar form of tau, a knowledge that in turn can be used to guide the development of compounds with higher affinity and selectivity for tau using structure-based design strategies.
Collapse
Affiliation(s)
- Guanglin Kuang
- Department of Theoretical Chemistry and Biology, Royal Institute of Technology (KTH), AlbaNova University Center, Stockholm 10691, Sweden
| | - N. Arul Murugan
- Department of Theoretical Chemistry and Biology, Royal Institute of Technology (KTH), AlbaNova University Center, Stockholm 10691, Sweden
| | - Yang Zhou
- Department of Theoretical Chemistry and Biology, Royal Institute of Technology (KTH), AlbaNova University Center, Stockholm 10691, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Center for Alzheimer Research, Stockholm 17177, Sweden
- Aging Theme, Karolinska University Hospital, Stockholm 14186, Sweden
| | - Hans Ågren
- Department of Theoretical Chemistry and Biology, Royal Institute of Technology (KTH), AlbaNova University Center, Stockholm 10691, Sweden
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
35
|
Tiepolt S, Patt M, Aghakhanyan G, Meyer PM, Hesse S, Barthel H, Sabri O. Current radiotracers to image neurodegenerative diseases. EJNMMI Radiopharm Chem 2019; 4:17. [PMID: 31659510 PMCID: PMC6660543 DOI: 10.1186/s41181-019-0070-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022] Open
Abstract
The term of neurodegenerative diseases covers a heterogeneous group of disorders that are distinguished by progressive degeneration of the structure and function of the nervous system such as dementias, movement disorders, motor neuron disorders, as well as some prion disorders. In recent years, a paradigm shift started for the diagnosis of neurodegenerative diseases, for which successively clinical testing is supplemented by biomarker information. In research scenarios, it was even proposed recently to substitute the current syndromic by a biological definition of Alzheimer's diseases. PET examinations with various radiotracers play an important role in providing non-invasive biomarkers and co-morbidity information in neurodegeneration. Information on co-morbidity, e.g. Aβ plaques and Lewy-bodies or Aβ plaques in patients with aphasia or the absence of Aβ plaques in clinical AD patients are of interest to expand our knowledge about the pathogenesis of different phenotypically defined neurodegenerative diseases. Moreover, this information is also important in therapeutic trials targeting histopathological abnormalities.The aim of this review is to present an overview of the currently available radiotracers for imaging neurodegenerative diseases in research and in routine clinical settings. In this context, we also provide a short summary of the most frequent neurodegenerative diseases from a nuclear medicine point of view, their clinical and pathophysiological as well as nuclear imaging characteristics, and the resulting need for new radiotracers.
Collapse
Affiliation(s)
- Solveig Tiepolt
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Marianne Patt
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Gayane Aghakhanyan
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Philipp M. Meyer
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Liebigstraße 18, 04103 Leipzig, Germany
| |
Collapse
|
36
|
Jadhav S, Avila J, Schöll M, Kovacs GG, Kövari E, Skrabana R, Evans LD, Kontsekova E, Malawska B, de Silva R, Buee L, Zilka N. A walk through tau therapeutic strategies. Acta Neuropathol Commun 2019; 7:22. [PMID: 30767766 PMCID: PMC6376692 DOI: 10.1186/s40478-019-0664-z] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/21/2019] [Indexed: 12/18/2022] Open
Abstract
Tau neuronal and glial pathologies drive the clinical presentation of Alzheimer's disease and related human tauopathies. There is a growing body of evidence indicating that pathological tau species can travel from cell to cell and spread the pathology through the brain. Throughout the last decade, physiological and pathological tau have become attractive targets for AD therapies. Several therapeutic approaches have been proposed, including the inhibition of protein kinases or protein-3-O-(N-acetyl-beta-D-glucosaminyl)-L-serine/threonine Nacetylglucosaminyl hydrolase, the inhibition of tau aggregation, active and passive immunotherapies, and tau silencing by antisense oligonucleotides. New tau therapeutics, across the board, have demonstrated the ability to prevent or reduce tau lesions and improve either cognitive or motor impairment in a variety of animal models developing neurofibrillary pathology. The most advanced strategy for the treatment of human tauopathies remains immunotherapy, which has already reached the clinical stage of drug development. Tau vaccines or humanised antibodies target a variety of tau species either in the intracellular or extracellular spaces. Some of them recognise the amino-terminus or carboxy-terminus, while others display binding abilities to the proline-rich area or microtubule binding domains. The main therapeutic foci in existing clinical trials are on Alzheimer's disease, progressive supranuclear palsy and non-fluent primary progressive aphasia. Tau therapy offers a new hope for the treatment of many fatal brain disorders. First efficacy data from clinical trials will be available by the end of this decade.
