1
|
Pereira M, Chen X, Paltarzhytskaya A, Pacheсo Y, Muller N, Bovy L, Lei X, Chen W, Ren H, Song C, Lewis LD, Dang-Vu TT, Czisch M, Picchioni D, Duyn J, Peigneux P, Tagliazucchi E, Dresler M. Sleep neuroimaging: Review and future directions. J Sleep Res 2025:e14462. [PMID: 39940102 DOI: 10.1111/jsr.14462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/29/2024] [Accepted: 12/29/2024] [Indexed: 02/14/2025]
Abstract
Sleep research has evolved considerably since the first sleep electroencephalography recordings in the 1930s and the discovery of well-distinguishable sleep stages in the 1950s. While electrophysiological recordings have been used to describe the sleeping brain in much detail, since the 1990s neuroimaging techniques have been applied to uncover the brain organization and functional connectivity of human sleep with greater spatial resolution. The combination of electroencephalography with different neuroimaging modalities such as positron emission tomography, structural magnetic resonance imaging and functional magnetic resonance imaging imposes several challenges for sleep studies, for instance, the need to combine polysomnographic recordings to assess sleep stages accurately, difficulties maintaining and consolidating sleep in an unfamiliar and restricted environment, scanner-induced distortions with physiological artefacts that may contaminate polysomnography recordings, and the necessity to account for all physiological changes throughout the sleep cycles to ensure better data interpretability. Here, we review the field of sleep neuroimaging in healthy non-sleep-deprived populations, from early findings to more recent developments. Additionally, we discuss the challenges of applying concurrent electroencephalography and imaging techniques to sleep, which consequently have impacted the sample size and generalizability of studies, and possible future directions for the field.
Collapse
Affiliation(s)
- Mariana Pereira
- Donders Institute of Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Xinyuan Chen
- Donders Institute of Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China
| | | | - Yibran Pacheсo
- Donders Institute of Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nils Muller
- Donders Institute of Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Leonore Bovy
- Donders Institute of Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China
| | - Wei Chen
- School of Information Science and Technology & Human Phenome Institute, Fudan University, Shanghai, China
| | - Haoran Ren
- School of Health and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Chen Song
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Laura D Lewis
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Thien Thanh Dang-Vu
- Department of Health, Kinesiology and Applied Physiology, Concordia University & Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Quebec, Canada
| | | | - Dante Picchioni
- Advanced Magnetic Resonance Imaging Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | - Jeff Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Philippe Peigneux
- UR2NF - Neuropsychology and Functional Neuroimaging Research Unit at CRCN - Centre de Recherches Cognition et Neurosciences, and UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Enzo Tagliazucchi
- Departamento de Física, Universidad de Buenos Aires and Instituto de Física de Buenos Aires, Buenos Aires, Argentina
- Latin American Brain Health Institute, Universidad Adolfo Ibanez, Santiago, Chile
| | - Martin Dresler
- Donders Institute of Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
2
|
Grasso-Cladera A, Costa-Cordella S, Mattoli-Sánchez J, Vilina E, Santander V, Hiltner SE, Parada FJ. Embodied hyperscanning for studying social interaction: A scoping review of simultaneous brain and body measurements. Soc Neurosci 2024:1-17. [PMID: 39387663 DOI: 10.1080/17470919.2024.2409758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/12/2024] [Indexed: 10/15/2024]
Abstract
We systematically investigated the application of embodied hyperscanning methodologies in social neuroscience research. Hyperscanning enables the simultaneous recording of neurophysiological and physiological signals from multiple participants. We highlight the trend toward integrating Mobile Brain/Body Imaging (MoBI) within the 4E research framework, which emphasizes the interconnectedness of brain, body, and environment. Our analysis revealed a geographic concentration of studies in the Global North, calling for global collaboration and transcultural research to balance the field. The predominant use of Magneto/Electroencephalogram (M/EEG) in these studies suggests a traditional brain-centric perspective in social neuroscience. Future research directions should focus on integrating diverse techniques to capture the dynamic interplay between brain and body functions in real-world contexts. Our review also finds a preference for tasks involving natural settings. Nevertheless, the analysis in hyperscanning studies is often limited to physiological signal synchrony between participants. This suggests a need for more holistic and complex approaches that combine inter-corporeal synchrony with intra-individual measures. We believe that the future of the neuroscience of relationships lies in embracing the complexity of cognition, integrating diverse methods and theories to enrich our grasp of human social behavior in its natural contexts.