Collapse
Affiliation(s)
- Santosh Jadhav
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska 9, 845 10, Bratislava, Slovakia
- AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, 811 02, Bratislava, Slovakia
| | - Jesus Avila
- Centro de Biologia Molecular "Severo Ochoa", Consejo Superior de Investigaciones, Cientificas, Universidad Autonoma de Madrid, C/ Nicolas Cabrera, 1. Campus de Cantoblanco, 28049, Madrid, Spain
- Networking Research Center on Neurodegenerative, Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of, Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Dementia Research Centre, University College London, London, UK
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, AKH 4J, Währinger Gürtel 18-20, 1097, Vienna, Austria
| | - Enikö Kövari
- Department of Mental Health and Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Rostislav Skrabana
- AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, 811 02, Bratislava, Slovakia
| | - Lewis D Evans
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Eva Kontsekova
- AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, 811 02, Bratislava, Slovakia
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Cracow, Poland
| | - Rohan de Silva
- Reta Lila Weston Institute and Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ, UK
| | - Luc Buee
- Universite of Lille, Inserm, CHU-Lille, UMRS1172, Alzheimer & Tauopathies, Place de Verdun, 59045, Lille cedex, France.
| | - Norbert Zilka
- AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, 811 02, Bratislava, Slovakia.
| |
Collapse
|
37
|
Leuzy A, Chiotis K, Lemoine L, Gillberg PG, Almkvist O, Rodriguez-Vieitez E, Nordberg A. Tau PET imaging in neurodegenerative tauopathies-still a challenge. Mol Psychiatry 2019; 24:1112-1134. [PMID: 30635637 PMCID: PMC6756230 DOI: 10.1038/s41380-018-0342-8] [Citation(s) in RCA: 415] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/19/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022]
Abstract
The accumulation of pathological misfolded tau is a feature common to a collective of neurodegenerative disorders known as tauopathies, of which Alzheimer's disease (AD) is the most common. Related tauopathies include progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), Down's syndrome (DS), Parkinson's disease (PD), and dementia with Lewy bodies (DLB). Investigation of the role of tau pathology in the onset and progression of these disorders is now possible due the recent advent of tau-specific ligands for use with positron emission tomography (PET), including first- (e.g., [18F]THK5317, [18F]THK5351, [18F]AV1451, and [11C]PBB3) and second-generation compounds [namely [18F]MK-6240, [18F]RO-948 (previously referred to as [18F]RO69558948), [18F]PI-2620, [18F]GTP1, [18F]PM-PBB3, and [18F]JNJ64349311 ([18F]JNJ311) and its derivative [18F]JNJ-067)]. In this review we describe and discuss findings from in vitro and in vivo studies using both initial and new tau ligands, including their relation to biomarkers for amyloid-β and neurodegeneration, and cognitive findings. Lastly, methodological considerations for the quantification of in vivo ligand binding are addressed, along with potential future applications of tau PET, including therapeutic trials.
Collapse
Affiliation(s)
- Antoine Leuzy
- 0000 0004 1937 0626grid.4714.6Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Konstantinos Chiotis
- 0000 0004 1937 0626grid.4714.6Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden ,0000 0000 9241 5705grid.24381.3cTheme Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Laetitia Lemoine
- 0000 0004 1937 0626grid.4714.6Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Per-Göran Gillberg
- 0000 0004 1937 0626grid.4714.6Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Ove Almkvist
- 0000 0004 1937 0626grid.4714.6Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden ,0000 0004 1936 9377grid.10548.38Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Elena Rodriguez-Vieitez
- 0000 0004 1937 0626grid.4714.6Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden. .,Theme Aging, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
38
|
Schöll M, Maass A, Mattsson N, Ashton NJ, Blennow K, Zetterberg H, Jagust W. Biomarkers for tau pathology. Mol Cell Neurosci 2018; 97:18-33. [PMID: 30529601 PMCID: PMC6584358 DOI: 10.1016/j.mcn.2018.12.001] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/01/2018] [Indexed: 12/14/2022] Open
Abstract