Collapse
Affiliation(s)
| | - Stefanella Costa-Cordella
- Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
- Centro de Estudios en Psicología Clínica y Psicoterapia (CEPPS), Facultad de Psicología, Universidad Diego Portales institution, Santiago, Chile
- Instituto Milenio para la Investigación en Depresión y Personalidad (MIDAP), Santiago, Chile
| | - Josefina Mattoli-Sánchez
- Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
- Programa de Pregrado en Psicología, Facultad de Psicología. Universidad Diego Portales, Santiago, Chile
| | - Erich Vilina
- Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| | - Valentina Santander
- Programa de Magíster en Neurociencia Social, Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| | - Shari E Hiltner
- Department of Psychology, Carl-von-Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Francisco J Parada
- Department of Psychology, Carl-von-Ossietzky University of Oldenburg, Oldenburg, Germany
- Escuela de Diseño, Facultad de Arquitectura, Arte y Diseño, Universidad Diego Portales, Santiago, Chile
| |
Collapse
|
3
|
Nielsen AN, Graham AM, Sylvester CM. Baby Brains at Work: How Task-Based Functional Magnetic Resonance Imaging Can Illuminate the Early Emergence of Psychiatric Risk. Biol Psychiatry 2023; 93:880-892. [PMID: 36935330 PMCID: PMC10149573 DOI: 10.1016/j.biopsych.2023.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/19/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Psychiatric disorders are complex, often emerging from multiple atypical processes within specified domains over the course of development. Characterizing the development of the neural circuits supporting these domains may help break down the components of complex disorders and reveal variations in functioning associated with psychiatric risk. This review highlights the current and potential role of infant task-based functional magnetic resonance imaging (fMRI) in elucidating the developmental neurobiology of psychiatric disorders. Task-fMRI measures evoked brain activity in response to specific stimuli through changes in the blood oxygen level-dependent signal. First, we review extant studies using task fMRI from birth through the first few years of life and synthesize current evidence for when, where, and how different neural computations are performed across the infant brain. Neural circuits for sensory perception, the perception of abstract categories, and the detection of statistical regularities have been characterized with task fMRI in infants, providing developmental context for identifying and interpreting variation in the functioning of neural circuits related to psychiatric risk. Next, we discuss studies that specifically examine variation in the functioning of these neural circuits during infancy in relation to risk for psychiatric disorders. These studies reveal when maturation of specific neural circuits diverges, the influence of environmental risk factors, and the potential utility for task fMRI to facilitate early treatment or prevention of later psychiatric problems. Finally, we provide considerations for future infant task-fMRI studies with the potential to advance understanding of both functioning of neural circuits during infancy and subsequent risk for psychiatric disorders.
Collapse
Affiliation(s)
- Ashley N Nielsen
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri.
| | - Alice M Graham
- Department of Psychiatry, Oregon Health and Sciences University, Portland, Oregon
| | - Chad M Sylvester
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
4
|
Liu J, Lin S, Li W, Zhao Y, Liu D, He Z, Wang D, Lei M, Hong B, Wu H. Ten-Hour Stable Noninvasive Brain-Computer Interface Realized by Semidry Hydrogel-Based Electrodes. RESEARCH 2022; 2022:9830457. [PMID: 35356767 PMCID: PMC8933689 DOI: 10.34133/2022/9830457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/13/2022] [Indexed: 01/31/2023]
Abstract
Noninvasive brain-computer interface (BCI) has been extensively studied from many aspects in the past decade. In order to broaden the practical applications of BCI technique, it is essential to develop electrodes for electroencephalogram (EEG) collection with advanced characteristics such as high conductivity, long-term effectiveness, and biocompatibility. In this study, we developed a silver-nanowire/PVA hydrogel/melamine sponge (AgPHMS) semidry EEG electrode for long-lasting monitoring of EEG signal. Benefiting from the water storage capacity of PVA hydrogel, the electrolyte solution can be continuously released to the scalp-electrode interface during used. The electrolyte solution can infiltrate the stratum corneum and reduce the scalp-electrode impedance to 10 kΩ-15 kΩ. The flexible structure enables the electrode with mechanical stability, increases the wearing comfort, and reduces the scalp-electrode gap to reduce contact impedance. As a result, a long-term BCI application based on measurements of motion-onset visual evoked potentials (mVEPs) shows that the 3-hour BCI accuracy of the new electrode (77% to 100%) is approximately the same as that of conventional electrodes supported by a conductive gel during the first hour. Furthermore, the BCI system based on the new electrode can retain low contact impedance for 10 hours on scalp, which greatly improved the ability of BCI technique.
Collapse
Affiliation(s)
- Junchen Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Information Photonics and Optical Communications and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Sen Lin
- State Key Laboratory of Information Photonics and Optical Communications and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Wenzheng Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yanzhen Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Dingkun Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhaofeng He
- School of Artificial, Beijing University of Posts and Telecommunications, Beijing 100084, China
| | - Dong Wang
- School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Ming Lei
- State Key Laboratory of Information Photonics and Optical Communications and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Bo Hong
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hui Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|