The aggregation of fibrils of hyperphosphorylated and C-terminally truncated microtubule-associated tau protein characterizes 80% of all dementia disorders, the most common neurodegenerative disorders. These so-called tauopathies are hitherto not curable and their diagnosis, especially at early disease stages, has traditionally proven difficult. A keystone in the diagnosis of tauopathies was the development of methods to assess levels of tau protein in vivo in cerebrospinal fluid, which has significantly improved our knowledge about these conditions. Tau proteins have also been measured in blood, but the importance of tau-related changes in blood is still unclear. The recent addition of positron emission tomography ligands to visualize, map and quantify tau pathology has further contributed with information about the temporal and spatial characteristics of tau accumulation in the living brain. Together, the measurement of tau with fluid biomarkers and positron emission tomography constitutes the basis for a highly active field of research. This review describes the current state of biomarkers for tau biomarkers derived from neuroimaging and from the analysis of bodily fluids and their roles in the detection, diagnosis and prognosis of tau-associated neurodegenerative disorders, as well as their associations with neuropathological findings, and aims to provide a perspective on how these biomarkers might be employed prospectively in research and clinical settings. Biomarkers for tau pathology are now essential to the research framework in the diagnosis of Alzheimer's disease (AD) Measurement of t- and p-tau has been possible in cerebrospinal fluid (CSF) for some time, the recent development of positron emission tomography (PET) ligands binding to tau has added the possibility to map and quantify tau in the living brain First-generation tau PET ligands bind predominantly to AD-typical 3R/4R tau isoforms and exhibit off-target binding that can limit accurate ligand uptake quantification Second-generation tau PET ligands appear to bind to comparable binding sites but exhibit fewer issues with brain off-target binding Biomarkers for tau derived from CSF analysis and PET could provide complementary information about disease state and stage At this time, T-tau, but not p-tau, can be reliably measured in plasma using ultra-sensitive immunoassays.
Collapse
Affiliation(s)
- Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine and the Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden; Clinical Memory Research Unit, Lund University, Malmö, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.
| | - Anne Maass
- German Center for Neurodegenerative Diseases, Magdeburg, Germany; Helen Wills Neuroscience Institute, University of California, Berkeley, USA
| | - Niklas Mattsson
- Clinical Memory Research Unit, Lund University, Malmö, Sweden; Department of Neurology, Skåne University Hospital, Lund, Sweden
| | - Nicholas J Ashton
- Wallenberg Centre for Molecular and Translational Medicine and the Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden; King's College London, Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; Department of Psychiatry and Neurochemistry, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; UK Dementia Research Institute at UCL, London, UK
| | - William Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
39
|
Landau SM. Optimizing Longitudinal Amyloid-β PET Measurement: The Challenges of Intensity Normalization. J Nucl Med 2018; 59:1581-1582. [PMID: 30213847 DOI: 10.2967/jnumed.118.212662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 11/16/2022] Open
Affiliation(s)
- Susan M Landau
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California; and Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California
| |
Collapse
|
40
|
Ishiki A, Harada R, Kai H, Sato N, Totsune T, Tomita N, Watanuki S, Hiraoka K, Ishikawa Y, Funaki Y, Iwata R, Furumoto S, Tashiro M, Sasano H, Kitamoto T, Kudo Y, Yanai K, Furukawa K, Okamura N, Arai H. Neuroimaging-pathological correlations of [ 18F]THK5351 PET in progressive supranuclear palsy. Acta Neuropathol Commun 2018; 6:53. [PMID: 29958546 PMCID: PMC6025736 DOI: 10.1186/s40478-018-0556-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/19/2018] [Indexed: 11/10/2022] Open
Abstract
Recent positron emission tomography (PET) studies have demonstrated the accumulation of tau PET tracer in the affected region of progressive supranuclear palsy (PSP) cases. To confirm the binding target of radiotracer in PSP, we performed an imaging-pathology correlation study in two autopsy-confirmed PSP patients who underwent [18F]THK5351 PET before death. One patient with PSP Richardson syndrome showed elevated tracer retention in the globus pallidus and midbrain. In a patient with PSP-progressive nonfluent aphasia, [18F]THK5351 retention also was observed in the cortical areas, particularly the temporal cortex. Neuropathological examination confirmed PSP in both patients. Regional [18F]THK5351 standardized uptake value ratio (SUVR) in antemortem PET was significantly correlated with monoamine oxidase-B (MAO-B) level, reactive astrocytes density, and tau pathology at postmortem examination. In in vitro autoradiography, specific THK5351 binding was detected in the area of antemortem [18F]THK5351 retention, and binding was blocked completely by a reversible selective MAO-B inhibitor, lazabemide, in brain samples from these patients. In conclusion, [18F]THK5351 PET signals reflect MAO-B expressing reactive astrocytes, which may be associated with tau accumulation in PSP.
Collapse
|